Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,518)

Search Parameters:
Keywords = leave trees

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8682 KiB  
Article
Predicting EGFRL858R/T790M/C797S Inhibitory Effect of Osimertinib Derivatives by Mixed Kernel SVM Enhanced with CLPSO
by Shaokang Li, Wenzhe Dong and Aili Qu
Pharmaceuticals 2025, 18(8), 1092; https://doi.org/10.3390/ph18081092 - 23 Jul 2025
Abstract
Background/Objectives: The resistance mutations EGFRL858R/T790M/C797S in epidermal growth factor receptor (EGFR) are key factors in the reduced efficacy of Osimertinib. Predicting the inhibitory effects of Osimertinib derivatives against these mutations is crucial for the development of more effective inhibitors. This study aims [...] Read more.
Background/Objectives: The resistance mutations EGFRL858R/T790M/C797S in epidermal growth factor receptor (EGFR) are key factors in the reduced efficacy of Osimertinib. Predicting the inhibitory effects of Osimertinib derivatives against these mutations is crucial for the development of more effective inhibitors. This study aims to predict the inhibitory effects of Osimertinib derivatives against EGFRL858R/T790M/C797S mutations. Methods: Six models were established using heuristic method (HM), random forest (RF), gene expression programming (GEP), gradient boosting decision tree (GBDT), polynomial kernel function support vector machine (SVM), and mixed kernel function SVM (MIX-SVM). The descriptors for these models were selected by the heuristic method or XGBoost. Comprehensive learning particle swarm optimizer was adopted to optimize hyperparameters. Additionally, the internal and external validation were performed by leave-one-out cross-validation (QLOO2), 5-fold cross validation (Q5fold2) and concordance correlation coefficient (CCC), QF12, and QF22. The properties of novel EGFR inhibitors were explored through molecular docking analysis. Results: The model established by MIX-SVM whose kernel function is a convex combination of three regular kernel functions is best: R2 and RMSE for training set and test set are 0.9445, 0.1659 and 0.9490, 0.1814, respectively; QLOO2, Q5fold2, CCC, QF12, and QF22 are 0.9107, 0.8621, 0.9835, 0.9689, and 0.9680. Based on these results, the IC50 values of 162 newly designed compounds were predicted using the HM model, and the top four candidates with the most favorable physicochemical properties were subsequently validated through PEA. Conclusions: The MIX-SVM method will provide useful guidance for the design and screening of novel EGFRL858R/T790M/C797S inhibitors. Full article
(This article belongs to the Special Issue QSAR and Chemoinformatics in Drug Design and Discovery)
Show Figures

Graphical abstract

16 pages, 6386 KiB  
Article
Soil, Tree Species, and Pleurozium schreberi as Tools for Monitoring Heavy Metal Pollution in Urban Parks
by Marek Pająk, Michał Gąsiorek, Marta Szostak and Wiktor Halecki
Sustainability 2025, 17(15), 6708; https://doi.org/10.3390/su17156708 - 23 Jul 2025
Abstract
Urban parks are an integral component of cities; however, they are susceptible to heavy metal contamination from anthropogenic sources. Here, we investigated the moss Pleurozium schreberi and tree leaves as bioindicators for monitoring heavy metal contamination in urban parks. We determined heavy metal [...] Read more.
Urban parks are an integral component of cities; however, they are susceptible to heavy metal contamination from anthropogenic sources. Here, we investigated the moss Pleurozium schreberi and tree leaves as bioindicators for monitoring heavy metal contamination in urban parks. We determined heavy metal concentrations in P. schreberi, leaf tissues of selected tree species, and soil samples collected from various locations within a designated urban parks. The order of heavy metal accumulation was Zn > Pb > Cr > Cu > Ni > Cd > Hg in soil and Zn > Cu > Pb > Cr > Ni > Cd > Hg in P. schreberi. The order was Zn > Cu > Cr > Ni > Pb > Cd > Hg in linden and sycamore leaves, while birch leaves displayed a similar order but with slightly more Ni than Cr. The heavy metal concentration in the tested soils correlated positively with finer textures (clay and silt) and negatively with sand. The highest metal accumulation index (MAI) was noted in birch and P. schreberi, corresponding to the highest total heavy metal accumulation. The bioconcentration factor (BAF) was also higher in P. schreberi, indicating a greater ability to accumulate heavy metals than tree leaves, except silver birch for Zn in one of the parks. Silver birch displayed the highest phytoremediation capacity among the analysed tree species, highlighting its potential as a suitable bioindicator in heavy metal-laden urban parks. Our findings revealed significant variation in heavy metal accumulation, highlighting the potential of these bioindicators to map contamination patterns. Full article
(This article belongs to the Special Issue Evaluation of Landscape Ecology and Urban Ecosystems)
Show Figures

