Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (488)

Search Parameters:
Keywords = learning factory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5522 KiB  
Article
An Improved NSGA-II for Three-Stage Distributed Heterogeneous Hybrid Flowshop Scheduling with Flexible Assembly and Discrete Transportation
by Zhiyuan Shi, Haojie Chen, Fuqian Yan, Xutao Deng, Haiqiang Hao, Jialei Zhang and Qingwen Yin
Symmetry 2025, 17(8), 1306; https://doi.org/10.3390/sym17081306 - 12 Aug 2025
Viewed by 215
Abstract
This study tackles scheduling challenges in multi-product assembly within distributed manufacturing, where components are produced simultaneously at dedicated factories (single capacity per site) and assembled centrally upon completion. To minimize makespan and maximum tardiness, we design a symmetry-exploiting enhanced Non-dominated Sorting Genetic Algorithm [...] Read more.
This study tackles scheduling challenges in multi-product assembly within distributed manufacturing, where components are produced simultaneously at dedicated factories (single capacity per site) and assembled centrally upon completion. To minimize makespan and maximum tardiness, we design a symmetry-exploiting enhanced Non-dominated Sorting Genetic Algorithm II (NSGA-II) integrated with Q-learning. Our approach systematically explores the solution space using dual symmetric variable neighborhood search (VNS) strategies and two novel crossover operators that enhance solution-space symmetry and genetic diversity. An ε-greedy policy leveraging maximum Q-values guides the symmetry-aware search toward optimality while enabling strategic exploration. We validate an MILP model (Gurobi-implemented) and present our symmetry-refined algorithm against six heuristics. Multi-scale experiments confirm superiority, with Friedman tests demonstrating statistically significant gains over benchmarks, providing actionable insights for efficient distributed manufacturing scheduling. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

22 pages, 5387 KiB  
Article
A Study on a Directional Gradient-Based Defect Detection Method for Plate Heat Exchanger Sheets
by Zhibo Ding and Weiqi Yuan
Electronics 2025, 14(16), 3206; https://doi.org/10.3390/electronics14163206 - 12 Aug 2025
Viewed by 168
Abstract
Micro-crack defects on the surfaces of plate heat exchanger sheets often exhibit a linear grayscale pattern when clustered. In defect detection, traditional methods are more suitable than deep learning models in controlled production environments with limited computing resources to meet stringent national standards, [...] Read more.
Micro-crack defects on the surfaces of plate heat exchanger sheets often exhibit a linear grayscale pattern when clustered. In defect detection, traditional methods are more suitable than deep learning models in controlled production environments with limited computing resources to meet stringent national standards, which require low miss rates. However, deep learning models commonly suffer feature loss when detecting individual, small-scale defects, leading to higher leak detection rates. Moreover, in grayscale image line detection using traditional methods, the varying direction, width, and asymmetric grayscale profiles of defects can result in filled grayscale valleys due to width-adaptive smoothing coefficients, complicating accurate defect extraction. To address these issues, this study establishes a theoretical foundation for parameter selection in variable-width defect detection. We propose a directional gradient-based algorithm that mathematically constrains the Gaussian template width to cover variable-width defects with a fixed σ, reframing the detection defect from ridge edges to centrally symmetric double-ridge edges in gradient images. Experimental results show that, when tested in the defective boards library and under simulated factory CPU conditions, this algorithm achieves a miss detection rate of 14.55%, a false detection rate of 21.85%, and an 600 × 600 pixel image detection time of 0.1402 s. Compared to traditional line detection and deep learning object detection methods, this algorithm proves advantageous for detecting micro-crack defects on plate heat exchanger sheets in industrial production, particularly in data-scarce and resource-limited scenarios. Full article
Show Figures

