Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = length of carbon chain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4424 KB  
Article
Impacts of REDD+ on Forest Conservation in a Protected Area of the Amazon
by Giulia Silveira, Erico F. L. Pereira-Silva, Rozely F. dos Santos and Elisa Hardt
Earth 2025, 6(4), 128; https://doi.org/10.3390/earth6040128 - 16 Oct 2025
Viewed by 762
Abstract
REDD+ has emerged as a global strategy for reducing CO2 emissions from deforestation and forest degradation and shows great promise for the Extractive Reserves of the Brazilian Amazon (RESEX). It is essential to assess whether REDD+ projects have effectively contributed to the [...] Read more.
REDD+ has emerged as a global strategy for reducing CO2 emissions from deforestation and forest degradation and shows great promise for the Extractive Reserves of the Brazilian Amazon (RESEX). It is essential to assess whether REDD+ projects have effectively contributed to the conservation of these areas over time. To address this issue, we analyzed land use and cover dynamics in the RESEX Rio Preto-Jacundá (Rondônia) and its surroundings from 2004 to 2020 to evaluate the impacts of a certified REDD+ project. The following two trend scenarios were simulated: (i) pre-implementation (2004–2012), projected to 2020, and (ii) post-implementation (2012–2020), projected to 2028. Historical maps were derived from the TerraClass dataset, and future projections were generated using Markov Chains combined with Cellular Automata. Forest conservation was evaluated through structural metrics such as the number, size, and shape of forest fragments, and the type, frequency, and length of boundaries with other land uses, using ArcGIS tools and Patch Analyst. Carbon sequestration was estimated from the aboveground biomass values of primary and secondary forests. The results showed that the REDD+ mechanism did not achieve the expected environmental benefits, with a decrease in carbon stocks over time and potential negative effects on the richness and composition of local flora. Full article
Show Figures

Figure 1

17 pages, 2502 KB  
Article
Kinetic Parameters at High-Pressure-Limit for Unimolecular Alkene Elimination Reaction Class of Fatty Acid Alkyl Esters (FAAEs)
by Xiaohui Sun, Zhenyu Pei, Zerong Li and Yuanyuan Tian
Molecules 2025, 30(20), 4054; https://doi.org/10.3390/molecules30204054 - 11 Oct 2025
Viewed by 295
Abstract
The unimolecular alkene elimination reaction class of fatty acid alkyl esters (FAAEs) is a crucial component in the low-temperature combustion mechanism for biodiesel fuels. However, thermo-kinetic parameters for this reaction class are scarce, particularly for the large-size molecules over four carbon atoms and [...] Read more.
The unimolecular alkene elimination reaction class of fatty acid alkyl esters (FAAEs) is a crucial component in the low-temperature combustion mechanism for biodiesel fuels. However, thermo-kinetic parameters for this reaction class are scarce, particularly for the large-size molecules over four carbon atoms and intricate branched-chain configurations. Thermo-kinetic parameters are essential for constructing a reaction mechanism, which can be used to clarify the chemical nature of combustion for biodiesel fuels. In this paper, the B3LYP method, in conjunction with the 6-311G(d,p) basis set, is used to carry out geometry optimization of the species participating in the reactions. Frequency calculations are further executed at the same level of theory. Additionally, coupled with the 6-311G(d,p) basis set, the B3LYP method acts as the low-level ab initio approach, while the Gaussian-4 (G4) composite method serves as the high-level ab initio approach within the isodesmic reaction correction scheme. The CCSD(T) approach is employed to verify the consistency of the electronic energy ascertained through the G4 method. The isodesmic reaction method (IRM) is used to obtain the energy barriers and reaction enthalpies for unimolecular alkene elimination reaction class of FAAEs. Based on the reaction class transition state theory (RC-TST), high-pressure-limit rate coefficients were computed, with asymmetric Eckart tunneling corrections applied across 500~2000 K temperature range. Rate rules at the high-pressure-limit are obtained through the averaging of rate coefficients from a representative collection of reactions, which incorporate substituent groups and carbon chains with different sizes and lengths. Ultimately, the energy barriers, reaction enthalpies, and rate rules at the high-pressure-limit and kinetic parameters expressed as (A, n, E) are supplied for developing the low-temperature combustion mechanism of biodiesel fuels. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