Figure 1

17 pages, 2071 KiB  
Article
Melatonin Enhances Drought Tolerance by Regulating the Genes Underlying Photosynthesis and Antioxidant Defense in Rubber Tree (Hevea brasiliensis) Seedlings
by Dejun Li, Zhihui Xia, Xuncheng Wang, Hong Yang and Yao Li
Plants 2025, 14(14), 2243; https://doi.org/10.3390/plants14142243 - 21 Jul 2025
Viewed by 222
Abstract
Melatonin (MT) can enhance plant stress tolerance by activating the internal defense system, but its application in rubber trees has been barely reported up to now. In this study, we found that the relative electrical conductivity (REC), H2O2, and [...] Read more.
Melatonin (MT) can enhance plant stress tolerance by activating the internal defense system, but its application in rubber trees has been barely reported up to now. In this study, we found that the relative electrical conductivity (REC), H2O2, and malondialdehyde (MDA) contents were significantly higher in the leaves of rubber tree seedlings under drought stress compared to the control (water treatment), whereas chlorophyll contents were obviously lower in the leaves under drought stress compared to the control. MT partly relieves the aforementioned drought-induced adverse effects by dramatically reducing chlorophyll degradation, H2O2 accumulation, MDA content, and REC. Comparative transcriptomes among the PEG (P), MT (M), and PEG + MT (PM) treatments against the control showed that 213, 896, and 944 genes were differently expressed in rubber tree seedlings treated with M, P, and PM in contrast to the control. Among the 64 differently expressed genes (DEGs) being common among the three comparisons, the expression profiles of 25 were opposite in MH compared with PH. Intriguingly, all the KEGG pathways of the DEGs mentioned above belonged to metabolism including energy metabolism, carbohydrate metabolism, amino acid metabolism, and the metabolism of cofactors and vitamins. Exogenous application of MT mainly regulated the genes associated with photosynthesis and the anti-oxidative defense system, thereby enhancing the antioxidant protection of rubber tree seedlings under drought stress. These results suggest that exogenous melatonin application can effectively enhance drought tolerance by heightening ROS scavenging to decrease H2O2 accumulation in rubber tree seedlings. Our results elucidate the molecular mechanisms of MT’s roles in drought stress, which help to employ exogenous MT to boost drought tolerance in the rubber tree. Full article
(This article belongs to the Special Issue Metabolic Analysis of Plant Development and Defense Responses)
Show Figures

Figure 1

20 pages, 2457 KiB  
Article
Leaf Chemistry Patterns in Populations of a Key Lithophyte Tree Species in Brazil’s Atlantic Forest Inselbergs
by Roberto Antônio da Costa Jerônimo Júnior, Ranieri Ribeiro Paula, Talitha Mayumi Francisco, Dayvid Rodrigues Couto, João Mário Comper Covre and Dora Maria Villela
Forests 2025, 16(7), 1186; https://doi.org/10.3390/f16071186 - 18 Jul 2025
Viewed by 248
Abstract
Inselbergs are rocky outcrops with specialized vegetation, including woody species growing in poorly developed soils. We investigated whether populations of the lithophytic tree Pseudobombax petropolitanum A. Robyns (Malvaceae), a key species endemic to Atlantic Forest inselbergs, have convergent or divergent patterns of functional [...] Read more.
Inselbergs are rocky outcrops with specialized vegetation, including woody species growing in poorly developed soils. We investigated whether populations of the lithophytic tree Pseudobombax petropolitanum A. Robyns (Malvaceae), a key species endemic to Atlantic Forest inselbergs, have convergent or divergent patterns of functional traits related to leaf chemistry. This study was carried out on three inselbergs located in southeastern Brazil. Green and senescent leaves from nine healthy trees and soil samples were collected in each inselberg. The carbon, nitrogen, phosphorus, potassium, calcium, and magnesium concentrations, and the natural abundances of δ13C and δ15N, were measured in leaves and soil, and the C/N, C/P, and N/P ratios were calculated. The specific leaf area (SLA) was measured, and the nutrient retranslocation rate between green and senescent leaves was estimated. Divergences between populations were observed in the concentrations of potassium and magnesium in the green and senescent leaves, as well as in the C/P and N/P ratios in senescent leaves. Our results suggest that nutrient and water dynamics may differ in some inselbergs due to specific nutrients or their relationships, even though there were convergences in most functional traits related to leaf chemistry among the Pseudobombax populations. The divergences among the populations could have important implications for species selection in the ecological restoration context. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Graphical abstract