Figure 1

20 pages, 1265 KiB  
Article
Validation of the Player Personality and Dynamics Scale
by Ayose Lomba Perez, Juan Carlos Martín-Quintana, Jesus B. Alonso-Hernandez and Iván Martín-Rodríguez
Appl. Sci. 2025, 15(15), 8714; https://doi.org/10.3390/app15158714 - 6 Aug 2025
Viewed by 182
Abstract
This study presents the validation of the Player Personality and Dynamics Scale (PPDS), designed to identify player profiles in educational gamification contexts with narrative elements. Through a sample of 635 participants, a questionnaire was developed and applied, covering sociodemographic data, lifestyle habits, gaming [...] Read more.
This study presents the validation of the Player Personality and Dynamics Scale (PPDS), designed to identify player profiles in educational gamification contexts with narrative elements. Through a sample of 635 participants, a questionnaire was developed and applied, covering sociodemographic data, lifestyle habits, gaming practices, and a classification system of 40 items on a six-point Likert scale. The results of the factorial analysis confirm a structure of five factors: Toxic Profile, Joker Profile, Tryhard Profile, Aesthetic Profile, and Coacher Profile, with high fit and reliability indices (RMSEA = 0.06; CFI = 0.95; TLI = 0.91). The resulting classification enables the design of personalized gamified experiences that enhance learning and interaction in the classroom, highlighting the importance of understanding players’ motivations to better adapt educational dynamics. Applying this scale fosters meaningful learning through the creation of narratives tailored to students’ individual preferences. Full article
Show Figures

Figure 1

16 pages, 5655 KiB  
Article
A Multi-Branch Deep Learning Framework with Frequency–Channel Attention for Liquid-State Recognition
by Minghao Wu, Jiajun Zhou, Shuaiyu Yang, Hao Wang, Xiaomin Wang, Haigang Gong and Ming Liu
Electronics 2025, 14(15), 3028; https://doi.org/10.3390/electronics14153028 - 29 Jul 2025
Viewed by 246
Abstract
In the industrial production of polytetrafluoroethylene (PTFE), accurately recognizing the liquid state within the coagulation vessel is critical to achieving better product quality and higher production efficiency. However, the complex and subtle changes in the coagulation process pose significant challenges for traditional sensing [...] Read more.
In the industrial production of polytetrafluoroethylene (PTFE), accurately recognizing the liquid state within the coagulation vessel is critical to achieving better product quality and higher production efficiency. However, the complex and subtle changes in the coagulation process pose significant challenges for traditional sensing methods, calling for more reliable visual approaches that can handle varying scales and dynamic state changes. This study proposes a multi-branch deep learning framework for classifying the liquid state of PTFE emulsions based on high-resolution images captured in real-world factory conditions. The framework incorporates multi-scale feature extraction through a three-branch network and introduces a frequency–channel attention module to enhance feature discrimination. To address optimization challenges across branches, contrastive learning is employed for deep supervision, encouraging consistent and informative feature learning. The experimental results show that the proposed method significantly improves classification accuracy, achieving a mean F1-score of 94.3% across key production states. This work demonstrates the potential of deep learning-based visual classification methods for improving automation and reliability in industrial production. Full article
Show Figures

Figure 1

36 pages, 1411 KiB  
Review
A Critical Analysis and Roadmap for the Development of Industry 4-Oriented Facilities for Education, Training, and Research in Academia
by Ziyue Jin, Romeo M. Marian and Javaan S. Chahl
Appl. Syst. Innov. 2025, 8(4), 106; https://doi.org/10.3390/asi8040106 - 29 Jul 2025
Viewed by 675
Abstract
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand [...] Read more.
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand the key features, constraints, and opportunities. This paper presents a systematic literature review of 145 peer-reviewed studies published between 2011 and 2023, which are identified across Scopus, SpringerLink, and Web of Science. As a result, we emphasise the significance of developing Industry 4 learning facilities in academia and outline the main design principles of the Industry 4 ecosystems. We also investigate and discuss the key Industry 4-related technologies that have been extensively used and represented in the reviewed literature, and summarise the challenges and roadblocks that current participants are facing. From these insights, we identify research gaps, outline technology mapping and maturity level, and propose a strategic roadmap for future implementation of Industry 4 facilities. The results of the research are expected to support current and future participants in increasing their awareness of the significance of the development, clarifying the research scope and objectives, and preparing them to deal with inherent complexity and skills issues. Full article
Show Figures

