Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (958)

Search Parameters:
Keywords = least squares support vector machines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1974 KB  
Article
Edible Oil Adulteration Analysis via QPCA and PSO-LSSVR Based on 3D-FS
by Si-Yuan Wang, Qi-Yang Liu, Ai-Ling Tan and Linan Liu
Processes 2026, 14(2), 390; https://doi.org/10.3390/pr14020390 - 22 Jan 2026
Viewed by 23
Abstract
A method utilizing quaternion principal component analysis (QPCA) for three-dimensional fluorescence spectral (3D FS) feature extraction is employed to identify frying oil in edible oil. Particle swarm optimization partial least squares support vector machine (PSO-LSSVR) is utilized for detecting frying oil concentration. The [...] Read more.
A method utilizing quaternion principal component analysis (QPCA) for three-dimensional fluorescence spectral (3D FS) feature extraction is employed to identify frying oil in edible oil. Particle swarm optimization partial least squares support vector machine (PSO-LSSVR) is utilized for detecting frying oil concentration. The study includes rapeseed oil, soybean oil, peanut oil, blending oil, and corn oil samples. Adulteration involves adding frying oil to these edible oils at concentrations of 0%, 5%, 10%, 30%, 50%, 70%, and 100%. Firstly, the F7000 fluorescence spectrometer is employed to measure the 3D FS of the adulterated edible oil samples, resulting in the generation of contour maps and 3D FS projections. The excitation wavelengths utilized in these measurements are 360 nm, 380 nm, and 400 nm, while the emission wavelengths span from 220 nm to 900 nm. Secondly, leveraging the automatic peak-finding function of the spectrometer, a quaternion parallel representation model of the 3D FS data for frying oil in edible oil is established using the emission spectra data corresponding to the aforementioned excitation wavelengths. Subsequently, in conjunction with the K-nearest neighbor classification (KNN), three feature extraction methods—summation, modulus, and multiplication quaternion feature extraction—are compared to identify the optimal approach. Thirdly, the extracted features are input into KNN, particle swarm optimization support vector machine (PSO-SVM), and genetic algorithm support vector machine (GA-SVM) classifiers to ascertain the most effective discriminant model for adulterated edible oil. Ultimately, a quantitative model for adulterated edible oil is developed based on partial least squares regression, PSO-SVR and PSO-LSSVR. The results indicate that the classification accuracy of QPCA features combined with PSO-SVM achieved 100%. Furthermore, the PSO-LSSVR quantitative model exhibited the best performance. Full article
Show Figures

Figure 1

26 pages, 5020 KB  
Article
Utilising the Potential of a Robust Three-Band Hyperspectral Vegetation Index for Monitoring Plant Moisture Content in a Summer Maize-Winter Wheat Crop Rotation Farming System
by James E. Kanneh, Caixia Li, Yanchuan Ma, Shenglin Li, Madjebi Collela BE, Zuji Wang, Daokuan Zhong, Zhiguo Han, Hao Li and Jinglei Wang
Remote Sens. 2026, 18(2), 271; https://doi.org/10.3390/rs18020271 - 14 Jan 2026
Viewed by 143
Abstract
Water is vital for producing summer maize (SM) and winter wheat (WW); therefore, its proper management is crucial for sustainable farming. This study aimed to develop new tri-band spectral vegetation indices that enhance the accuracy of monitoring plant moisture content (PMC) [...] Read more.
Water is vital for producing summer maize (SM) and winter wheat (WW); therefore, its proper management is crucial for sustainable farming. This study aimed to develop new tri-band spectral vegetation indices that enhance the accuracy of monitoring plant moisture content (PMC) in SM and WW. We conducted irrigation treatments, including W0, W1, W2, W3, and W4, in SM–WW rotations to address this issue. Canopy reflectance was measured with a field spectroradiometer. Tri-band hyperspectral vegetation indices were constructed: Normalised Water Stress Index (NWSI), Normalised Difference Index (NDI), and Exponential Water Stress Index (EWSI), for assessing the PMC of SM and WW. Results indicate that NWSI outperformed other indices. In the maize trials, the correlation reached R = −0.8369, while in wheat, it reached R = −0.9313, surpassing traditional indices. Four mainstream machine learning models (Random Forest, Partial Least Squares Regression, Support Vector Machine, and Artificial Neural Network) were employed for modelling. NWSI-PLSR exhibited the best index-type performance with an R2 of 0.7878. When the new indices were combined with traditional indices as input data, the NWSI-Published indices-SVM model achieved superior performance with an R2 of 0.8203, outperforming other models. The RF model produced the most consistent performance and achieved the highest average R2 across all input types. The NDI-Published indices models also outperformed those of the published indices alone. This indicates that these new indices improve the accuracy of moisture content monitoring in SM and WW fields. It provides a technical basis and support for precision irrigation, holding significant potential for application. Full article
Show Figures