23 pages, 3128 KB  
Article
Antibacterial Activity of Bis(4-aminopyridinium) Compounds for Their Potential Use as Disinfectants
by Carolina Arriaza-Echanes, Claudio A. Terraza, Mateus Frazao, Sebastián Reyes-Cerpa, Loreto Sanhueza and Pablo A. Ortiz
Molecules 2025, 30(19), 3962; https://doi.org/10.3390/molecules30193962 - 2 Oct 2025
Viewed by 536
Abstract
The following study presents the initial evaluation (solubility, thermal stability, antibacterial activity, and cytotoxicity) of a series of previously described organic salts, derived from the bis(4-aminopyridinium) cation with different chain lengths, for their potential use as hospital disinfectants. Of the salts studied, those [...] Read more.
The following study presents the initial evaluation (solubility, thermal stability, antibacterial activity, and cytotoxicity) of a series of previously described organic salts, derived from the bis(4-aminopyridinium) cation with different chain lengths, for their potential use as hospital disinfectants. Of the salts studied, those with chain lengths between 2 and 10 carbon atoms (C2–C10) showed high solubility in water, methanol, and DMSO. All salts exhibited high thermal stability, showing a thermal decomposition temperature (T5%) above 330 °C. Antibiotic susceptibility testing of the studied E. coli, S. aureus, and S. typhimurium strains confirmed their resistance to different classes of commonly used clinical antibiotics, validating their selection. During the determination of antibacterial activity, the long-chain salts (C10 and C12) showed the greatest activity, with minimum inhibitory concentrations (MICs) from 31.2 μg/mL to 62.5 μg/mL in all the strains studied. Given the high activity of C10 and C12, their cytotoxicity was assessed in HeLa cells. They exhibited no cytotoxic effects after 12 h and only about 5% cytotoxicity after 24 h. Furthermore, the cell viability assay of the most active and water-soluble salt, C10, showed that this salt can interact with the bacterial cytoplasmic membrane, increasing its permeability in both Gram-positive and Gram-negative bacteria. However, these results cannot rule out the possibility that this salt may have more than one site of action within the bacterial cell. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Bioactive Compounds)
Show Figures

Figure 1

34 pages, 7273 KB  
Review
Understanding PFAS Adsorption: How Molecular Structure Affects Sustainable Water Treatment
by Muhammad Hamza, Ridwan T. Ayinla, Islam Elsayed and El Barbary Hassan
Environments 2025, 12(9), 330; https://doi.org/10.3390/environments12090330 - 18 Sep 2025
Viewed by 3163
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a broad group of synthetic chemicals characterized by strong carbon–fluorine bonds, making them highly persistent and widely distributed in the environment. Their chain length and functional head groups, such as sulfonate and carboxylate groups, determine key molecular [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are a broad group of synthetic chemicals characterized by strong carbon–fluorine bonds, making them highly persistent and widely distributed in the environment. Their chain length and functional head groups, such as sulfonate and carboxylate groups, determine key molecular properties like hydrophobicity, acidity, and sorption behavior. These properties significantly impact the effectiveness of PFAS removal from water systems. This review provides a structural classification of PFASs and explores removal strategies, with a particular emphasis on adsorption. It examines sustainable adsorbents, including both natural materials (e.g., cellulose, chitosan, lignin, and cyclodextrins) and engineered synthetic materials (e.g., covalent organic frameworks, metal–organic frameworks, and molecularly imprinted polymers). The discussion highlights important parameters such as chain length and functional chemistry, as these can greatly influence removal efficiency. Furthermore, the discussion addresses the adsorption mechanisms-such as electrostatic attraction, hydrophobic interaction, and fluorophilic interactions-to show how they contribute in different systems. By combining structural insights with adsorption performance data, this review aims to help design and select sustainable, high-performance adsorbents for efficiently reducing PFASs in contaminated water. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Wastewater Treatment)
Show Figures

