Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,135)

Search Parameters:
Keywords = length overall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1307 KB  
Article
Industrial Hemp Finola Variety Microgreens: A Sustainable Source of Selenium Biofortified Functional Foods
by Boris Ravnjak, Ivana Varga, Manda Antunović, Josipa Jović, Monika Tkalec Kojić, Mariana Casari Parreira and Antonela Markulj Kulundžić
Agriculture 2026, 16(3), 292; https://doi.org/10.3390/agriculture16030292 - 23 Jan 2026
Abstract
The aim of this study was to evaluate the effects of selenium (Se) biofortification on growth, biomass accumulation, and micronutrient composition of industrial hemp (Cannabis sativa L., cv. Finola) microgreens, with emphasis on Se uptake and its distribution among leaves, stems, and [...] Read more.
The aim of this study was to evaluate the effects of selenium (Se) biofortification on growth, biomass accumulation, and micronutrient composition of industrial hemp (Cannabis sativa L., cv. Finola) microgreens, with emphasis on Se uptake and its distribution among leaves, stems, and roots. Microgreens were subjected to four Se treatments (Se_0, Se_2, Se_4, and Se_6 µmol Se/L), and changes in morphological traits, micronutrient status (Mn, Fe, Cu, Zn), and Se accumulation were assessed. Selenium biofortification had a marked impact on plant morphology and biomass. Stem length decreased by 12–18% under Se treatments compared with the control, whereas root length increased slightly, particularly at Se_2 and Se_4 (up to +6%). Fresh industrial hemp microgreens biomass responded strongly to Se supply, with the highest stem, root, and total fresh mass recorded at Se_4—representing an increase of 15–22% relative to control plants. At the highest Se level (Se_6), biomass declined by approximately 10–14%, indicating potential growth inhibition at excessive Se concentrations. Micronutrient concentrations were significantly affected by Se. Leaf Mn increased from 152 mg kg−1 at Se_0 to 175 mg kg−1 at Se_6 (+15%), while leaf Zn decreased by 20–25% at higher Se exposure. Stems and roots showed similar antagonistic interactions, with Fe and Zn decreasing by up to 30% at elevated Se levels. Conversely, Mn in stems and roots increased with Se up to Se_4, reaching 400 mg kg−1 in roots. Selenium accumulation exhibited a strong linear response to biofortification, with high coefficients of determination (R2 = 0.9685–0.9943), confirming predictable and efficient Se uptake. Correlation analysis revealed strong positive associations among biomass-related traits and distinct interactions among micronutrients, especially the near-perfect correlation between Se and Cu in roots (r ≈ 0.99). Overall, industrial hemp microgreens demonstrate potential for selenium biofortification, provided that selenium application levels remain within safe dietary limits. Full article
(This article belongs to the Special Issue Greens—Biofortification for Improved Nutritional Quality)
24 pages, 4004 KB  
Article
Spherical Bezier Curve-Based 3D UAV Smooth Path Planning Utilizing an Efficient Improved Exponential-Trigonometric Optimization
by Yitao Cao, Kang Chen and Gang Hu
Biomimetics 2026, 11(2), 85; https://doi.org/10.3390/biomimetics11020085 (registering DOI) - 23 Jan 2026
Abstract
Path planning, as a key technology in unmanned aerial vehicle (UAV) systems, affects the overall efficiency of task completion and is often limited by energy consumption, obstacles, and maneuverability in complex application environments. Traditional algorithms have insufficient performance in nonlinear, multimodal, and multiconstraints [...] Read more.
Path planning, as a key technology in unmanned aerial vehicle (UAV) systems, affects the overall efficiency of task completion and is often limited by energy consumption, obstacles, and maneuverability in complex application environments. Traditional algorithms have insufficient performance in nonlinear, multimodal, and multiconstraints problems. Based on this, this paper proposes an improved exponential-trigonometric optimization (ETO) to solve a 3D smooth path planning model based on a spherical Bezier curve. Firstly, a fixed arc length resampling strategy is proposed to address the issue of the insufficient adaptability of existing path smoothing methods to dynamic threats. Generate a uniformly distributed set of reference points along the Bezier curve and combine it with spherical projection to improve the safety and efficiency of the flight path. On this basis, establish a total cost function that includes four types of costs. Secondly, a new ETO variant called IETO is proposed by introducing the alpha evolution strategy, noise and physical attack strategy, and opposition-based cross teaching strategy into ETO. Then, the effectiveness of IETO for addressing various optimization problems is showcased through population diversity analysis, ablation analysis, and benchmark experiments. Finally, the results of the simulation experiment indicate that IETO stably provides shorter and smoother safe paths for UAVs in three elevation maps with different terrain features. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