Figure 1

19 pages, 3752 KB  
Article
Indoor WiFi Localization via Robust Fingerprint Reconstruction and Multi-Mechanism Adaptive PSO-LSSVM Optimization
by Shoufeng Wang, Lieping Zhang and Xiaoping Huang
Appl. Sci. 2026, 16(2), 753; https://doi.org/10.3390/app16020753 - 11 Jan 2026
Viewed by 141
Abstract
Indoor WiFi fingerprint localization often suffers from abnormal fluctuations in received signal strength indicator (RSSI) measurements and from the sensitivity of least-squares support vector machine (LSSVM) hyperparameters to local optima. To address these issues, this paper presents an improved end-to-end localization method that [...] Read more.
Indoor WiFi fingerprint localization often suffers from abnormal fluctuations in received signal strength indicator (RSSI) measurements and from the sensitivity of least-squares support vector machine (LSSVM) hyperparameters to local optima. To address these issues, this paper presents an improved end-to-end localization method that integrates fingerprint reconstruction with adaptive model optimization. First, a knowledge-enhanced anomaly detection and spatial fingerprint repair (KADSFR) model is used to enhance fingerprint database consistency by combining robust Mahalanobis distance, median absolute deviation, and local outlier factor for anomaly detection, followed by weighted k-nearest neighbors interpolation based on composite signal–physical distances. Then, an adaptive particle swarm optimization (APSO) scheme with stagnation detection and spatial exclusion mechanisms is employed to tune the LSSVM regularization coefficient and RBF kernel width under five-fold cross-validation. Experiments show that KADSFR improves fingerprint quality by approximately 10 percent, and the proposed method achieves an average error of 0.74 m, outperforming KNN, WKNN, LSSVM, and APSO-LSSVM by 63.5 percent, 62.8 percent, 34.5 percent, and 16.9 percent, respectively. Sensitivity analysis further confirms strong robustness and stability. Full article
Show Figures

Figure 1

21 pages, 7841 KB  
Article
Study on Predicting Cotton Boll Opening Rate Based on UAV Multispectral Imagery
by Chen Xue, Lingbiao Kong, Shengde Chen, Changfeng Shan, Lechun Zhang, Cancan Song, Yubin Lan and Guobin Wang
Agronomy 2026, 16(2), 162; https://doi.org/10.3390/agronomy16020162 - 8 Jan 2026
Viewed by 180
Abstract
The cotton boll opening rate (BOR) is an important indicator for evaluating the physiological maturation process of cotton and the critical stage of yield formation, and it provides essential guidance for subsequent defoliant application and mechanical harvesting. The investigation of cotton BOR usually [...] Read more.
The cotton boll opening rate (BOR) is an important indicator for evaluating the physiological maturation process of cotton and the critical stage of yield formation, and it provides essential guidance for subsequent defoliant application and mechanical harvesting. The investigation of cotton BOR usually relies on manual field surveys, which are time-consuming and destructive, making it difficult to achieve large-scale and efficient monitoring. UAV remote sensing technology has been widely used in crop growth monitoring due to its operational flexibility and high image resolution. However, because of the dense growth of the cotton canopy in UAV remote sensing imagery, the boll opening condition in the lower parts of the canopy cannot be completely observed. In contrast, UAV imagery can effectively monitor cotton leaf chlorophyll content (SPAD) and leaf area index (LAI), both of which undergo continuous changes during the boll opening process. Therefore, this study proposes using SPAD and LAI retrieved from UAV multispectral imagery as physiological intermediary variables to construct an empirical statistical equation and compare it with end-to-end machine learning baselines. Multispectral and ground synchronous data (n = 360) were collected in Baibi Town, Anyang, Henan Province, across four dates (8/28, 9/6, 9/13, 9/24). Twenty-eight commonly used vegetation indices were calculated from multispectral imagery, and Pearson’s correlation analysis was conducted to select indices sensitive to cotton SPAD, LAI, and BOR. Prediction models were constructed using the Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), and Partial Least Squares (PLS) models. The results showed that GBDT achieved the best prediction performance for SPAD (R2 = 0.86, RMSE = 1.19), while SVM performed best for LAI (R2 = 0.77, RMSE = 0.38). The quadratic polynomial equation constructed using SPAD and LAI achieved R2 = 0.807 and RMSE = 0.109 in BOR testing, which was significantly better than the baseline model using vegetation indices to directly regress BOR. The method demonstrated stable performance in spatial mapping of BOR during the boll opening period and showed promising potential for guiding defoliant application and harvest timing. Full article
(This article belongs to the Special Issue Innovations in Agriculture for Sustainable Agro-Systems)
Show Figures