20 pages, 7004 KiB  
Article
Molecular Insights into the Diversification and Biogeographic History of Six Astragalus L. Sections in the Turkish Flora
by Mevlüde Alev Ateş, Seher Karaman, Zeki Aytaç and Zeki Kaya
Plants 2025, 14(14), 2226; https://doi.org/10.3390/plants14142226 - 18 Jul 2025
Viewed by 273
Abstract
With 493 taxa and 63 sections, Astragalus L. is the largest genus in Türkiye. Most of these are narrow endemics and usually found in marginal habitats or require edaphic specializations (about 42% of the species are endemic). Due to the genus’s extensive diversity [...] Read more.
With 493 taxa and 63 sections, Astragalus L. is the largest genus in Türkiye. Most of these are narrow endemics and usually found in marginal habitats or require edaphic specializations (about 42% of the species are endemic). Due to the genus’s extensive diversity of species and common economic use, numerous scientific studies have concentrated on specific species. Taxonomic categorization based on morphological characteristics is insufficient to distinguish certain taxonomic groups. However, there is no systematic molecular phylogenetic analysis of Turkish species that deals with speciation in this genus. To concentrate on molecular-level speciation, fresh leaves from 152 samples representing 30 species across six sections native to Türkiye were collected over several months of comprehensive field studies and analyzed with regard to the internal transcribed spacer (ITS) of nrDNA and the trn L5′-L3′ + L3′-F(GAA) + mat K of cpDNA regions. Additionally, molecular clock estimations and biogeographical histories were analyzed to clearly understand the species’ divergence. Based on all studied regions, the Poterion section was found to be the newest and most divergent section, while the Megalocystis Bunge and Halicacabus Bunge sections were the closest and older ones. Furthermore, A. vaginans from section Hymenocoleus Bunge were included not only in this section but also in several other lineages. It is noteworthy that A. dipodurus and A. oleaefolius species from the section Macrophyllium Bunge are usually put together in a distinct sub-branch from other species members of the section in phylogenetic trees generated using both researched cpDNA and nrDNA regions. Moreover, some of the species are divided by the Anatolian diagonal, and the speciation of a significant number of species began during the Pleistocene geological time period. Geographical isolations or other weak isolation mechanisms preceded speciation in Astragalus, which requires more research in the future. Full article
(This article belongs to the Special Issue Plant Diversity and Classification)
Show Figures

Figure 1

19 pages, 3369 KiB  
Article
The Role of Tree Size in Root Reinforcement: A Comparative Study of Trema orientalis and Mallotus paniculatus
by Chia-Cheng Fan, Guan-Ting Chen and Guo-Zhang Song
Forests 2025, 16(7), 1175; https://doi.org/10.3390/f16071175 - 16 Jul 2025
Viewed by 135
Abstract
Root reinforcement in soil plays a critical role in maintaining forest slope stability. However, accurately estimating the reinforcement provided by the entire root system of a mature tree remains a time-intensive task. Previous experimental studies on root reinforcement have predominantly focused on small [...] Read more.
Root reinforcement in soil plays a critical role in maintaining forest slope stability. However, accurately estimating the reinforcement provided by the entire root system of a mature tree remains a time-intensive task. Previous experimental studies on root reinforcement have predominantly focused on small trees, leaving a knowledge gap concerning larger specimens. This study integrates field pullout test data of individual roots, analyses of root geometry distribution within root systems, and theoretical frameworks, including root distribution and Root Bundle Models, to develop methods for estimating root reinforcement across varying tree sizes. The findings indicate that root system reinforcement in large trees is substantially greater than in smaller counterparts. The methodology proposed herein provides forest management professionals with a practical tool for evaluating root reinforcement in dominant forest trees, thereby facilitating improved assessment of landslide risks in forested slopes. Full article
Show Figures