Figure 1

27 pages, 3211 KiB  
Article
Hybrid Deep Learning-Reinforcement Learning for Adaptive Human-Robot Task Allocation in Industry 5.0
by Claudio Urrea
Systems 2025, 13(8), 631; https://doi.org/10.3390/systems13080631 - 26 Jul 2025
Viewed by 685
Abstract
Human-Robot Collaboration (HRC) is pivotal for flexible, worker-centric manufacturing in Industry 5.0, yet dynamic task allocation remains difficult because operator states—fatigue and skill—fluctuate abruptly. I address this gap with a hybrid framework that couples real-time perception and double-estimating reinforcement learning. A Convolutional Neural [...] Read more.
Human-Robot Collaboration (HRC) is pivotal for flexible, worker-centric manufacturing in Industry 5.0, yet dynamic task allocation remains difficult because operator states—fatigue and skill—fluctuate abruptly. I address this gap with a hybrid framework that couples real-time perception and double-estimating reinforcement learning. A Convolutional Neural Network (CNN) classifies nine fatigue–skill combinations from synthetic physiological cues (heart-rate, blink rate, posture, wrist acceleration); its outputs feed a Double Deep Q-Network (DDQN) whose state vector also includes task-queue and robot-status features. The DDQN optimises a multi-objective reward balancing throughput, workload and safety and executes at 10 Hz within a closed-loop pipeline implemented in MATLAB R2025a and RoboDK v5.9. Benchmarking on a 1000-episode HRC dataset (2500 allocations·episode−1) shows the hybrid CNN+DDQN controller raises throughput to 60.48 ± 0.08 tasks·min−1 (+21% vs. rule-based, +12% vs. SARSA, +8% vs. Dueling DQN, +5% vs. PPO), trims operator fatigue by 7% and sustains 99.9% collision-free operation (one-way ANOVA, p < 0.05; post-hoc power 1 − β = 0.87). Visual analyses confirm responsive task reallocation as fatigue rises or skill varies. The approach outperforms strong baselines (PPO, A3C, Dueling DQN) by mitigating Q-value over-estimation through double learning, providing robust policies under stochastic human states and offering a reproducible blueprint for multi-robot, Industry 5.0 factories. Future work will validate the controller on a physical Doosan H2017 cell and incorporate fairness constraints to avoid workload bias across multiple operators. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

22 pages, 3950 KiB  
Article
A Deep Reinforcement Learning-Based Concurrency Control of Federated Digital Twin for Software-Defined Manufacturing Systems
by Rubab Anwar, Jin-Woo Kwon and Won-Tae Kim
Appl. Sci. 2025, 15(15), 8245; https://doi.org/10.3390/app15158245 - 24 Jul 2025
Viewed by 325
Abstract
Modern manufacturing demands real-time, scalable coordination that legacy manufacturing management systems cannot provide. Digital transformation encompasses the entire manufacturing infrastructure, which can be represented by digital twins for facilitating efficient monitoring, prediction, and optimization of factory operations. A Federated Digital Twin (FDT) emerges [...] Read more.
Modern manufacturing demands real-time, scalable coordination that legacy manufacturing management systems cannot provide. Digital transformation encompasses the entire manufacturing infrastructure, which can be represented by digital twins for facilitating efficient monitoring, prediction, and optimization of factory operations. A Federated Digital Twin (FDT) emerges by combining heterogeneous digital twins, enabling real-time collaboration, data sharing, and collective decision-making. However, deploying FDTs introduces new concurrency control challenges, such as priority inversion and synchronization failures, which can potentially cause process delays, missed deadlines, and reduced customer satisfaction. Traditional concurrency control approaches in the computing domain, due to their reliance on static priority assignments and centralized control, are inadequate for managing dynamic, real-time conflicts effectively in real production lines. To address these challenges, this study proposes a novel concurrency control framework combining Deep Reinforcement Learning with the Priority Ceiling Protocol. Using SimPy-based discrete-event simulations, which accurately model the asynchronous nature of FDT interactions, the proposed approach adaptively optimizes resource allocation and effectively mitigates priority inversion. The results demonstrate that against the rule-based PCP controller, our hybrid DRLCC enhances completion time maximum of 24.27% to a minimum of 1.51%, urgent-job delay maximum of 6.65% and a minimum of 2.18%, while preserving lower-priority inversions. Full article
Show Figures