Figure 1

21 pages, 1209 KB  
Review
Intelligent Discrimination of Grain Aging Using Volatile Organic Compound Fingerprints and Machine Learning: A Comprehensive Review
by Liuping Zhang, Jingtao Zhou, Guoping Qian, Shuyi Liu, Mohammed Obadi, Tianyue Xu and Bin Xu
Foods 2026, 15(2), 216; https://doi.org/10.3390/foods15020216 - 8 Jan 2026
Viewed by 178
Abstract
Grain aging during storage leads to quality deterioration and significant economic losses. Traditional analytical approaches are often labor-intensive, slow, and inadequate for modern intelligent grain storage management. This review summarizes recent advances in the intelligent discrimination of grain aging using volatile organic compound [...] Read more.
Grain aging during storage leads to quality deterioration and significant economic losses. Traditional analytical approaches are often labor-intensive, slow, and inadequate for modern intelligent grain storage management. This review summarizes recent advances in the intelligent discrimination of grain aging using volatile organic compound (VOC) fingerprints combined with machine learning (ML) techniques. It first outlines the biochemical mechanisms underlying grain aging and identifies VOCs as early and sensitive biomarkers for timely determination. The review then examines VOC determination methodologies, with a focus on headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS), for constructing volatile fingerprinting profiles, and discusses related method standardization. A central theme is the application of ML algorithms, including Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN)) for feature extraction and pattern recognition in high-dimensional datasets, enabling effective discrimination of aging stages, spoilage types, and grain varieties. Despite these advances, key challenges remain, such as limited model generalizability, the lack of large-scale multi-source databases, and insufficient validation under real storage conditions. Finally, future directions are proposed that emphasize methodological standardization, algorithmic innovation, and system-level integration to support intelligent, non-destructive, real-time grain quality monitoring. This emerging framework provides a promising powerful pathway for enhancing global food security. Full article
Show Figures

Figure 1

33 pages, 2607 KB  
Article
Efficient Blended Models for Analysis and Detection of Neuropathic Pain from EEG Signals Using Machine Learning
by Sunil Kumar Prabhakar, Keun-Tae Kim and Dong-Ok Won
Bioengineering 2026, 13(1), 67; https://doi.org/10.3390/bioengineering13010067 - 7 Jan 2026
Viewed by 276
Abstract
Due to the damage happening in the nervous system, neuropathic pain occurs and it affects the quality of life of the patient to a great extent. Therefore, some clinical evaluations are required to assess the diagnostic outcomes precisely. A lot of information about [...] Read more.
Due to the damage happening in the nervous system, neuropathic pain occurs and it affects the quality of life of the patient to a great extent. Therefore, some clinical evaluations are required to assess the diagnostic outcomes precisely. A lot of information about the activities of the brain is provided by Electroencephalography (EEG) signals and neuropathic pain can be assessed and classified with the aid of EEG and machine learning. In this work, two approaches are proposed in terms of efficient blended models for the classification of neuropathic pain through EEG signals. In the first blended model, once the features are extracted using Discrete Wavelet Transform (DWT), statistical features, and Fuzzy C-Means (FCM) clustering techniques, the features are selected using Grey Wolf Optimization (GWO), Feature Correlation Clustering Technique (FCCT), F-test, and Bayesian Optimization Algorithm (BOA) and it is classified with the help of three hybrid classification models like Spider Monkey Optimization-based Gradient Boosting Machine (SMO-GBM) classifier, hybrid deep kernel learning with Support Vector Machine (DKL-SVM) classifier, and CatBoost classifier. In the second blended model, once the features are extracted, the features are selected using Hybrid Feature Selection—Majority Voting System (HFS-MVS), Hybrid Salp Swarm Optimization—Particle Swarm Optimization (SSO-PSO), Pearson Correlation Coefficient (PCC), and Mutual Information (MI) and it is classified with the help of three hybrid classification models like Partial Least Squares (PLS) variant classification models combined with Kernel-based SVM, ensemble classification model with soft voting strategy, and Extreme Gradient Boosting (XGBoost) classifier. The proposed blended models are evaluated on a publicly available dataset and the best results are shown when the FCM features are selected with SSO-PSO feature selection technique and classified with Polynomial Kernel-based PLS-SVM Classifier, reporting a high classification accuracy of 92.68% in this work. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