23 pages, 924 KB  
Article
Test–Retest Reliability and Agreement of Postural Control Variables Within and Between Single-Leg Squat Variations
by Vasileios Chatziilias, Ioannis Kafetzakis and Dimitris Mandalidis
Appl. Sci. 2026, 16(2), 1147; https://doi.org/10.3390/app16021147 - 22 Jan 2026
Abstract
Single-leg squats are commonly used to assess lower-limb strength and alignment; however, their application for evaluating postural control remains underexplored. This study assessed the reliability and agreement of postural control measures within and between unipedal squat variations. Twenty-eight physically active adults performed a [...] Read more.
Single-leg squats are commonly used to assess lower-limb strength and alignment; however, their application for evaluating postural control remains underexplored. This study assessed the reliability and agreement of postural control measures within and between unipedal squat variations. Twenty-eight physically active adults performed a conventional single-leg squat (CSLSQ), the anterior excursion of the Y-Balance Test (ANYBT), and a forward step-down (FRSTD) with both limbs on two occasions, 5–7 days apart. The mean values of five trials were analyzed for center-of-pressure (COP) 95% confidence ellipse area (95%CEA), path length (PL), velocity (VL), and mediolateral and anteroposterior variability (RMS-X and RMS-Y). Most COP variables demonstrated good-to-excellent reliability (ICC = 0.780–0.948), whereas RMS-X showed lower reliability (ICC = 0.367–0.803) and higher measurement error across limbs. The FRSTD demonstrated high ICCs (0.780–0.948) and low measurement error, comparable to the CSLSQ (0.794–0.940) and generally higher than the ANYBT (0.790–0.895), regardless of limb. Overall, the dominant limb exhibited higher ICCs and lower measurement error than the non-dominant limb. Inter-task agreement was greatest between the CSLSQ and FRSTD, primarily on the dominant limb, indicating greater potential interchangeability for selected COP metrics (95% CEA, VL, and RMS-Y). These findings may assist clinicians and sports scientists in selecting appropriate single-leg squat tasks and COP measures for assessment. Full article
18 pages, 3948 KB  
Article
Reliable Automated Displacement Monitoring Using Robotic Total Station Assisted by a Fixed-Length Track
by Yunhui Jiang, He Gao and Jianguo Zhou
Sensors 2026, 26(2), 746; https://doi.org/10.3390/s26020746 (registering DOI) - 22 Jan 2026
Abstract
Robotic total stations are multi-sensor integrated instruments widely used in displacement monitoring. The principles of polar coordinate or forward intersection systems are usually utilized for calculating monitoring results. However, the polar coordinate method lacks redundant observations, leading to unreliable results sometimes. Forward intersection [...] Read more.
Robotic total stations are multi-sensor integrated instruments widely used in displacement monitoring. The principles of polar coordinate or forward intersection systems are usually utilized for calculating monitoring results. However, the polar coordinate method lacks redundant observations, leading to unreliable results sometimes. Forward intersection requires two instruments for automated monitoring, doubling the cost. In this regard, this paper proposes a novel automated displacement monitoring method using the robotic total station assisted by a fixed-length track. By setting up two station points at both ends of a fixed-length track, the robotic total station is driven to move back and forth on the track and obtain observations at both station points. Then, automated monitoring based on the principle of forward intersection with a single robotic total station is achieved. Simulation and feasibility tests show that the overall accuracy of forward intersection is better than that of polar coordinate system as the monitoring distance increases. At the same time, regardless of tracking a prism or not, the robotic total station is able to automatically find and aim at the targets when moving between station points on the track. Further practical tests show that the reliability of the monitoring results of the proposed method is superior to the polar coordinate method, which provides new ideas for ensuring the reliability of results while reducing cost in actual monitoring tasks. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