Figure 1

22 pages, 5064 KB  
Article
Compatibility of Polycarboxylate Ethers with Cementitious Systems Containing Fly Ash: Effect of Molecular Weight and Structure
by Veysel Kobya, Kemal Karakuzu, Ali Mardani, Burak Felekoğlu, Kambiz Ramyar, Joseph Assaad and Hilal El-Hassan
Buildings 2025, 15(18), 3351; https://doi.org/10.3390/buildings15183351 - 16 Sep 2025
Viewed by 618
Abstract
Substituting cement with mineral additives like fly ash is increasingly essential for sustainable production. While replacement rates largely depend on fresh-state properties, the interaction between fly ash and polycarboxylate ether (PCE) molecular structures remains underexplored. In this regard, this study investigates the effect [...] Read more.
Substituting cement with mineral additives like fly ash is increasingly essential for sustainable production. While replacement rates largely depend on fresh-state properties, the interaction between fly ash and polycarboxylate ether (PCE) molecular structures remains underexplored. In this regard, this study investigates the effect of PCE molecular structures and weight on the rheology, setting, and strength of cementitious systems containing up to 45% fly ash additions. Seven distinct PCE possessing different molecular weights (27,000–78,000 g/mol) as well as backbone and side chain lengths are synthesized. The interaction between PCE and solid particles was explored through total organic carbon, dynamic light scattering, and gel permeation chromatography. Test results showed that the adsorption rates of the cement and fly ash particles within the cementitious composites improved by up to 90% with fly ash replacement and upon using PCE with a medium molecular weight of 56,000 g/mol, backbone length of 21 k, and short side chain length of 1000 g/mol. This has resulted in a 75% reduction in the material’s apparent viscosity, delayed setting times of up to 38%, and improved early- and late-age compressive strengths of up to 123%. Such data can interest cement and admixture producers in proposing suitable PCEs for superior fly ash concrete performance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 4674 KB  
Article
Raman Monitoring of Staphylococcus aureus Osteomyelitis: Microbial Pathogenesis and Bone Immune Response
by Shun Fujii, Naoyuki Horie, Saki Ikegami, Hayata Imamura, Wenliang Zhu, Hiroshi Ikegaya, Osam Mazda, Giuseppe Pezzotti and Kenji Takahashi
Int. J. Mol. Sci. 2025, 26(17), 8572; https://doi.org/10.3390/ijms26178572 - 3 Sep 2025
Viewed by 918
Abstract
Staphylococcus aureus is the most common pathogen causing osteomyelitis, a hardly recoverable bone infection that generates significant burden to patients. Osteomyelitis mouse models have long and successfully served to provide phenomenological insights into both pathogenesis and host response. However, direct in situ monitoring [...] Read more.
Staphylococcus aureus is the most common pathogen causing osteomyelitis, a hardly recoverable bone infection that generates significant burden to patients. Osteomyelitis mouse models have long and successfully served to provide phenomenological insights into both pathogenesis and host response. However, direct in situ monitoring of bone microbial pathogenesis and immune response at the cellular level is still conspicuously missing in the published literature. Here, we update a standard pyogenic osteomyelitis in Wistar rat model, in order to investigate bacterial localization and immune response in osteomyelitis of rat tibia upon adding in situ analyses by spectrally resolved Raman spectroscopy. Raman experiments were performed one and five weeks post infections upon increasing the initial dose of bacterial inoculation in rat tibia. Label-free in situ Raman spectroscopy clearly revealed the presence of Staphylococcus aureus through exploiting peculiar signals from characteristic carotenoid staphyloxanthin molecules. Data were collected as a function of both initial bacteria inoculation dose and location along the tibia. Such strong Raman signals, which relate to single and double bonds in the carbon chain backbone of carotenoids, served as efficient bacterial markers even at low levels of infection. We could also detect strong