15 pages, 1327 KB  
Communication
Evaluating the Performance of NIR Spectroscopy in Predicting Soil Properties: A Comparative Study
by Govind Dnyandev Vyavahare, Jin-Ju Yun, Jae-Hyuk Park, Jae-Hong Shim, Seong Heon Kim, Kyeongyeong Kim, Ahnsung Roh, Ho Jun Jang and Sangho Jeon
Appl. Sci. 2025, 15(24), 13240; https://doi.org/10.3390/app152413240 - 17 Dec 2025
Cited by 1 | Viewed by 437
Abstract
Soil analysis is fundamental to sustainable agriculture; however, traditional laboratory methods are time-consuming, expensive, and environmentally hazardous. Spectroscopy techniques, particularly Near-Infrared (NIR), have gained considerable attention because they require minimal sample preparation, no chemicals, and predict multiple soil properties with a single scan. [...] Read more.
Soil analysis is fundamental to sustainable agriculture; however, traditional laboratory methods are time-consuming, expensive, and environmentally hazardous. Spectroscopy techniques, particularly Near-Infrared (NIR), have gained considerable attention because they require minimal sample preparation, no chemicals, and predict multiple soil properties with a single scan. However, selecting appropriate equipment remains critical, as previous studies have reported inconsistent performance between conventional Near-Infrared (NIR) spectroscopy and advanced Fourier-Transform Near-Infrared (FT-NIR) spectroscopy. Therefore, this study aimed to compare the predictive performance of conventional NIR and advanced FT-NIR spectroscopy for sixteen soil properties. Soil samples (n = 567) were collected from different land-use types across South Korea at a depth of 0–20 cm and analyzed using laboratory methods and spectroscopy techniques. Five models, including partial least squares regression (PLSR), Cubist, support vector machine (SVM), random forest (RF), and memory-based learning (MBL), were evaluated using 15-fold cross-validation to assess prediction accuracy. Overall, conventional NIR spectroscopy yielded consistently higher accuracy for all soil properties than FT-NIR. Strong predictive accuracy was achieved for EC (R2 = 0.84), OM (R2 = 0.84), avl. P (R2 = 0.77), TN (R2 = 0.84), and CEC (R2 = 0.76). In contrast, FT-NIR provided good prediction accuracy only for Ex. K (R2 = 0.72) and TN (R2 = 0.84). The average performance of NIR (R2 = 0.67) outperformed FT-NIR spectroscopy (R2 = 0.63) across all soil properties. These findings demonstrate that, despite their lower spectral resolution, NIR spectra provide robust predictive capability across a wide range of soil properties, which can significantly reduce the investment cost of advanced equipment such as FT-NIR for routine soil analysis. Full article
(This article belongs to the Special Issue Automation and Smart Technologies in Agriculture)
Show Figures