37 pages, 13674 KB  
Article
A Reference-Point Guided Multi-Objective Crested Porcupine Optimizer for Global Optimization and UAV Path Planning
by Zelei Shi and Chengpeng Li
Mathematics 2026, 14(2), 380; https://doi.org/10.3390/math14020380 - 22 Jan 2026
Abstract
Balancing convergence accuracy and population diversity remains a fundamental challenge in multi-objective optimization, particularly for complex and constrained engineering problems. To address this issue, this paper proposes a novel Multi-Objective Crested Porcupine Optimizer (MOCPO), inspired by the hierarchical defensive behaviors of crested porcupines. [...] Read more.
Balancing convergence accuracy and population diversity remains a fundamental challenge in multi-objective optimization, particularly for complex and constrained engineering problems. To address this issue, this paper proposes a novel Multi-Objective Crested Porcupine Optimizer (MOCPO), inspired by the hierarchical defensive behaviors of crested porcupines. The proposed algorithm integrates four biologically motivated defense strategies—vision, hearing, scent diffusion, and physical attack—into a unified optimization framework, where global exploration and local exploitation are dynamically coordinated. To effectively extend the original optimizer to multi-objective scenarios, MOCPO incorporates a reference-point guided external archiving mechanism to preserve a well-distributed set of non-dominated solutions, along with an environmental selection strategy that adaptively partitions the objective space and enhances solution quality. Furthermore, a multi-level leadership mechanism based on Euclidean distance is introduced to provide region-specific guidance, enabling precise and uniform coverage of the Pareto front. The performance of MOCPO is comprehensively evaluated on 18 benchmark problems from the WFG and CF test suites. Experimental results demonstrate that MOCPO consistently outperforms several state-of-the-art multi-objective algorithms, including MOPSO and NSGA-III, in terms of IGD, GD, HV, and Spread metrics, achieving the best overall ranking in Friedman statistical tests. Notably, the proposed algorithm exhibits strong robustness on discontinuous, multimodal, and constrained Pareto fronts. In addition, MOCPO is applied to UAV path planning in four complex terrain scenarios constructed from real digital elevation data. The results show that MOCPO generates shorter, smoother, and more stable flight paths while effectively balancing route length, threat avoidance, flight altitude, and trajectory smoothness. These findings confirm the effectiveness, robustness, and practical applicability of MOCPO for solving complex real-world multi-objective optimization problems. Full article
(This article belongs to the Special Issue Advances in Metaheuristic Optimization Algorithms)
Show Figures

Figure 1

24 pages, 8108 KB  
Article
Geodiversity of Skyros Island (Aegean Sea, Greece): Linking Geological Heritage, Cultural Landscapes, and Sustainable Development
by Evangelia Ioannidi Galani, Marianna Kati, Hara Drinia and Panagiotis Voudouris
Land 2026, 15(1), 199; https://doi.org/10.3390/land15010199 - 22 Jan 2026
Abstract
Skyros Island, the largest island of the Sporades Complex (NW Aegean Sea, Greece), preserves a geologically diverse record spanning from the Upper Permian to the Quaternary, including crystalline and non-metamorphosed carbonate rocks, ophiolitic rocks and mélanges, medium-grade metamorphic units, rare Miocene volcanic rocks, [...] Read more.
Skyros Island, the largest island of the Sporades Complex (NW Aegean Sea, Greece), preserves a geologically diverse record spanning from the Upper Permian to the Quaternary, including crystalline and non-metamorphosed carbonate rocks, ophiolitic rocks and mélanges, medium-grade metamorphic units, rare Miocene volcanic rocks, and impressive fossil-bearing sediments and tufa deposits, together with historically significant quarry and mining landscapes. Through a comprehensive evaluation of the geological heritage of Skyros, this study proposes a transferable, results-based framework for geoconservation, geoeducation, and tourism space management within a geopark context. A systematic inventory of twenty (20) geosites, including six (6) flagship case studies, was established based on scientific value, dominant geodiversity type, risk of degradation, accessibility, educational and tourism potential. The assessment integrates the Scientific Value and Risk of Degradation criteria with complementary management and sustainability indicators. The results demonstrate consistently high scientific value across the selected geosites, with several reaching maximum or near-maximum scores due to their rarity, integrity, and reference character at a regional to international scale. Although some geosites exhibit elevated degradation risk, overall vulnerability is considered manageable through targeted conservation measures and spatially explicit visitor management. Based on the assessment results, a network of thematic georoutes was developed and evaluated using route-level indicators, including number of geosites, route length, educational potential, tourism suitability, accessibility, and contribution to responsible geotourism. The study demonstrates how integrated geosite and georoute assessment can support sustainable land management and confirms that Skyros Island meets key criteria for inclusion in the Hellenic Geoparks Network, providing a robust scientific basis for future UNESCO Global Geopark designation. Full article
(This article belongs to the Special Issue Geoparks as a Form of Tourism Space Management (Third Edition))
Show Figures