Figure 1

31 pages, 5867 KiB  
Article
Moisture Seasonality Dominates the Plant Community Differentiation in Monsoon Evergreen Broad-Leaved Forests of Yunnan, China
by Tao Yang, Xiaofeng Wang, Jiesheng Rao, Shuaifeng Li, Rong Li, Fan Du, Can Zhang, Xi Tian, Wencong Liu, Jianghua Duan, Hangchen Yu, Jianrong Su and Zehao Shen
Forests 2025, 16(7), 1167; https://doi.org/10.3390/f16071167 - 15 Jul 2025
Viewed by 160
Abstract
Monsoon evergreen broad-leaved forests (MEBFs) represent one of the most species-rich and structurally complex vegetation types, and one of the most widely distributed forests in Yunnan Province, Southwest China. However, they have yet to undergo a comprehensive analysis on their community diversity, spatial [...] Read more.
Monsoon evergreen broad-leaved forests (MEBFs) represent one of the most species-rich and structurally complex vegetation types, and one of the most widely distributed forests in Yunnan Province, Southwest China. However, they have yet to undergo a comprehensive analysis on their community diversity, spatial differentiation patterns, and underlying drivers across Yunnan. Based on extensive field surveys during 2021–2024 with 548 MEBF plots, this study employed the Unweighted Pair Group Method for forest community classification and Non-metric Multidimensional Scaling for ordination and interpretation of community–environment association. A total of 3517 vascular plant species were recorded in the plots, including 1137 tree species, 1161 shrubs, and 1219 herbs. Numerical classification divided the plots into 3 alliance groups and 24 alliances: (1) CastanopsisSchima (Lithocarpus) Forest Alliance Group (16 alliances), predominantly distributed west of 102°E in central-south and southwest Yunnan; (2) CastanopsisMachilus (Beilschmiedia) Forest Alliance Group (6 alliances), concentrated east of 101°E in southeast Yunnan with limited latitudinal range; (3) CastanopsisCamellia Forest Alliance Group (2 alliances), restricted to higher-elevation mountainous areas within 103–104° E and 22.5–23° N. Climatic variation accounted for 81.1% of the species compositional variation among alliance groups, with contributions of 83.5%, 57.6%, and 62.1% to alliance-level differentiation within alliance groups 1, 2, and 3, respectively. Precipitation days in the driest quarter (PDDQ) and precipitation seasonality (PS) emerged as the strongest predictors of community differentiation at both alliance group and alliance levels. Topography and soil features significantly influenced alliance differentiation in Groups 2 and 3. Collectively, the interaction between the monsoon climate and topography dominate the spatial differentiation of MEBF communities in Yunnan. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