Figure 1

26 pages, 7830 KB  
Article
Nondestructive Detection of Polyphenol Oxidase Activity in Various Plum Cultivars Using Machine Learning and Vis/NIR Spectroscopy
by Meysam Latifi-Amoghin, Yousef Abbaspour-Gilandeh, Eduardo De La Cruz-Gámez, Mario Hernández-Hernández and José Luis Hernández-Hernández
Foods 2025, 14(24), 4297; https://doi.org/10.3390/foods14244297 - 13 Dec 2025
Viewed by 369
Abstract
Polyphenol oxidase (PPO) is the primary biochemical driver of browning and the subsequent decline of market quality in harvested fruit. In this work, a fully non-invasive analytical framework was built using Visible/Near-Infrared (VIS/NIR) spectroscopy coupled with chemometric modeling in order to estimate PPO [...] Read more.
Polyphenol oxidase (PPO) is the primary biochemical driver of browning and the subsequent decline of market quality in harvested fruit. In this work, a fully non-invasive analytical framework was built using Visible/Near-Infrared (VIS/NIR) spectroscopy coupled with chemometric modeling in order to estimate PPO activity in two commercially relevant plum cultivars (Khormaei and Khoni). A comprehensive comparative study was conducted utilizing multiple machine learning and linear regression techniques, including Support Vector Regression (SVR), Decision Tree (DT), and Partial Least Squares Regression (PLSR). After acquiring the full VIS/NIR spectra, a suite of metaheuristic feature selection strategies was applied to compress the spectral space to roughly 10–15 highly informative wavelengths. SVR, DT, and PLSR models were then trained and benchmarked using (a) the complete spectral domain and (b) the reduced wavelength subsets. The results consistently demonstrated that non-linear models (DT and SVR) significantly outperformed the linear PLSR method, confirming the inherent complexity and non-linearity of the relationship between the spectra and PPO activity. Across all tests, DT consistently produced the strongest generalization. Under full spectra inputs, DT reached RPD values of 4.93 for Khormaei and 5.41 for Khoni. Even more importantly, the wavelength-reduced configuration further enhanced performance while substantially lowering computational cost, yielding RPDs of 3.32 (Khormaei) and 5.69 (Khoni). The results show that VIS/NIR combined with optimized key-wavelength DT modeling provides a robust, fast, and field-realistic route for quantifying PPO activity in plums without physical destruction of the product. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

25 pages, 12181 KB  
Article
Characterizing Growth and Estimating Yield in Winter Wheat Breeding Lines and Registered Varieties Using Multi-Temporal UAV Data
by Liwei Liu, Xinxing Zhou, Tao Liu, Dongtao Liu, Jing Liu, Jing Wang, Yuan Yi, Xuecheng Zhu, Na Zhang, Huiyun Zhang, Guohua Feng and Hongbo Ma
Agriculture 2025, 15(24), 2554; https://doi.org/10.3390/agriculture15242554 - 10 Dec 2025
Cited by 1 | Viewed by 500
Abstract
Grain yield is one of the most critical indicators for evaluating the performance of wheat breeding. However, the assessment process, from early-stage breeding lines to officially registered varieties that have passed the DUS (Distinctness, Uniformity, and Stability) test, is often time-consuming and labor-intensive. [...] Read more.
Grain yield is one of the most critical indicators for evaluating the performance of wheat breeding. However, the assessment process, from early-stage breeding lines to officially registered varieties that have passed the DUS (Distinctness, Uniformity, and Stability) test, is often time-consuming and labor-intensive. Multispectral remote sensing based on unmanned aerial vehicles (UAVs) has demonstrated significant potential in crop phenotyping and yield estimation due to its high throughput, non-destructive nature, and ability to rapidly collect large-scale, multi-temporal data. In this study, multi-temporal UAV-based multispectral imagery, RGB images, and canopy height data were collected throughout the entire wheat growth stage (2023–2024) in Xuzhou, Jiangsu Province, China, to characterize the dynamic growth patterns of both breeding lines and registered cultivars. Vegetation indices (VIs), texture parameters (Tes), and a time-series crop height model (CHM), including the logistic-derived growth rate (GR) and the projected area (PA), were extracted to construct a comprehensive multi-source feature set. Four machine learning algorithms, namely a random forest (RF), support vector machine regression (SVR), extreme gradient boosting (XGBoost), and partial least squares regression (PLSR), were employed to model and estimate yield. The results demonstrated that spectral, texture, and canopy height features derived from multi-temporal UAV data effectively captured phenotypic differences among wheat types and contributed to yield estimation. Features obtained from later growth stages generally led to higher estimation accuracy. The integration of vegetation indices and texture features outperformed models using single-feature types. Furthermore, the integration of time-series features and feature selection further improved predictive accuracy, with XGBoost incorporating VIs, Tes, GR, and PA yielding the best performance (R2 = 0.714, RMSE = 0.516 t/ha, rRMSE = 5.96%). Overall, the proposed multi-source modeling framework offers a practical and efficient solution for yield estimation in early-stage wheat breeding and can support breeders and growers by enabling earlier, more accurate selection and management decisions in real-world production environments. Full article
Show Figures