Figure 1

24 pages, 3691 KB  
Article
Research on the Complex Network Structure and Spatiotemporal Evolution of Interprovincial Virtual Water Flows in China
by Qing Song, Hongyan Chen and Chuanming Yang
Sustainability 2026, 18(2), 1090; https://doi.org/10.3390/su18021090 - 21 Jan 2026
Abstract
Water resources constitute a foundational strategic resource, and the efficiency of their spatial allocation profoundly impacts national sustainable development. This study integrates multi-regional input–output modeling, complex network analysis, and exploratory spatiotemporal data analysis methods to systematically examine the patterns, network structures, and spatiotemporal [...] Read more.
Water resources constitute a foundational strategic resource, and the efficiency of their spatial allocation profoundly impacts national sustainable development. This study integrates multi-regional input–output modeling, complex network analysis, and exploratory spatiotemporal data analysis methods to systematically examine the patterns, network structures, and spatiotemporal evolution characteristics of virtual water flows across 30 Chinese provinces from 2010 to 2023. Findings reveal the following: Virtual water flows underwent a three-stage evolution—“expansion–convergence–stabilization”—forming a “core–periphery” structure spatially: eastern coastal and North China urban clusters as input hubs, while East–Northeast–Northwest China served as primary output regions; The virtual water flow network progressively tightened and segmented, evidenced by increased network density, shorter average path lengths, and enhanced clustering coefficients and transitivity. PageRank analysis reveals significant Matthew effects and structural lock-in within the network; LISA time paths indicate stable spatial structures in most provinces, yet dynamic characteristics are prominent in node provinces like Guangdong and Jiangsu. Spatiotemporal transition analysis further demonstrates high overall system resilience (Type0 transitions accounting for 47%), while abrupt transitions in provinces like Hebei and Liaoning are closely associated with national strategies and industrial restructuring. This study provides theoretical and empirical support for establishing a coordinated allocation mechanism between physical and virtual water resources and formulating differentiated regional water governance policies. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

24 pages, 3748 KB  
Article
Automated Recognition of Rock Mass Discontinuities on Vegetated High Slopes Using UAV Photogrammetry and an Improved Superpoint Transformer
by Peng Wan, Xianquan Han, Ruoming Zhai and Xiaoqing Gan
Remote Sens. 2026, 18(2), 357; https://doi.org/10.3390/rs18020357 - 21 Jan 2026
Abstract
Automated recognition of rock mass discontinuities in vegetated high-slope terrains remains a challenging task critical to geohazard assessment and slope stability analysis. This study presents an integrated framework combining close-range UAV photogrammetry with an Improved Superpoint Transformer (ISPT) for semantic segmentation and structural [...] Read more.
Automated recognition of rock mass discontinuities in vegetated high-slope terrains remains a challenging task critical to geohazard assessment and slope stability analysis. This study presents an integrated framework combining close-range UAV photogrammetry with an Improved Superpoint Transformer (ISPT) for semantic segmentation and structural characterization. High-resolution UAV imagery was processed using an SfM–MVS photogrammetric workflow to generate dense point clouds, followed by a three-stage filtering workflow comprising cloth simulation filtering, volumetric density analysis, and VDVI-based vegetation discrimination. Feature augmentation using volumetric density and the Visible-Band Difference Vegetation Index (VDVI), together with connected-component segmentation, enhanced robustness under vegetation occlusion. Validation on four vegetated slopes in Buyun Mountain, China, achieved an overall classification accuracy of 89.5%, exceeding CANUPO (78.2%) and the baseline SPT (85.8%), with a 25-fold improvement in computational efficiency. In total, 4918 structural planes were extracted, and their orientations, dip angles, and trace lengths were automatically derived. The proposed ISPT-based framework provides an efficient and reliable approach for high-precision geotechnical characterization in complex, vegetation-covered rock mass environments. Full article
Show Figures