15 pages, 3067 KiB  
Article
Essential Oil from the Leaves of Annona neoinsignis H. Rainer (Annonaceae) Against Liver Cancer: In Vitro and In Vivo Studies
by Melissa P. Souza, Maria V. L. de Castro, Gabriela A. da C. Barbosa, Sabrine G. Carvalho, Amanda M. R. M. Coelho, Rosane B. Dias, Milena B. P. Soares, Emmanoel V. Costa and Daniel P. Bezerra
Molecules 2025, 30(14), 2971; https://doi.org/10.3390/molecules30142971 - 15 Jul 2025
Viewed by 230
Abstract
Annona neoinsignis H. Rainer (Annonaceae) is a tree native to the Amazon rainforest. Its fruits are also suitable for human consumption in their natural state or are processed to make desserts. In this work, we characterized the chemical composition of the essential oil [...] Read more.
Annona neoinsignis H. Rainer (Annonaceae) is a tree native to the Amazon rainforest. Its fruits are also suitable for human consumption in their natural state or are processed to make desserts. In this work, we characterized the chemical composition of the essential oil (EO) from the leaves of A. neoinsignis and evaluated its anti-liver-cancer potential via in vitro and in vivo approaches. Chemical composition analysis revealed β-elemene, (E)-caryophyllene, germacrene D, and germacrene B as the main constituents. The EO had IC50 values ranging from 12.28 to 37.50 μg/mL for B16-F10 cells and MCF-7 cells, whereas an IC50 value of >50 μg/mL was found for noncancerous MRC-5 cells. DNA fragmentation, YO-PRO-1 staining, and loss of mitochondrial transmembrane potential were detected in EO-treated HepG2 cells, indicating the induction of apoptosis. Significant in vivo growth inhibition of 53.7% was observed in mice bearing HepG2 cell xenografts treated with EO at a dosage of 40 mg/kg. These data suggest that EO from A. neoinsignis leaves is a drug source for liver cancer. Full article
Show Figures

Graphical abstract

17 pages, 1455 KiB  
Article
Effects of Simulated Nitrogen Deposition on the Physiological and Growth Characteristics of Seedlings of Two Typical Subtropical Tree Species
by Zhenya Yang and Benzhi Zhou
Plants 2025, 14(14), 2153; https://doi.org/10.3390/plants14142153 - 11 Jul 2025
Viewed by 401
Abstract
Amid global environmental change, the intensification of nitrogen (N) deposition exerts critical impacts on the growth of forest vegetation and the structure and function of ecosystems in subtropical China. However, the physiological and growth response mechanisms of subtropical tree species remain poorly understood. [...] Read more.
Amid global environmental change, the intensification of nitrogen (N) deposition exerts critical impacts on the growth of forest vegetation and the structure and function of ecosystems in subtropical China. However, the physiological and growth response mechanisms of subtropical tree species remain poorly understood. This study explored adaptive mechanisms of typical subtropical tree species to N deposition, analyzing biomass accumulation, root plasticity, and nutrient/photosynthate allocation strategies. One-year-old potted seedlings of Phyllostachys edulis (moso bamboo) and Cunninghamia lanceolata (Chinese fir) were subjected to four N-addition treatments (N0: 0, N1: 6 g·m−2·a−1, N2: 12 g·m−2·a−1, N3: 18 g·m−2·a−1) for one year. In July and December, measurements were conducted on seedling organ biomass, root morphological and architectural traits, as well as nutrient elements (N and phosphorus(P)) and non-structural carbohydrate (soluble sugars and starch) contents in roots, stems, and leaves. Our results demonstrate that the Chinese fir exhibits stronger tolerance to N deposition and greater root morphological plasticity than moso bamboo. It adapts to N deposition by developing root systems with a higher finer root (diameter ≤ 0.2 mm) ratio, lower construction cost, greater branching intensity and angle, and architecture approaching dichotomous branching. Although N deposition promotes short-term biomass and N accumulation in both species, it reduces P and soluble sugars contents, leading to N/P imbalance and adverse effects on long-term growth. Under conditions of P and photosynthate scarcity, the Chinese fir preferentially allocates soluble sugars to leaves, while moso bamboo prioritizes P and soluble sugars to roots. In the first half of the growing season, moso bamboo allocates more biomass and N to aboveground parts, whereas in the second half, it allocates more biomass and P to roots to adapt to N deposition. This study reveals that Chinese fir enhances its tolerance to N deposition through the plasticity of root morphology and architecture, while moso bamboo exhibits dynamic resource allocation strategies. The research identifies highly adaptive root morphological and architectural patterns, demonstrating that optimizing the allocation of elements and photosynthates and avoiding elemental balance risks represent critical survival mechanisms for subtropical tree species under intensified N deposition. Full article
Show Figures