Figure 1

29 pages, 4788 KiB  
Article
Statistical and Machine Learning Classification Approaches to Predicting and Controlling Peak Temperatures During Friction Stir Welding (FSW) of Al-6061-T6 Alloys
by Assad Anis, Muhammad Shakaib and Muhammad Sohail Hanif
J. Manuf. Mater. Process. 2025, 9(7), 246; https://doi.org/10.3390/jmmp9070246 - 21 Jul 2025
Viewed by 449
Abstract
This paper presents optimization of peak temperatures achieved during friction stir welding (FSW) of Al-6061-T6 alloys. This research work employed a novel approach by investigating the effect of FSW welding process parameters on peak temperatures through the implementation of finite element analysis (FEA), [...] Read more.
This paper presents optimization of peak temperatures achieved during friction stir welding (FSW) of Al-6061-T6 alloys. This research work employed a novel approach by investigating the effect of FSW welding process parameters on peak temperatures through the implementation of finite element analysis (FEA), the Taguchi method, analysis of variance (ANOVA), and machine learning (ML) algorithms. COMSOL 6.0 Multiphysics was used to perform FEA to predict peak temperatures, incorporating seven distinctive welding parameters: tool material, pin diameter, shoulder diameter, tool rotational speed, welding speed, axial force, and coefficient of friction. The influence of these parameters was investigated using an L32 Taguchi array and analysis of variance (ANOVA), revealing that axial force and tool rotational speed were the most significant parameters affecting peak temperatures. Some simulations showed temperatures exceeding the material’s melting point, indicating the need for improved thermal control. This was achieved by using three machine learning (ML) algorithms, i.e., Logistic Regression, k-Nearest Neighbors (k-NN), and Naive Bayes. A dataset of 324 data points was prepared using a factorial design to implement these algorithms. These algorithms predicted the welding conditions where the temperature exceeded the melting temperature of Al-6061-T6. It was found that the Logistic Regression classifier demonstrated the highest performance, achieving an accuracy of 98.14% as compared to Naive Bayes and k-NN classifiers. These findings contribute to sustainable welding practices by minimizing excessive heat generation, preserving material properties, and enhancing weld quality. Full article
Show Figures

Figure 1

26 pages, 2018 KiB  
Review
Influence of Light Regimes on Production of Beneficial Pigments and Nutrients by Microalgae for Functional Plant-Based Foods
by Xiang Huang, Feng Wang, Obaid Ur Rehman, Xinjuan Hu, Feifei Zhu, Renxia Wang, Ling Xu, Yi Cui and Shuhao Huo
Foods 2025, 14(14), 2500; https://doi.org/10.3390/foods14142500 - 17 Jul 2025
Viewed by 543
Abstract
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic [...] Read more.
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic microalgae are particularly important as a source of food products due to their ability to biosynthesize high-value compounds. Their photosynthetic efficiency and biosynthetic activity are directly influenced by light conditions. The primary goal of this study is to track the changes in the light requirements of various high-value microalgae species and use advanced systems to regulate these conditions. Artificial intelligence (AI) and machine learning (ML) models have emerged as pivotal tools for intelligent microalgal cultivation. This approach involves the continuous monitoring of microalgal growth, along with the real-time optimization of environmental factors and light conditions. By accumulating data through cultivation experiments and training AI models, the development of intelligent microalgae cell factories is becoming increasingly feasible. This review provides a concise overview of the regulatory mechanisms that govern microalgae growth in response to light conditions, explores the utilization of microalgae-based products in plant-based foods, and highlights the potential for future research on intelligent microalgae cultivation systems. Full article
Show Figures