Raman signals from cytochrome c (and its oxidized form) from bone cells in response to infection and inflammatory paths. Although initial inoculation was restricted to a single location close to the medial condyle, bacteria spread along the entire bone down to the medial malleolus, independent of initial infection dose. Raman spectroscopic characterizations comprehensively and quantitatively revealed the metabolic state of bacteria through specific spectroscopic biomarkers linked to the length of staphyloxanthin carbon chain backbone. Moreover, the physiological response of eukaryotic cells could be quantified through monitoring the level of oxidation of mitochondrial cytochrome c, which featured the relative intensity of the 1644 cm−1 signal peculiar to the oxidized molecules with respect to its pyrrole ring-breathing signal at 750 cm−1, according to the previously published literature. In conclusion, we present here a novel Raman spectroscopic approach indexing bacterial concentration and immune response in bone tissue. This new approach enables locating and characterizing in situ bone infections, inflammatory host tissue reactions, and bacterial resistance/adaptation. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 1474 KB  
Article
Decline in Serum Lysophosphatidylcholine Species in Patients with Severe Inflammatory Bowel Disease
by Hauke Christian Tews, Tanja Elger, Muriel Huss, Johanna Loibl, Arne Kandulski, Martina Müller, Marcus Höring, Gerhard Liebisch and Christa Buechler
J. Clin. Med. 2025, 14(15), 5485; https://doi.org/10.3390/jcm14155485 - 4 Aug 2025
Viewed by 928
Abstract
Background/Objectives: Lysophosphatidylcholine (LPC) is composed of various lipid species, some of which exert pro-inflammatory and others anti-inflammatory activities. However, most of the LPC species analyzed to date are reduced in the serum of patients with inflammatory bowel disease (IBD) compared to healthy [...] Read more.
Background/Objectives: Lysophosphatidylcholine (LPC) is composed of various lipid species, some of which exert pro-inflammatory and others anti-inflammatory activities. However, most of the LPC species analyzed to date are reduced in the serum of patients with inflammatory bowel disease (IBD) compared to healthy controls. To our knowledge, the correlation between serum LPC species levels and measures of inflammation, as well as their potential as markers for monitoring IBD activity, has not yet been investigated. Methods: Thirteen LPC species, varying in acyl chain length and number of double bonds, were measured in the serum of 16 controls and the serum of 57 patients with IBD. Associations with C-reactive protein (CRP) and fecal calprotectin levels as markers of IBD severity were assessed. Results: Serum levels of LPC species did not differ between the healthy controls and the entire patient cohort. In patients with IBD, serum levels of LPC 16:1, 18:0, 18:3, 20:3, and 20:5, as well as total LPC concentrations, showed inverse correlations with both CRP and fecal calprotectin levels, indicating an association with inflammatory activity. Nine LPC species were significantly reduced in patients with high fecal calprotectin compared to those with low values. LPC species with 22 carbon atoms and 4 to 6 double bonds were not related to disease activity. Stool consistency and gastrointestinal symptoms did not influence serum LPC profiles. Corticosteroid treatment was associated with lower serum LPC 20:3 and 22:5 levels, while mesalazine, anti-TNF, and anti-IL-12/23 therapies had no significant impact on LPC concentrations. There was a strong positive correlation between LPC species containing 15 to 18 carbon atoms and serum cholesterol, triglycerides, and phosphatidylcholine levels. However, there was no correlation with markers of liver disease. Conclusions: Shorter-chain LPC species are reduced in patients with active IBD and reflect underlying hypolipidemia. While these lipid alterations provide insight into IBD-associated metabolic changes, they appear unsuitable as diagnostic or disease monitoring biomarkers. Full article
(This article belongs to the Special Issue Inflammatory Bowel Disease: Pathogenesis and Management Strategies)
Show Figures