Figure 1

21 pages, 1484 KiB  
Review
White Mulberry Plant Extracts in Cardiovascular Prevention: An Update
by Valentina Trimarco, Paola Gallo, Seyedali Ghazihosseini, Alessia Izzo, Paola Ida Rozza, Alessandra Spinelli, Stefano Cristiano, Carlo De Rosa, Felicia Rozza and Carmine Morisco
Nutrients 2025, 17(14), 2262; https://doi.org/10.3390/nu17142262 - 9 Jul 2025
Viewed by 362
Abstract
This review examines the principal preclinical and clinical findings assessing the effects of White Mulberry (Morus Alba Linn) plant extract supplementation currently available. Since it is one of the most cultivated species of mulberry tree, it has caught the eye of [...] Read more.
This review examines the principal preclinical and clinical findings assessing the effects of White Mulberry (Morus Alba Linn) plant extract supplementation currently available. Since it is one of the most cultivated species of mulberry tree, it has caught the eye of researchers for its rich phytochemical profile as well as multi-purpose usages. The leaves, fruits, and other parts of the White Mulberry plant take on the role of valuable sources of bioactive compounds, including flavonoids, phenolic acids, terpenoids, and alkaloids. These secondary metabolites have a wide range of health benefits, such as antioxidant, anti-inflammatory, and antidiabetic properties. Commonly used as dietary supplements, White Mulberry plant extracts have shown their great capacity in improving metabolic profile, decreasing the cardiovascular risk, and supporting overall health. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

20 pages, 3828 KiB  
Article
Phylogenetic Structure Shifts Across Life-History Stages in Response to Microtopography and Competition in Subtropical Forests
by Weiqi Meng, Haonan Zhang, Lianhao Sun, Jianing Xu, Yajun Qiao and Haidong Li
Plants 2025, 14(14), 2098; https://doi.org/10.3390/plants14142098 - 8 Jul 2025
Viewed by 301
Abstract
This study focuses on a subtropical evergreen broad-leaved forest in China, utilizing a large permanent plot established in the Yaoluoping National Nature Reserve. By integrating data from a full-stem census and total station surveying, we analyzed the phylogenetic structure of the plant community [...] Read more.
This study focuses on a subtropical evergreen broad-leaved forest in China, utilizing a large permanent plot established in the Yaoluoping National Nature Reserve. By integrating data from a full-stem census and total station surveying, we analyzed the phylogenetic structure of the plant community as a whole and across different life-history stages (saplings, juveniles, and adults) while quantitatively assessing microtopographic variables and an interspecific competition index. The results indicate that the overall community in the Yaoluoping plot exhibited a weakly overdispersed pattern, and key microtopographic factors—including aspect, terrain position index (TPI), terrain ruggedness index (TRI), roughness, and flow direction—significantly influenced the evolution of phylogenetic structure. Distinctions were also observed among saplings, juveniles, and adults in phylogenetic structuring across life-history stages. Specifically, saplings displayed a higher degree of phylogenetic clustering, significantly influenced by density, elevation, TPI, and flow direction—suggesting that environmental filtering predominates at this stage, possibly due to lower environmental tolerance, limited dispersal ability, and conspecific negative density dependence. In contrast, juveniles and adults showed a more dispersed phylogenetic structure, with density, interspecific competition, aspect, TRI, TPI, and roughness significantly correlated with phylogenetic patterns, indicating that competition and niche differentiation become increasingly important as trees mature and establish within the community. Interspecific competition was found to play a crucial role in community structuring: the competition index was generally negatively correlated with the net relatedness index (NRI) and nearest taxon index (NTI) in juveniles and adults, implying that intense competition leads to the exclusion of some species and reduces overall diversity, with the strength and significance of competitive effects differing across stages. This study enhances our understanding of the complex interplay between microtopography and interspecific competition in shaping the phylogenetic structure and diversity of subtropical evergreen broad-leaved forests, elucidates the coupled mechanisms among microtopography, phylogenetic structure, and competition, and provides a scientific basis for forest conservation and management. Full article
(This article belongs to the Special Issue Origin and Evolution of the East Asian Flora (EAF)—2nd Edition)
Show Figures