Figure 1

19 pages, 14734 KB  
Article
Combining Hyperspectral Imaging with Ensemble Learning for Estimating Rapeseed Chlorophyll Content Under Different Waterlogging Durations
by Ying Jin, Yaoqi Peng, Haoyan Song, Yu Jin, Linxuan Jiang, Yishan Ji and Mingquan Ding
Plants 2025, 14(24), 3713; https://doi.org/10.3390/plants14243713 - 5 Dec 2025
Viewed by 430
Abstract
Chlorophyll content is a key physiological indicator reflecting photosynthetic capacity, and the Soil–Plant Analysis Development (SPAD) meter is a commonly used tool for its rapid and non-destructive estimation. Hyperspectral imaging (HSI) is a non-destructive technique that captures fine spectral characteristics and thus holds [...] Read more.
Chlorophyll content is a key physiological indicator reflecting photosynthetic capacity, and the Soil–Plant Analysis Development (SPAD) meter is a commonly used tool for its rapid and non-destructive estimation. Hyperspectral imaging (HSI) is a non-destructive technique that captures fine spectral characteristics and thus holds great potential for high-throughput phenotyping and early stress detection. This study aimed to explore the potential of HSI combined with ensemble learning (EL) to estimate SPAD of rapeseed seedlings under different durations of waterlogging. Hyperspectral images and corresponding SPAD values were collected from six rapeseed cultivars at 0, 2, 4 and 6 days of waterlogging. The mutual information was employed to select the top 30 most relevant spectral and vegetation index features. The EL model was constructed using partial least squares, support vector machine, random forest, ridge regression and elastic net as the first-layer learners and a multiple linear regression as the second-layer learner. The results showed that the EL model showed superior stability and higher prediction accuracy compared to single models across various genotypes and waterlogging treatment datasets. As waterlogging duration increased, the overall model accuracy improved; notably, under 6 days of waterlogging, the EL model achieved an R2 of 0.79 and an RMSE of 3.27, indicating strong predictive capability. This study demonstrated that combining EL with HSI enables stable and accurate estimation of SPAD values, therefore providing an effective approach for early stress monitoring in crops. Full article
Show Figures

Figure 1

22 pages, 9456 KB  
Article
A Multi-Feature Estimation Model for Olive Canopy Chlorophyll Combining XGBoost with UAV Imagery
by Weiyu Zhuang, Dong Li, Weili Kou, Ning Lu, Fan Wu, Shixian Sun and Zhefeng Liu
Agronomy 2025, 15(12), 2718; https://doi.org/10.3390/agronomy15122718 - 26 Nov 2025
Cited by 1 | Viewed by 598
Abstract
Olive (Olea europaea L.) is an important woody oil crop worldwide, and accurate estimation of leaf chlorophyll content is critical for assessing nutritional status, photosynthetic capacity, and precision crop management. Unmanned aerial vehicle (UAV) remote sensing, with high spatiotemporal resolution, has increasingly [...] Read more.
Olive (Olea europaea L.) is an important woody oil crop worldwide, and accurate estimation of leaf chlorophyll content is critical for assessing nutritional status, photosynthetic capacity, and precision crop management. Unmanned aerial vehicle (UAV) remote sensing, with high spatiotemporal resolution, has increasingly been applied in crop growth monitoring. However, the small, thick, waxy leaves of olive, together with its complex canopy structure and dense arrangement, may reduce estimation accuracy. To identify sensitive features related to olive leaf chlorophyll and to evaluate the feasibility of UAV-based estimation methods for olive trees with complex canopy structures, UAV multispectral orthophotos were acquired, and leaf chlorophyll was measured using a SPAD (Soil Plant Analysis Development) meter to provide ground-truth data. A dataset including single-band reflectance, vegetation indices, and texture features was built, and sensitive variables were identified by Pearson correlation. Modeling was performed with linear regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Partial Least Squares Regression (PLSR), and Support Vector Machine (SVM). Results showed that two spectral bands (green and red), one vegetation index (TCARI/OSAVI), and twelve texture features correlated strongly with SPAD values. Among the machine learning models, XGBoost achieved the highest accuracy, demonstrating the effectiveness of integrating multi-feature UAV data for complex olive canopies. This study demonstrates that combining reflectance, vegetation indices, and texture features within the XGBoost model enables reliable chlorophyll estimation for olive canopies, highlighting the potential of UAV-based multispectral approaches for precision monitoring and providing a foundation for applications in other woody crops with complex canopy structures. Full article
Show Figures