Figure 1

14 pages, 1483 KB  
Article
Molecular Dynamics Simulation of PFAS Adsorption on Graphene for Enhanced Water Purification
by Bashar Awawdeh, Matteo D’Alessio, Sasan Nouranian, Ahmed Al-Ostaz, Mine Ucak-Astarlioglu and Hunain Alkhateb
ChemEngineering 2025, 9(4), 83; https://doi.org/10.3390/chemengineering9040083 - 1 Aug 2025
Cited by 1 | Viewed by 1310
Abstract
The contamination of drinking water by per- and polyfluoroalkyl substances (PFASs) presents a global concern due to their extreme persistence, driven by strong C–F bonds. This study investigated the potential of graphene as a filtration material for PFAS removal, focusing on six key [...] Read more.
The contamination of drinking water by per- and polyfluoroalkyl substances (PFASs) presents a global concern due to their extreme persistence, driven by strong C–F bonds. This study investigated the potential of graphene as a filtration material for PFAS removal, focusing on six key compounds regulated by the U.S. EPA: PFOA, PFNA, GenX, PFBS, PFOS, and PFHxS. Using molecular simulations, adsorption energy, diffusion coefficients, and PFAS-to-graphene distances were analyzed. The results showed that adsorption strength increased with molecular weight; PFOS (500 g/mol) exhibited the strongest adsorption (−171 kcal/mol). Compounds with sulfonic acid head groups (e.g., PFOS) had stronger interactions than those with carboxylate groups (e.g., PFNA), highlighting the importance of head group chemistry. Shorter graphene-to-PFAS distances also aligned with higher adsorption energies. PFOS, for example, had the shortest distance at 8.23 Å (head) and 6.15 Å (tail) from graphene. Diffusion coefficients decreased with increasing molecular weight and carbon chain length, with lower molecules like PFBS (four carbon atoms) diffusing more rapidly than heavier ones like PFOS and PFNA. Interestingly, graphene enhanced PFAS mobility in water, likely by disrupting the water structure and lowering intermolecular resistance. These results highlight graphene’s promise as a high-performance material for PFAS removal and future water purification technologies. Full article
Show Figures

Graphical abstract

11 pages, 1292 KB  
Article
Flotation Behaviours of Ilmenite and Associated Solution Chemistry Properties Using Saturated Fatty Acids as the Collector
by Jihua Zhai, Hao He, Pan Chen, Lin Song, Xiaohai Yao and Hongxian Zhang
Separations 2025, 12(8), 191; https://doi.org/10.3390/separations12080191 - 24 Jul 2025
Cited by 1 | Viewed by 577
Abstract
A series of homologous saturated fatty acids were introduced and evaluated as collectors for ilmenite flotation using a combination of micro-flotation tests and surface tension measurements. The results showed that ilmenite exhibited good flotation behaviour when decanoic and dodecanoic acids were used as [...] Read more.
A series of homologous saturated fatty acids were introduced and evaluated as collectors for ilmenite flotation using a combination of micro-flotation tests and surface tension measurements. The results showed that ilmenite exhibited good flotation behaviour when decanoic and dodecanoic acids were used as collectors; however, saturated fatty acids with shorter or longer carbon chains were not suitable for ilmenite flotation (caused either by poor collection ability or limited solubility in water). The optimum flotation pH range was also dependent on the carbon chain length of saturated fatty acids, and the solution surface tension did not always match well with the ilmenite flotation behaviour when using a series of saturated fatty acids as the collector. The associated solution chemistry properties under series saturated fatty acid flotation systems were discussed, and the adsorption mechanism of decanoic acid onto the ilmenite surface was also investigated via FTIR, zeta potential, and contact angle measurements. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