Graphical abstract

27 pages, 2260 KiB  
Article
Machine Learning for Industrial Optimization and Predictive Control: A Patent-Based Perspective with a Focus on Taiwan’s High-Tech Manufacturing
by Chien-Chih Wang and Chun-Hua Chien
Processes 2025, 13(7), 2256; https://doi.org/10.3390/pr13072256 - 15 Jul 2025
Viewed by 1059
Abstract
The global trend toward Industry 4.0 has intensified the demand for intelligent, adaptive, and energy-efficient manufacturing systems. Machine learning (ML) has emerged as a crucial enabler of this transformation, particularly in high-mix, high-precision environments. This review examines the integration of machine learning techniques, [...] Read more.
The global trend toward Industry 4.0 has intensified the demand for intelligent, adaptive, and energy-efficient manufacturing systems. Machine learning (ML) has emerged as a crucial enabler of this transformation, particularly in high-mix, high-precision environments. This review examines the integration of machine learning techniques, such as convolutional neural networks (CNNs), reinforcement learning (RL), and federated learning (FL), within Taiwan’s advanced manufacturing sectors, including semiconductor fabrication, smart assembly, and industrial energy optimization. The present study draws on patent data and industrial case studies from leading firms, such as TSMC, Foxconn, and Delta Electronics, to trace the evolution from classical optimization to hybrid, data-driven frameworks. A critical analysis of key challenges is provided, including data heterogeneity, limited model interpretability, and integration with legacy systems. A comprehensive framework is proposed to address these issues, incorporating data-centric learning, explainable artificial intelligence (XAI), and cyber–physical architectures. These components align with industrial standards, including the Reference Architecture Model Industrie 4.0 (RAMI 4.0) and the Industrial Internet Reference Architecture (IIRA). The paper concludes by outlining prospective research directions, with a focus on cross-factory learning, causal inference, and scalable industrial AI deployment. This work provides an in-depth examination of the potential of machine learning to transform manufacturing into a more transparent, resilient, and responsive ecosystem. Additionally, this review highlights Taiwan’s distinctive position in the global high-tech manufacturing landscape and provides an in-depth analysis of patent trends from 2015 to 2025. Notably, this study adopts a patent-centered perspective to capture practical innovation trends and technological maturity specific to Taiwan’s globally competitive high-tech sector. Full article
(This article belongs to the Special Issue Machine Learning for Industrial Optimization and Predictive Control)
Show Figures

Figure 1

32 pages, 2740 KiB  
Article
Vision-Based Navigation and Perception for Autonomous Robots: Sensors, SLAM, Control Strategies, and Cross-Domain Applications—A Review
by Eder A. Rodríguez-Martínez, Wendy Flores-Fuentes, Farouk Achakir, Oleg Sergiyenko and Fabian N. Murrieta-Rico
Eng 2025, 6(7), 153; https://doi.org/10.3390/eng6070153 - 7 Jul 2025
Viewed by 1983
Abstract
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from [...] Read more.
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from sensing to deployment. We first examine the expanding sensor palette—monocular and multi-camera rigs, stereo and RGB-D devices, LiDAR–camera hybrids, event cameras, and infrared systems—highlighting the complementary operating envelopes and the rise of learning-based depth inference. The advances in visual localization and mapping are then analyzed, contrasting sparse and dense SLAM approaches, as well as monocular, stereo, and visual–inertial formulations. Additional topics include loop closure, semantic mapping, and LiDAR–visual–inertial fusion, which enables drift-free operation in dynamic environments. Building on these foundations, we review the navigation and control strategies, spanning classical planning, reinforcement and imitation learning, hybrid topological–metric memories, and emerging visual language guidance. Application case studies—autonomous driving, industrial manipulation, autonomous underwater vehicles, planetary rovers, aerial drones, and humanoids—demonstrate how tailored sensor suites and algorithms meet domain-specific constraints. Finally, the future research trajectories are distilled: generative AI for synthetic training data and scene completion; high-density 3D perception with solid-state LiDAR and neural implicit representations; event-based vision for ultra-fast control; and human-centric autonomy in next-generation robots. By providing a unified taxonomy, a comparative analysis, and engineering guidelines, this review aims to inform researchers and practitioners designing robust, scalable, vision-driven robotic systems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