Figure 1

16 pages, 1199 KB  
Article
Percutaneous Microwave Ablation Preserves Renal Function with Similar Long Term Oncologic Outcomes Compared to Surgery for Clinical T1 Renal Cell Carcinoma
by Daniel F. Roadman, Daniel D. Shapiro, Arighno Das, Leslie W. Nelson, Paz Lotan, Michael C. Risk, Kyle A. Richards, Elizabeth L. Koehne, David F. Jarrard, Fred T. Lee, Glenn O. Allen, Edwarda Golden, Tim Ziemlewicz, James Louis Hinshaw and Edwin Jason Abel
Cancers 2026, 18(2), 334; https://doi.org/10.3390/cancers18020334 - 21 Jan 2026
Abstract
Background/Objectives: Percutaneous microwave (MW) ablation is a nephron sparing treatment for localized renal cell carcinoma (RCC). We compared perioperative, renal functional, and oncologic outcomes for clinical stage 1 RCC treated with MW ablation, PN, or RN. Methods: Adults with clinical T1 kidney masses [...] Read more.
Background/Objectives: Percutaneous microwave (MW) ablation is a nephron sparing treatment for localized renal cell carcinoma (RCC). We compared perioperative, renal functional, and oncologic outcomes for clinical stage 1 RCC treated with MW ablation, PN, or RN. Methods: Adults with clinical T1 kidney masses treated with MW ablation, PN, or RN from 2001–2025 were identified. Outcomes included: 90-day overall and major complication rate, 30-day readmission rate, length of hospital stay (LOS), change in renal function, local recurrence-free survival (LRFS), metastasis-free survival (MFS), and cancer-specific survival (CSS). Univariable and multivariable analyses evaluated outcomes adjusted for confounders. Results: A total of 2201 patients with renal masses ≤ 7 cm and no evidence of locally advanced or metastatic disease were treated with MW ablation (708), PN (729), or RN (764). MW ablation patients were older and more comorbid compared to both PN/RN, whereas RN patients had larger, higher-grade tumors. Ninety-day overall complications were lowest after MW ablation (8.9% vs. 20.3% PN, p < 0.001 and 8.9% vs. 19.9% RN, p < 0.001). LOS was shortest after MW ablation (median 1 day vs. 3 days PN/RN, p < 0.001 for each). Six-month eGFR decline was similar after MW ablation and PN (−5.2% and −4.7%, p = 0.84) but greater after RN (−32.9%, p < 0.001). Local recurrences were more common with MW ablation, with five-year LRFS 96.4% versus 99.7% for PN (p < 0.001). Five-year MFS (99.5% vs. 99.7%, p = 0.24) and CSS (99.3% vs. 99.7%, p = 0.71) did not differ between MW ablation and PN. Conclusions: Percutaneous MW ablation has comparable metastasis free and cancer specific survival with lower perioperative morbidity and comparable renal preservation to PN, despite worse baseline comorbidity and renal function. These findings support MW ablation as an effective nephron-sparing option for appropriately selected patients with clinical T1 RCC when performed at an experienced center. Full article
Show Figures