Figure 1

14 pages, 2148 KiB  
Article
Exploring the Potential of Biocontrol Agent Against Root and Stem Rot Disease in Durian (Durio zibethinus)
by Ponchanok Datmanee, Nattarika Jitfour, Dusit Athinuwat and Wilawan Chuaboon
Int. J. Plant Biol. 2025, 16(3), 75; https://doi.org/10.3390/ijpb16030075 - 6 Jul 2025
Viewed by 272
Abstract
The study of antagonistic bacterial strains isolated from the soil around durian tree roots demonstrated their ability to inhibit the growth of Phytophthora palmivora. The pathogens were screened from 30 samples collected around durian trees (leaves, soil around the roots, and debris [...] Read more.
The study of antagonistic bacterial strains isolated from the soil around durian tree roots demonstrated their ability to inhibit the growth of Phytophthora palmivora. The pathogens were screened from 30 samples collected around durian trees (leaves, soil around the roots, and debris under the tree) showing symptoms of root and stem rot disease. A total of 17 pathogen strains were isolated and grouped into 3 groups, TNP05, MNP13, and KNP21, originating from Chanthaburi province, Thailand. When P. palmivora isolates were tested for pathogenicity on leaves and durian trees, it was found that the strain MNP13 had the highest capacity to cause root and stem rot disease. A total of 196 beneficial bacteria isolates were collected from several samples around durian trees. The samples included leaves, soil surrounding the roots, and organic debris beneath the trees. Based on their colony characteristics on nutrient glucose agar (NGA), these isolates were divided into 8 groups. The efficacy of the beneficial bacteria against root and stem rot disease was tested using the Dual culture method and arranged in a Completely Randomized Design (CRD) with 5 replications. The experiment showed that bacterial isolates NJTU05, NJTU10, and NJTU13 effectively inhibited the growth of P. palmivora isolate MNP13, with inhibition rates of 76.66, 67.59, and 69.07%, respectively, compared to chemical control using metalaxyl 80% WP. Among the tested strains, NJTU05 was identified as the most effective bacterial strain for controlling major durian diseases. Biochemical identification and 16S rRNA sequencing revealed that bacterial strain NJTU05 was closely related to Brevibacillus formosus with a 99.70% identity. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

12 pages, 675 KiB  
Article
The Energy Potential of White Mulberry Waste Biomass
by Dominika Sieracka, Jakub Frankowski, Agnieszka Łacka, Stanisław Wacławek and Wojciech Czekała
Energies 2025, 18(13), 3541; https://doi.org/10.3390/en18133541 - 4 Jul 2025
Viewed by 304
Abstract
White mulberry (Morus alba L.) is a tree growing up to 15 m in height. It is a plant whose cultivation is historically associated with silk production. Mulberry leaves are the only food source of the mulberry silkworm caterpillars (Bombyx mori [...] Read more.
White mulberry (Morus alba L.) is a tree growing up to 15 m in height. It is a plant whose cultivation is historically associated with silk production. Mulberry leaves are the only food source of the mulberry silkworm caterpillars (Bombyx mori L.). The cultivation of this tree has recently gained renewed importance. Due to the content of numerous bioactive substances, mulberry is a valuable raw material for the food, pharmaceutical and herbal industries. This article presents the results of tests on pellets from 1-, 3- and 5-year-old branches, which are waste biomass remaining after pruning mulberry shrubs cultivated to obtain leaves to feed silkworms. Additionally, analyses of pellets from mulberry leaves were also carried out. For the specified mulberry biomass yield, analyses of chemical composition of mulberry biomass (branches and leaves) were carried out, and energy properties (heat of combustion and calorific value) and energy potential were calculated. The heat of combustion of pellet from mulberry branches was, on average, 19,266 MJ∙Mg−1, and the calorific value was 17,726 MJ∙Mg−1. The energy potential, on the other hand, was, on average, 159 GJ∙ha−1 and 44 MWh∙ha−1. The obtained results indicate the possibility of the effective use of mulberry branches after the annual pruning of bushes in plantations for energy purposes. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