Figure 1

20 pages, 4047 KB  
Article
Air Quality Index Forecasting Based on Quadratic Decomposition and Transformer-BiLSTM—A Case Study of Beijing
by Peng Cheng, Chuanning Wei, Jinhua Zhang and Haizheng Wang
Atmosphere 2025, 16(12), 1334; https://doi.org/10.3390/atmos16121334 - 25 Nov 2025
Viewed by 599
Abstract
Accurate Air Quality Index (AQI) forecasting is crucial for environmental pollution control. However, the strong nonlinearity and pronounced non-stationarity of AQI time series limit the precision of single-model predictions. This paper therefore proposes an efficient new AQI forecasting model. First, the raw AQI [...] Read more.
Accurate Air Quality Index (AQI) forecasting is crucial for environmental pollution control. However, the strong nonlinearity and pronounced non-stationarity of AQI time series limit the precision of single-model predictions. This paper therefore proposes an efficient new AQI forecasting model. First, the raw AQI sequence is decomposed using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). This is combined with Sample Entropy (SE) and K-means clustering to reconstruct high-, medium-, and low-frequency sub-sequences. For the high-frequency component, a second decomposition is performed using Variational Mode Decomposition (VMD) optimised by the Crested Porcupine Optimizer (CPO). This forms the basis for constructing a hybrid forecasting model: the CEEMDAN–SE–CPO–VMD–Transformer-BiLSTM model. Finally, the prediction error is corrected via Least Squares Support Vector Machine (LSSVM). Empirical analysis based on AQI data of Beijing in summer 2023 demonstrates that this model significantly outperforms traditional models and single-decomposition models in terms of MAE, RMSE, MAPE, and R2 metrics. Cross-seasonal experiments further confirm its excellent predictive performance and robustness across the spring, autumn, and winter. This model provides a new, efficient, and reliable approach for AQI forecasting. Full article
(This article belongs to the Section Air Quality)
Show Figures

Graphical abstract

23 pages, 4554 KB  
Article
Hybrid Geoid Modelling with AI Enhancements: A Case Study for Almaty, Kazakhstan
by Asset Urazaliyev, Daniya Shoganbekova, Serik Nurakynov, Magzhan Kozhakhmetov, Nailya Zhaksygul and Roman Sermiagin
Algorithms 2025, 18(12), 737; https://doi.org/10.3390/a18120737 - 24 Nov 2025
Viewed by 468
Abstract
Developing a high-precision regional geoid model is a key element in modernizing Kazakhstan’s vertical reference framework and ensuring consistent GNSS-based height determination. However, the mountainous terrain of southeastern Kazakhstan, characterized by strong topographic gradients and sparse terrestrial gravity coverage, poses significant modelling challenges. [...] Read more.
Developing a high-precision regional geoid model is a key element in modernizing Kazakhstan’s vertical reference framework and ensuring consistent GNSS-based height determination. However, the mountainous terrain of southeastern Kazakhstan, characterized by strong topographic gradients and sparse terrestrial gravity coverage, poses significant modelling challenges. This study presents the first AI-enhanced hybrid geoid model developed for the Almaty region, integrating classical gravimetric modelling with modern machine-learning simulation. The baseline solution was computed using the Least-Squares Modification of Stokes’ Formula with Additive Corrections, combining digitized Soviet-era terrestrial gravity data, the global geopotential model XGM2019e_2159, and the FABDEM 30 m digital elevation model. Validation using GNSS/levelling benchmarks revealed a systematic bias of −0.06 m and an RMS of 0.08 m. To improve the fit between modelled and observed undulations, three machine-learning regressors—Gaussian Process Regression (GPR), Support Vector Regression (SVR), and LSBoost—were applied to model the residual correction surface. Among them, SVR provided the best held-out performance (RMSE = 0.04 m), while LOOCV, 10-fold and spatial CV confirmed stable generalization across terrain regimes. The resulting hybrid model, designated NALM2025, achieved centimetre-level consistency with GNSS/levelling data. The results demonstrate that integrating classical geoid computation with AI-based residual modelling provides an efficient computational framework for high-precision geoid determination in complex mountainous environments. Full article
(This article belongs to the Special Issue Artificial Intelligence in Modeling and Simulation (2nd Edition))
Show Figures