Figure 1

30 pages, 16854 KB  
Article
Study on Shaped Charge Blasting Pressure-Relief Technology for the Floor of Extra-Thick Coal Seams and Its Application
by Renyuan Su, Zonglong Mu, Jiaxun Li, Jinglong Cao, Chunlong Jiang, Yongzheng Ren, Jingqi Ji and Hao Fu
Appl. Sci. 2026, 16(2), 1079; https://doi.org/10.3390/app16021079 - 21 Jan 2026
Abstract
During layered mining of extra-thick coal seams in deep rock-burst-prone mines, a thick bottom coal layer facilitates the accumulation of elastic strain energy in the floor strata. This stored energy may be released under mining-induced disturbances during retreat, thereby triggering rock-burst events. To [...] Read more.
During layered mining of extra-thick coal seams in deep rock-burst-prone mines, a thick bottom coal layer facilitates the accumulation of elastic strain energy in the floor strata. This stored energy may be released under mining-induced disturbances during retreat, thereby triggering rock-burst events. To mitigate floor energy accumulation at the lower-slice working face of extra-thick coal seams, previous studies have primarily adopted floor blasting for pressure relief. However, conventional blasting is often associated with poor energy utilization and limited controllability of the pressure-relief range, which hampers achieving the intended relief performance. Accordingly, this study proposes a shaped charge blasting scheme to reduce floor energy accumulation. ANSYS/LS-DYNA simulations and UDEC-based energy analyses, together with theoretical analysis and field validation, were conducted to clarify the mechanism of directional fracture propagation and the evolution of floor elastic energy before and after blasting. The results showed that the synergistic effects of the high-velocity jet and quasi-static pressure in shaped charge blasting generated a through-going fracture aligned with the maximum horizontal principal stress. This fracture effectively segmented the high-stress region in the floor and increased the maximum fracture length along the shaped charge direction to 10–13 times that achieved by conventional blasting. UDEC simulations and theoretical analysis indicated that the peak elastic energy in the floor was reduced by up to 54.08% after shaped charge blasting. Field measurements further showed that shaped charge blasting limited the maximum roadway floor heave to 300 mm and reduced floor deformation by 35–42% compared with the case without pressure relief. Overall, shaped charge blasting effectively blocks stress-transfer pathways and improves energy dissipation efficiency, providing theoretical support and a practical technical paradigm for safe and efficient mining of deep extra-thick coal seams. Full article
Show Figures