15 pages, 577 KiB  
Article
The Influence of Judgments of Learning on Collaborative Memory for Items and Sequences
by Xiaochun Luo, Qian Xiao and Weihai Tang
Behav. Sci. 2025, 15(7), 905; https://doi.org/10.3390/bs15070905 - 3 Jul 2025
Viewed by 323
Abstract
The present study examined how making judgments of learning (JOLs) vs. not making judgments of learning (no-JOLs) influences item and sequential memory in collaborative contexts. According to the item-order hypothesis, making JOLs improves memory for specific items (i.e., item memory) but disrupts sequential [...] Read more.
The present study examined how making judgments of learning (JOLs) vs. not making judgments of learning (no-JOLs) influences item and sequential memory in collaborative contexts. According to the item-order hypothesis, making JOLs improves memory for specific items (i.e., item memory) but disrupts sequential memory where memory for temporal relationships between items is required. If JOLs do enhance item memory performance, the study predicts they may effectively eliminate collaborative inhibition through a compensatory enhancement mechanism. Specifically, the magnitude of JOL-induced memory improvement appears to be greater in collaborative groups than in nominal groups. This differential enhancement likely offsets the typical memory impairment caused by collaborative retrieval interference, resulting in statistically equivalent final performance between groups. Consequently, the collaborative inhibition effect may disappear under JOL conditions. This study employed a 2 (group: collaborative vs. nominal; between-subjects) × 2 (metamemory monitoring: with vs. without judgments of learning; within-subjects) × 2 (test type: recognition vs. sequential reconstruction; within-subjects) mixed factorial design. The findings indicated that making judgments of learning significantly enhanced item memory performance while having no noticeable effect on sequential memory. It suggests that the reactivity effect is only present in item memory. Additionally, it was found that both item recognition and sequential memory performance were lower in the collaborative group compared with the nominal group, highlighting the presence of collaborative inhibition. These results suggest that the reactivity effect and collaborative inhibition are two distinct memory phenomena that do not affect each other. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

18 pages, 1480 KiB  
Article
Energy-Environmental Analysis of Retrofitting of a Chilled Water Production System in an Industrial Facility—A Case Study
by Tomasz Mróz and Kacper Fórmaniak
Appl. Sci. 2025, 15(13), 7465; https://doi.org/10.3390/app15137465 - 3 Jul 2025
Viewed by 341
Abstract
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants [...] Read more.
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants based on dual-stage absorption chillers supplied from an existing gas-fueled co-generation plant were identified. The proposed variants, i.e., tri-generation systems, were compared with the basic variant, which relied on electric compression water chillers. An evaluation of the variants was performed on the basis of two criteria: annual primary energy consumption and annual carbon dioxide emission. Variant 2, i.e., with a 1650 kW dual-stage absorption water chiller supplied from an existing gas fueled co-generation plant, was chosen as the optimal variant. It achieved a 370 MWh annual primary energy consumption reduction and a 1140 Mg annual carbon dioxide emission reduction. It was found that increasing the co-generation ratio for the CHP plant powering the pharmaceutical factory resulted in lower consumption of primary energy in variants in which the cooling energy supply system was retrofitted based on absorption water chillers. The threshold values of the co-generation ratio were e = 0.37 for Variant 1 and e = 0.34 for Variant 2. A literature survey revealed that there is limited interest in the application of such a solution in industrial plants. The performed analysis showed that the evaluated systems may nonetheless be an attractive option for pharmaceutics factories, leading to the reduction of primary energy consumption and carbon dioxide emissions, thereby making more electrical power available for core production. The lessons learned during our analysis could be easily transferred to other industrial facilities requiring chilled water production systems. Full article
Show Figures