15 pages, 2518 KB  
Article
Ligand Differentiation Ability of Insect Odorant Receptors in Heterologously Expressed Cells as Potential Biosensor Elements
by Rui Zhou, Yuji Sukekawa, Sawako Niki, Eri Kuroda, Ryohei Kanzaki, Shigehiro Namiki and Hidefumi Mitsuno
Chemosensors 2025, 13(8), 273; https://doi.org/10.3390/chemosensors13080273 - 23 Jul 2025
Viewed by 825
Abstract
The extensive diversity of volatile organic compounds, along with their minor structural variations, presents significant challenges in the development of chemosensory-based biosensors. Previously, we generated sensor cells expressing insect odorant receptors (ORs) in Sf21 cells, demonstrating their potential as cell-based odorant sensor elements. [...] Read more.
The extensive diversity of volatile organic compounds, along with their minor structural variations, presents significant challenges in the development of chemosensory-based biosensors. Previously, we generated sensor cells expressing insect odorant receptors (ORs) in Sf21 cells, demonstrating their potential as cell-based odorant sensor elements. However, it remains unclear whether the selectivity of cells expressing ORs in vitro for diverse compounds aligns with the receptor’s in vivo performance, aside from the response to target compounds. To address this, we assessed the ligand responses of sensor cells expressing ORs from Drosophila melanogaster using a high-throughput calcium imaging system. Our results demonstrate that in vitro receptor responses exhibit ligand selectivity comparable to in vivo conditions across different chemical categories. Broadly tuned OR-expressing sensor cells (Or13a, Or47a, and Or98a) displayed differential affinities, whereas the narrowly tuned Or56a-expressing sensor cells selectively responded to geosmin. Moreover, cell responses varied with subtle differences in chemical structure, including carbon chain length and functional group positioning. These findings provide valuable insights into insect OR–ligand interactions in vitro, demonstrating that receptor selectivity in sensor cells closely mirrors in vivo conditions. In addition to this consistency, our results highlight the subtle ligand differentiation capabilities of sensor cells enabling fluorescence-based visualization of receptor–ligand interactions. Full article
Show Figures

Figure 1

23 pages, 1109 KB  
Article
Synthesis of Novel Bioactive Lipophilic Hydroxyalkyl Esters and Diesters Based on Hydroxyphenylacetic Acids
by Andrea Fochetti, Noemi Villanova, Andrea Lombardi, Veronica Lelli, Yuri Gazzilli, Anna Maria Timperio, Giancarlo Fabrizi and Roberta Bernini
Molecules 2025, 30(15), 3087; https://doi.org/10.3390/molecules30153087 - 23 Jul 2025
Viewed by 731
Abstract
Novel lipophilic hydroxyalkyl esters were synthetized by Fischer esterification in good to excellent yields (60–96%) from a panel of hydroxyphenylacetic acids and increasing chain length (2 to 8 carbon atoms) α,ω-diols. The in vitro antioxidant activity of these compounds was evaluated by DPPH [...] Read more.
Novel lipophilic hydroxyalkyl esters were synthetized by Fischer esterification in good to excellent yields (60–96%) from a panel of hydroxyphenylacetic acids and increasing chain length (2 to 8 carbon atoms) α,ω-diols. The in vitro antioxidant activity of these compounds was evaluated by DPPH and ABTS assays. Hydroxybutyl esters and hydroxyphenylacetic acids were used as starting materials for the synthesis of novel lipophilic diesters (butyl diarylacetates) using Mitsunobu reaction. The final products were isolated in moderate to good yields (40–78%), and their structure–antioxidant activity relationships are discussed. Compounds bearing the catechol moiety on one of the two aromatic rings and high lipophilicity proved to be the strongest antioxidants and were selected for testing as antibacterials against Staphylococcus aureus and Escherichia coli, obtaining preliminary and promising results. Full article
Show Figures