Figure 1

18 pages, 266 KB  
Article
Associations Between Adoption Discounts, Length-of-Stay, and Adoption Rates of Dogs in an Open-Admission Municipal Animal Shelter in NSW, Australia
by Tianyang Qiu, Simone J. Maher, Evelyn Hall and Mark E. Westman
Animals 2026, 16(2), 321; https://doi.org/10.3390/ani16020321 - 21 Jan 2026
Abstract
This study explored possible associations between adoption discounts, length-of-stay (LOS), and adoption rates for dogs at a municipal (council) shelter in New South Wales (NSW), Australia, over a one-year period (4 April 2023–3 April 2024). Data from 479 rehomed dogs and eight temporary [...] Read more.
This study explored possible associations between adoption discounts, length-of-stay (LOS), and adoption rates for dogs at a municipal (council) shelter in New South Wales (NSW), Australia, over a one-year period (4 April 2023–3 April 2024). Data from 479 rehomed dogs and eight temporary promotional campaigns were analysed, considering the following factors: discount levels applied, breed group, body size, age group, coat colour, intake method (stray, privately surrendered, or seized), and return-to-shelter history after adoption. Dogs with ≥75% discount and 0–50% discount had a longer LOS compared to those without a discount (p < 0.001), likely because many discounted dogs already had a prolonged LOS prior to the campaign’s commencement. Other important LOS predictors included breed group (p < 0.001), body size (p < 0.001), age group (p = 0.004), and intake method (p < 0.001). Gundogs/hounds/terriers (purebred), and toy/non-sporting groups (both purebred and crossbred), small-sized dogs, seniors, puppies, and privately surrendered dogs had significantly lower LOS compared to their counterparts. However, when daily adoption rates were examined, temporary price-discounting campaigns resulted in substantially increased rehoming rates. In particular, Flash Sales (≤48 h) increased daily adoptions by 204% compared to non-campaign periods. One Flash Sale event resulted in higher daily adoption rates, but also significantly higher return rates compared to other temporary campaigns, highlighting a possible risk of impulse adoptions and necessitating future work with adopters to identify potentially problematic decision-making. Shelters should be aware that, on an individual level, factors other than price can be more important for potential adopters. On a broader level, temporary campaigns involving a reduced adoption price can increase overall adoption rates and therefore should be considered as part of any marketing exposure strategy for animal shelters. Full article
(This article belongs to the Section Animal Welfare)
23 pages, 13046 KB  
Article
Parametric Study on an Integrated Sleeve Mortise-and-Tenon Steel–Timber Composite Beam–Column Joints
by Zhanguang Wang, Weihan Yang, Zhenyu Gao and Jianhua Shao
Buildings 2026, 16(2), 435; https://doi.org/10.3390/buildings16020435 - 20 Jan 2026
Abstract
To address the limitations of traditional timber mortise-and-tenon joints, particularly their low pull-out resistance and rapid stiffness degradation under cyclic loading, this study proposes a novel integrated sleeve mortise-and-tenon steel–timber composite beam–column joint. Building upon prior experimental validation and numerical model verification, a [...] Read more.
To address the limitations of traditional timber mortise-and-tenon joints, particularly their low pull-out resistance and rapid stiffness degradation under cyclic loading, this study proposes a novel integrated sleeve mortise-and-tenon steel–timber composite beam–column joint. Building upon prior experimental validation and numerical model verification, a comprehensive parametric study was conducted to systematically investigate the influence of key geometric parameters on the seismic performance of the joint. The investigated parameters included beam sleeve thickness (1–10 mm), sleeve length (150–350 mm), bolt diameter (4–16 mm), and the dimensions and thickness of stiffeners. The results indicate that a sleeve thickness of 2–3 mm yields the optimal overall performance: sleeves thinner than 2 mm are prone to yielding, while those thicker than 3 mm induce stress concentration in the timber beam. A sleeve length of approximately 250 mm provides the highest initial stiffness and a ductility coefficient exceeding 4.0, representing the best seismic behavior. Bolt diameters within the range of 8–10 mm produce full and stable hysteresis loops, effectively balancing load-carrying capacity and energy dissipation; smaller diameters lead to pinching failure, whereas larger diameters trigger premature plastic deformation in the timber. Furthermore, stiffeners with a width of 40 mm and a thickness of 2 mm effectively enhance joint stiffness, promote a uniform stress distribution, and mitigate local damage. The optimized joint configuration demonstrates excellent ductility, stable hysteretic behavior, and a high load capacity, providing a robust technical foundation for the design and practical application of advanced steel–timber composite connections. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

30 pages, 8901 KB  
Article
Research on Hydrodynamic Characteristics and Drag Reduction Optimization of Drillships with Moonpools
by Junming Hu, Chengshuai Song, Jiaxian Deng, Jiaxia Wang, Xiaojie Zhao and Daiyu Zhang
J. Mar. Sci. Eng. 2026, 14(2), 215; https://doi.org/10.3390/jmse14020215 - 20 Jan 2026
Abstract
This paper analyzes the influence of moonpools on the hydrodynamic performance of drillships using the Reynolds-averaged Navier–Stokes (RANS) method. A three-dimensional numerical wave tank is established to realize regular waves and to perform prediction and validation of the KCS ship’s performance in calm [...] Read more.
This paper analyzes the influence of moonpools on the hydrodynamic performance of drillships using the Reynolds-averaged Navier–Stokes (RANS) method. A three-dimensional numerical wave tank is established to realize regular waves and to perform prediction and validation of the KCS ship’s performance in calm water and head seas. After selecting optimal moonpool configurations under calm conditions, seakeeping analyses for a rectangular-moonpool drillship in waves and drag-reduction optimization in calm water and head seas are conducted. The comparative analysis shows that in calm-water navigation, different moonpool shapes lead to different added-resistance effects, and the drillship with a rectangular moonpool shows overall better performance in resistance and running attitude; the added resistance due to the moonpool mainly originates from the additional residual resistance. The sustained energy supply to the clockwise vortex within the moonpool is maintained by the continuous mass exchange between the water flow beneath the ship’s bottom and the water inside the moonpool. Under regular waves, the presence of a moonpool leads to an increase in the total resistance experienced by the drillship. A flange device can effectively reduce the mean amplitude of waves inside the moonpool, and when the flange is installed 10 mm above the still water level with a length of 120 mm, its drag-reduction effect is better. The flange structure can effectively improve the hydrodynamic characteristics of the drillship in waves. The numerical conclusions provide a reference value for the engineering application of drillships with moonpool structures. Full article
(This article belongs to the Special Issue Advancements in Marine Hydrodynamics and Structural Optimization)
Show Figures