Figure 1

19 pages, 1507 KiB  
Article
Fog Computing Architecture for Load Balancing in Parallel Production with a Distributed MES
by William Oñate and Ricardo Sanz
Appl. Sci. 2025, 15(13), 7438; https://doi.org/10.3390/app15137438 - 2 Jul 2025
Viewed by 229
Abstract
The technological growth in the automation of manufacturing processes, as seen in Industry 4.0, is characterized by a constant revolution and evolution in small- and medium-sized factories. As basic and advanced technologies from the pillars of Industry 4.0 are gradually incorporated into their [...] Read more.
The technological growth in the automation of manufacturing processes, as seen in Industry 4.0, is characterized by a constant revolution and evolution in small- and medium-sized factories. As basic and advanced technologies from the pillars of Industry 4.0 are gradually incorporated into their value chain, these factories can achieve adaptive technological transformation. This article presents a practical solution for companies seeking to evolve their production processes during the expansion phase of their manufacturing, starting from a base architecture with Industry 4.0 features which then integrate and implement specific tools that facilitate the duplication of installed capacity; this creates a situation that allows for the development of manufacturing execution systems (MESs) for each production line and a fog computing node, which is responsible for optimizing the load balance of order requests coming from the cloud and also acts as an intermediary between MESs and the cloud. On the other hand, legacy Machine Learning (ML) inference acceleration modules were integrated into the single-board computers of MESs to improve workflow across the new architecture. These improvements and integrations enabled the value chain of this expanded architecture to have lower latency, greater scalability, optimized resource utilization, and improved resistance to network service failures compared to the initial one. Full article
Show Figures

Figure 1

21 pages, 1610 KiB  
Review
Plant Transformation and Genome Editing for Precise Synthetic Biology Applications
by Sharathchandra Kambampati, Pankaj K. Verma and Madhusudhana R. Janga
SynBio 2025, 3(3), 9; https://doi.org/10.3390/synbio3030009 - 27 Jun 2025
Viewed by 947
Abstract
Synthetic biology (SynBio) is an emerging interdisciplinary field that applies engineering principles to the design and construction of novel biological systems or the redesign of existing natural systems for new functions. As autotrophs with complex cellular architectures, plants possess inherent capabilities to serve [...] Read more.
Synthetic biology (SynBio) is an emerging interdisciplinary field that applies engineering principles to the design and construction of novel biological systems or the redesign of existing natural systems for new functions. As autotrophs with complex cellular architectures, plants possess inherent capabilities to serve as “living factories” for SynBio applications. Recent advancements in genetic engineering, genome editing, and transformation techniques are improving the precision and programmability of plant systems. Innovations, such as CRISPR systems, prime editing strategies, and in planta and nanoparticle-mediated delivery, are expanding the SynBio toolkit for plants. However, the efficient delivery of genetic constructs remains a barrier due to plant systems’ complexity. To address these limitations, SynBio is increasingly integrating iterative Design–Build–Test–Learn (DBTL) cycles, standardization, modular DNA assembly systems, and plant-optimized toolkits to enable predictable trait engineering. This review explores the technological foundations of plant SynBio, including genome editing and transformation methods, and examines their integration into engineered systems. Applications, such as biofuel production, pharmaceutical biosynthesis, and agricultural innovation, are highlighted, along with their ethical, technical, and regulatory challenges. Ultimately, SynBio could offer a transformative path toward sustainable solutions, provided it continues to align technological advances with public interest and global sustainability goals. Full article
Show Figures

Figure 1

Back to TopTop