Graphical abstract

12 pages, 4221 KB  
Article
The Effects of Amino Acids on the Polymorphs and Magnesium Content of Calcium–Magnesium Carbonate Minerals
by Chonghong Zhang, Yuyang Jiang and Shuhao Qian
Minerals 2025, 15(7), 763; https://doi.org/10.3390/min15070763 - 21 Jul 2025
Viewed by 602
Abstract
Calcium–magnesium (Ca–Mg) carbonates are among the most widely distributed carbonates in the Earth’s surface environment, and their formation mechanisms are of great significance for revealing geological environmental changes and carbon sequestration processes. In this study, the gas diffusion method was employed with L-glutamic [...] Read more.
Calcium–magnesium (Ca–Mg) carbonates are among the most widely distributed carbonates in the Earth’s surface environment, and their formation mechanisms are of great significance for revealing geological environmental changes and carbon sequestration processes. In this study, the gas diffusion method was employed with L-glutamic acid, L-glycine, and L-lysine as nucleation templates for carbonate minerals to systematically investigate their regulatory effects on the mineralization of Ca–Mg carbonates. The results demonstrated that L-glycine, with the shortest length, was more conducive to forming aragonite, whereas acidic L-glutamic acid, which contains more carboxyl groups, was more beneficial for the structural stability of aragonite. The morphology of the Ca-Mg carbonate minerals became more diverse and promoted the formation of spherical and massive mineral aggregates under the action of amino acids. Moreover, the amino acids significantly increased the MgCO3 content in Mg calcite (L-glutamic acid: 10.86% > L-glycine: 7.91% > L-lysine: 6.63%). The acidic L-glutamic acid likely promotes the dehydration and incorporation of Mg2+ into the Mg calcite lattice through the preferential adsorption of Mg2+ via its side-chain carboxyl groups. This study shows how amino acid functional groups influence Ca–Mg carbonate mineralization and provides insights into biogenic Mg-rich mineral origins and advanced mineral material synthesis. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Graphical abstract

15 pages, 1475 KB  
Article
Comparative Metabolite Profiling of Antarctic and Korean Mosses: Insights into Adaptation Mechanisms of Antarctic Moss Species
by Marufa Naznin, Raisul Awal Mahmood, Md Badrul Alam, Kil Ho Shin, Kyungwon Min, Sang-Han Lee, Hyoungseok Lee and Sunghwan Kim
Plants 2025, 14(14), 2148; https://doi.org/10.3390/plants14142148 - 11 Jul 2025
Viewed by 975
Abstract
This study investigates the relationship between secondary metabolites and stress tolerance in moss species, with a specific emphasis on comparing Antarctic and Korean mosses. Analyses of total phenolic content (TPC) and total flavonoid content (TFC) revealed that Antarctic mosses contain these compounds at [...] Read more.
This study investigates the relationship between secondary metabolites and stress tolerance in moss species, with a specific emphasis on comparing Antarctic and Korean mosses. Analyses of total phenolic content (TPC) and total flavonoid content (TFC) revealed that Antarctic mosses contain these compounds at significantly higher levels compared to the Korean mosses. These findings are consistent with greater antioxidant activities observed in Antarctic mosses through DPPH and ABTS•+ radical scavenging assays. In this study, a total of 620 metabolites were identified from the moss samples. The results showed that Antarctic mosses exhibited a high number and diversity of compounds including terpenoids, flavonoids, lipids, and other classes. Additionally, Antarctic mosses had fewer lipids with carbon chain lengths below 18 and a higher content of unsaturated lipids, indicating adaptations to maintain membrane fluidity under cold stress. The phylogenetic relationships suggested a correlation between metabolite profiles and genetic adaptations between these species. This research highlights the complex biochemical strategies that mosses, particularly those in Antarctic regions, employ to adapt the environmental stressors. The high abundance of secondary metabolites in Antarctic mosses not only serves as a defense mechanism against oxidative stress but also suggests their potential applications in various biotechnological aspects. This study reveals new avenues for exploring the ecological roles and potential uses of these resilient plant species. Full article
Show Figures