Figure 1

9 pages, 1084 KB  
Article
Biological Control of Tuta absoluta Using Commercial Entomopathogenic Fungal Endophytes: Colonization Efficiency and Greenhouse Efficacy
by Christos Lymperopoulos and Spyridon Mantzoukas
Agronomy 2026, 16(2), 244; https://doi.org/10.3390/agronomy16020244 - 20 Jan 2026
Abstract
The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is one of the most destructive pests of tomato crops worldwide. Its high reproductive potential and increasing resistance to conventional insecticides have made the development of sustainable management strategies essential. Biological control using entomopathogenic fungi [...] Read more.
The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is one of the most destructive pests of tomato crops worldwide. Its high reproductive potential and increasing resistance to conventional insecticides have made the development of sustainable management strategies essential. Biological control using entomopathogenic fungi (EPF), particularly when established as endophytes, has emerged as a promising approach. This study investigated the endophytic colonization capacity and greenhouse performance of three commercially available EPF formulations: Beauveria bassiana (Velifer®), Lecanicillium lecanii (Lecan®), and a Beauveria bassianaMetarhizium anisopliae mixture (Metab®), for the suppression of T. absoluta in tomato. Our experiment was conducted under commercial greenhouse conditions using soil drench applications at manufacturer-recommended doses. Endophytic colonization was assessed through surface-sterilized leaf assays, while pest suppression was evaluated via weekly measurements of larval mine length, infestation incidence, and survival dynamics. B. bassiana (Velifer®) exhibited the highest endophytic colonization frequency and consistently reduced mine length and infestation levels compared with untreated plants. Survival analysis using Cox proportional hazards revealed significant reductions in infestation risk for Velifer® (hazard ratio, HR = 0.420), Metab® (HR = 0.480), and Lecan® (HR = 0.599), relative to the negative control, whereas the chemical positive control provided the strongest overall suppression (HR = 0.287). Our findings demonstrate that commercial EPF formulations can significantly reduce T. absoluta infestation under greenhouse conditions and represent a valuable component of integrated pest management programs. Full article
(This article belongs to the Special Issue Pests, Pesticides, Pollinators and Sustainable Farming—2nd Edition)
Show Figures

Figure 1

21 pages, 3569 KB  
Article
Lossless Compression of Infrared Images via Pixel-Adaptive Prediction and Residual Hierarchical Decomposition
by Ya Liu, Zheng Li, Yong Zhang and Rui Zhang
Appl. Sci. 2026, 16(2), 1030; https://doi.org/10.3390/app16021030 - 20 Jan 2026
Abstract
Linear array detector-based infrared push-broom imaging systems are widely employed in remote sensing and security surveillance due to their high spatial resolution, wide swath coverage, and low cost. However, the massive data volume generated during continuous scanning presents substantial storage and transmission challenges. [...] Read more.
Linear array detector-based infrared push-broom imaging systems are widely employed in remote sensing and security surveillance due to their high spatial resolution, wide swath coverage, and low cost. However, the massive data volume generated during continuous scanning presents substantial storage and transmission challenges. To mitigate this issue, we propose a lossless compression algorithm based on pixel-adaptive prediction and hierarchical decomposition of residuals. The algorithm first performs pixel-wise adaptive noise compensation according to local image characteristics and achieves efficient prediction by exploiting the strong inter-pixel correlation along the scanning direction. Subsequently, hierarchical decomposition is applied to high-energy residual blocks to further eliminate spatial redundancy. Finally, the Golomb–Rice coding parameters are adaptively adjusted based on the neighborhood residual energy, optimizing the overall code length distribution. The experimental results demonstrate that our method significantly outperforms most state-of-the-art approaches in terms of both the compression ratio (CR) and bits per pixel (BPP). Moreover, while maintaining a CR comparable to H.265-Intra, our method achieves a 21-fold reduction in time complexity, confirming its superiority for large-format image compression. Full article
Show Figures

Figure 1

Back to TopTop