Figure 1

21 pages, 2012 KB  
Article
Optimizing LSSVM for Bearing Fault Diagnosis Using Adaptive t-Distribution Slime Mold Algorithm
by Jingyang Qiao, Kai Zhu, Lei Hua, Yueyuan Fan and Peng Li
Electronics 2025, 14(23), 4568; https://doi.org/10.3390/electronics14234568 - 22 Nov 2025
Viewed by 330
Abstract
Accurate and robust bearing fault diagnosis is crucial for the reliability of rotating machinery. To improve the precision of bearing fault classification, this study introduces a novel methodology that integrates the Adaptive t-distribution Slime Mold Algorithm (AtSMA) with the Least Squares Support Vector [...] Read more.
Accurate and robust bearing fault diagnosis is crucial for the reliability of rotating machinery. To improve the precision of bearing fault classification, this study introduces a novel methodology that integrates the Adaptive t-distribution Slime Mold Algorithm (AtSMA) with the Least Squares Support Vector Machine (LSSVM). During the signal processing phase, Local Mean Decomposition (LMD) is employed to extract intrinsic mode functions from bearing vibration signals, which are subsequently reconstructed using the Pearson correlation coefficient method. Key features, such as sample entropy, permutation entropy, and energy entropy, are calculated to create a comprehensive feature vector for fault diagnosis. To enhance the convergence stability and global exploration capabilities of the Slime Mold Algorithm (SMA), an adaptive t-distribution mutation mechanism is incorporated to increase population diversity. Additionally, an improved step size strategy is implemented to prevent premature convergence and to expedite optimization speed. AtSMA is utilized to optimize the kernel parameters and penalty factor of LSSVM, thereby enhancing fault classification accuracy. Experimental evaluations conducted on two benchmark bearing datasets reveal that the proposed method achieves an average diagnostic accuracy of 96% on the Case Western Reserve University (CWRU) dataset and 93.25% on the Xi’an Jiaotong University dataset, surpassing conventional optimization algorithms and diagnostic techniques. These findings substantiate the superior diagnostic precision and robustness of the proposed approach under various fault scenarios and dynamic operating conditions. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

22 pages, 3470 KB  
Article
A Multi-Sensor Machine Learning Framework for Field-Scale Soil Salinity Mapping Under Data-Scarce Conditions
by Joyce Mongai Chindong, Jamal-Eddine Ouzemou, Ahmed Laamrani, Ali El Battay, Soufiane Hajaj, Hassan Rhinane and Abdelghani Chehbouni
Remote Sens. 2025, 17(22), 3778; https://doi.org/10.3390/rs17223778 - 20 Nov 2025
Viewed by 1394
Abstract
Soil salinity severely constrains agricultural productivity and soil health, particularly in arid and semi-arid regions. Conventional salinity assessment methods are labor-intensive, time-consuming, and spatially limited. This study developed a data-scarce workflow integrating proximal sensing (EM38-MK2), very high-resolution multispectral imagery, and machine learning to [...] Read more.
Soil salinity severely constrains agricultural productivity and soil health, particularly in arid and semi-arid regions. Conventional salinity assessment methods are labor-intensive, time-consuming, and spatially limited. This study developed a data-scarce workflow integrating proximal sensing (EM38-MK2), very high-resolution multispectral imagery, and machine learning to map soil salinity at field scale in the semi-arid Sehb El Masjoune area, central Morocco. A total of 26 soil samples were analyzed for Electrical Conductivity (EC), and 500 Apparent Electrical Conductivity (ECa) measurements were collected and calibrated using the field samples. Spectral and topographic covariates derived from Unmanned Aerial Vehicle (UAV) and PlanetScope imagery supported model training using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), Random Forest (RF), and a Stacked Ensemble Learning Model (ELM). Regression Kriging (RK) was applied to model residuals to improve spatial prediction. ELM achieved the highest accuracy (R2 = 0.87, RMSE ≈ 4.15), followed by RF, which effectively captured nonlinear spatial patterns. RK improved PLSR accuracy (by 11.1% for PlanetScope, 13.8% for UAV) but offered limited gains for RF, SVR, and ELM. SHAP analysis identified topographic covariates as the most influential predictors. Both UAV and PlanetScope delineated similar saline–sodic zones. The study demonstrates the following: (1) a scalable, data-efficient workflow for salinity mapping; (2) model and RK performance depend more on algorithmic design than sensor type; (3) interpretable ML and spatial modeling enhance understanding of salinity processes in semi-arid systems. Full article
Show Figures

Figure 1

Back to TopTop