13 pages, 1827 KiB  
Article
Exploring the Impact of Different Fertilization Practices and Regional Climate Variables on Cabbage (Brassica oleracea L. Var. Capitata) Yield
by Ping-Fu Hou and Yao-Tsung Chang
Sustainability 2025, 17(13), 6086; https://doi.org/10.3390/su17136086 - 2 Jul 2025
Viewed by 296
Abstract
Maintaining stable crop yields is crucial for sustainable agriculture. This study investigated the impact of various fertilization regimes, combined with regional climate variables, on the yield stability of cabbage (Brassica oleracea L. var. capitata) in southern Taiwan. Conducted from 2011 to 2023 [...] Read more.
Maintaining stable crop yields is crucial for sustainable agriculture. This study investigated the impact of various fertilization regimes, combined with regional climate variables, on the yield stability of cabbage (Brassica oleracea L. var. capitata) in southern Taiwan. Conducted from 2011 to 2023 on well-maintained soils that were established in 1988, the study examined two crop rotation systems (R1 and R2) and three fertilization treatments: chemical fertilizer, integrated fertilizer, and organic fertilizer. Despite the consistent annual application of fertilizers, the regression analysis revealed a significant decline in cabbage yields across all six treatment combinations, mainly due to reduced weights of single cabbages. To identify contributing factors, the yield data were analyzed alongside weather and soil data, collected over more than a decade. A Pearson correlation analysis showed that increased sunshine duration, solar radiation, and higher relative humidity were significantly negatively correlated with cabbage yields in both the R1 and R2 rotation systems. Additionally, the regression tree analysis indicated that solar radiation exceeding 16.917 MJ m−2 per day was associated with lower yields. A further analysis of the total nitrogen accumulation revealed increasing nitrogen concentrations in the outer leaves of cabbages during this period, potentially contributing to the reduced head yields. These findings highlight that fertilization had a minimal influence on yield, even in well-established soils. Mitigating the effects of weather variables is, therefore, critical to reducing their adverse impact on crop yields. Full article
(This article belongs to the Special Issue Achieving Sustainable Agriculture Practices and Crop Production)
Show Figures

Figure 1

40 pages, 3175 KiB  
Review
The Causative Agent of Soft Rot in Plants, the Phytopathogenic Bacterium Pectobacterium carotovorum subsp. carotovorum: A Brief Description and an Overview of Methods to Control It
by Alla I. Perfileva, Elena I. Strekalovskaya, Nadezhda V. Klushina, Igor V. Gorbenko and Konstantin V. Krutovsky
Agronomy 2025, 15(7), 1578; https://doi.org/10.3390/agronomy15071578 - 28 Jun 2025
Viewed by 520
Abstract
This review presents information obtained over the past 10 years on the methods to control the widespread worldwide phytopathogen Pectobacterium carotovorum subsp. carotovorum (Pcc). This bacterium is among the ten most dangerous phytopathogens; it affects a wide range of cultivated plants: [...] Read more.
This review presents information obtained over the past 10 years on the methods to control the widespread worldwide phytopathogen Pectobacterium carotovorum subsp. carotovorum (Pcc). This bacterium is among the ten most dangerous phytopathogens; it affects a wide range of cultivated plants: vegetables, ornamental and medicinal crops, both during vegetation and during the storage of fruits. Symptoms of Pcc damage include the wilting of plants, blackening of vessels on leaves, stems and petioles. At the flowering stage, the stem core gradually wilts and, starting from the root, the stem breaks and the plant dies. Pcc is a rod-shaped, non-capsule and endospore-forming facultative anaerobic Gram-negative bacterium with peritrichous flagellation. Pcc synthesizes bacteriocins—carocins. The main virulence factors of Pcc are the synthesis of N-acyl-homoserine lactone (AHL) and plant cell wall-degrading enzymes (PCWDEs) (pectinases, polygalacturonases, cellulases, and proteases). Diagnostic methods for this phytopathogen include polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), multilocus genotyping of strain-specific genes and detection of unique volatile organic compounds (VOCs). The main methods to control this microorganism include the use of various chemicals (acids, phenols, esters, salts, gases), plant extracts (from grasses, shrubs, trees, and algae), antagonistic bacteria (Bacillus, Pseudomonas, Streptomyces, and lactic acid bacteria), viruses (including a mixture of bacteriophages), and nanomaterials based on metals and chitosan. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

Back to TopTop