Figure 1

13 pages, 4473 KB  
Article
Effect of Alkyl Chain Length on Dissolution and Regeneration Behavior of Cotton in 1-Alkyl-3-methylimidazolium Acetate Ionic Liquids
by Niwanthi Dissanayake, Vidura D. Thalangamaarachchige, Edward Quitevis and Noureddine Abidi
Molecules 2025, 30(13), 2711; https://doi.org/10.3390/molecules30132711 - 24 Jun 2025
Cited by 1 | Viewed by 633
Abstract
Ionic liquids (ILs) have attained considerable attention as cellulose solvents. Nevertheless, the detailed mechanism of cellulose dissolution in ILs is not clearly defined. It is crucial to recognize the role of the individual components of the ILs to fully understand this mechanism. During [...] Read more.
Ionic liquids (ILs) have attained considerable attention as cellulose solvents. Nevertheless, the detailed mechanism of cellulose dissolution in ILs is not clearly defined. It is crucial to recognize the role of the individual components of the ILs to fully understand this mechanism. During this study, the effect of alkyl chain length in imidazolium cation was examined using synthesized ILs which are composed of common acetate anion and imidazolium cations with different alkyl substituents. This study also aimed to investigate the odd–even effect of alkyl chain carbons. Furthermore, whereas most published investigations on cellulose dissolution in ILs used microcrystalline cellulose (MCC), which has a far lower degree of polymerization, in this study, cotton cellulose was used. During the dissolution experiments, cotton cellulose (5% w/w) was added to each IL, and the progress of the dissolution was monitored using polarized light microscopy (PLM). The regeneration of cellulose was performed by using water as the anti-solvent, and the regenerated cellulose was characterized by Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). During these experiments, it was noted that ILs with odd C3 and C5 carbon chains were less effective at dissolving cellulose than those with even C2 and C4 alkyl chains. Additionally, after regeneration, biomaterials for a variety of applications could be produced. Full article
Show Figures

Graphical abstract

14 pages, 3230 KB  
Article
Encapsulation of Perfluoroalkyl Carboxylic Acids (PFCAs) Within Polymer Microspheres for Storage in Supercritical Carbon Dioxide: A Strategy Using Dispersion Polymerization of PFCA-Loaded Monomers
by Eri Yoshida
Polymers 2025, 17(12), 1688; https://doi.org/10.3390/polym17121688 - 17 Jun 2025
Viewed by 704
Abstract
The removal of per- and polyfluoroalkyl substances (PFAS) from global aquatic environments is an emerging issue. However, little attention has been paid to addressing accumulated PFAS through their removal. This study demonstrates the encapsulation of perfluoroalkyl carboxylic acids (PFCAs) within polymer microspheres that [...] Read more.
The removal of per- and polyfluoroalkyl substances (PFAS) from global aquatic environments is an emerging issue. However, little attention has been paid to addressing accumulated PFAS through their removal. This study demonstrates the encapsulation of perfluoroalkyl carboxylic acids (PFCAs) within polymer microspheres that dissolve in supercritical carbon dioxide (scCO2). PFCAs were effectively captured by a hindered amine-supported monomer, 2,2,6,6-tetramethyl-4-piperidyl methacrylate (TPMA), in methanol (MeOH) through a simple acid-base reaction. The PFCA-loaded TPMA underwent dispersion polymerization in MeOH in the presence of poly(N-vinylpyrrolidone) (PVP) as a surfactant, producing microspheres with high monomer conversions. The microsphere size depended on the molecular weight and concentration of PVP, as well as the perfluoroalkyl chain length of the PFCAs. X-ray photoelectron spectroscopy (XPS) revealed that the perfluoroalkyl chains migrated from the interior to the surface of the microspheres when exposed to air. These surface perfluoroalkyl chains facilitated dissolution of the microspheres in scCO2, with cloud points observed under relatively mild conditions. These findings suggest the potential for managing PFCA-encapsulated microspheres in the scCO2 phase deep underground via CO2 sequestration. Full article
(This article belongs to the Special Issue New Progress of Green Sustainable Polymer Materials)
Show Figures

Graphical abstract

Back to TopTop