Plant Transformation and Genome Editing for Precise Synthetic Biology Applications
Abstract
1. Introduction
2. The Principles and Progress of Synthetic Biology in Plant Systems
3. Rewriting the Code of Life Using Genome Editing in Synthetic Biology
CRISPR-Cas Systems
4. Targeted Delivery of Genome Editing Components
4.1. Harnessing the Natural Ability of Agrobacterium for Engineering Plant Genomes
4.2. Particle Bombardment as a Physical Approach to Plant Genetic Transformation
4.3. Other Transformation Methods
4.4. Cutting-Edge Tools, Such as in Planta and Viral Methods, for Plant Synthetic Biology
5. Integrating Genome Engineering and Transformation Within Plant SynBio Frameworks
6. SynBio Applications in Agriculture and Biotechnology
6.1. Biofuels and Bioproducts
6.2. Medicine and Therapeutics
6.3. Nutritional Enhancement (Biofortification)
6.4. Sustainable Agriculture
6.5. Novel Traits and Systems
7. Limitations
7.1. Technical Constraints
7.2. Genome Editing Challenges
7.3. Standardization Deficits
7.4. Regulatory and Societal Hurdles
7.5. Scalability and Predictability
8. Challenges, Innovations, and Future Directions in the Field of SynBio
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, X.; Liu, X.; Liu, T.; Wang, Y.; Ahmed, N.; Li, Z.; Jiang, H. Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. Plant Commun. 2021, 2, 100229. [Google Scholar] [CrossRef]
- Su, W.; Xu, M.; Radani, Y.; Yang, L. Technological development and application of plant genetic transformation. Int. J. Mol. Sci. 2023, 24, 10646. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhu, X.; Yu, Y.; Li, C.; Zhang, Z.; Wang, F. Nanotechnology Strategies for Plant Genetic Engineering. Adv. Mater. 2022, 34, e2106945. [Google Scholar] [CrossRef] [PubMed]
- Jores, T.; Tonnies, J.; Wrightsman, T.; Buckler, E.S.; Cuperus, J.T.; Fields, S.; Queitsch, C. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nat. Plants 2021, 7, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Weiss, T.; Kamalu, M.; Shi, H.; Li, Z.; Amerasekera, J.; Zhong, Z.; Adler, B.A.; Song, M.M.; Vohra, K.; Wirnowski, G.; et al. Viral delivery of an RNA-guided genome editor for transgene-free germline editing in Arabidopsis. Nat. Plants 2025, 11, 967–976. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Gao, X.D.; Podracky, C.J.; Nelson, A.T.; Koblan, L.W.; Raguram, A.; Levy, J.M.; Mercer, J.A.M.; Liu, D.R. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 2022, 40, 731–740. [Google Scholar] [CrossRef]
- Nguyen, C.X.; Nguyen, T.D.; Dinh, T.T.; Nguyen, L.T.; Ly, L.K.; Chu, H.H.; La, T.C.; Do, P.T. Prime editing via precise sequence insertion restores function of the recessive rc allele in rice. Plant Cell Rep. 2025, 44, 57. [Google Scholar] [CrossRef]
- Kelly, G.; Plesser, E.; Bdolach, E.; Arroyave, M.; Belausov, E.; Doron-Faigenboim, A.; Rozen, A.; Zemach, H.; Zach, Y.Y.; Goldenberg, L.; et al. In planta genome editing in citrus facilitated by co-expression of CRISPR/Cas and developmental regulators. Plant J. 2025, 122, e70155. [Google Scholar] [CrossRef]
- Sharma, P.; Lew, T.T.S. Principles of Nanoparticle Design for Genome Editing in Plants. Front. Genome Ed. 2022, 4, 846624. [Google Scholar] [CrossRef]
- Cao, H.X.; Wang, W.; Le, H.T.; Vu, G.T. The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding. Int. J. Genom. 2016, 2016, 5078796. [Google Scholar] [CrossRef]
- Rizzo, P.; Chavez, B.G.; Dias, S.L.; D’Auria, J.C. Plant synthetic biology: From inspiration to augmentation. Curr. Opin. Biotechnol. 2023, 79, 102857. [Google Scholar] [CrossRef] [PubMed]
- Joshi, J.; Hanson, A.D. A pilot oral history of plant synthetic biology. Plant Physiol. 2024, 195, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Z.; Rawat, S.; Wang, L.; Cao, P.; Zhao, L. Plant chassis for synthetic biology and its application in biomanufacturing. Front. Plant Sci. 2024, 15, 1460378. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.G.; De Mey, M.; Giaw Lim, C.; Kumaran Ajikumar, P.; Stephanopoulos, G. The future of metabolic engineering and synthetic biology: Towards a systematic practice. Metab. Eng. 2012, 14, 233–241. [Google Scholar] [CrossRef]
- Hanczyc, M.M. Engineering Life: A Review of Synthetic Biology. Artif. Life 2020, 26, 260–273. [Google Scholar] [CrossRef]
- Atkinson, M.R.; Savageau, M.A.; Myers, J.T.; Ninfa, A.J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 2003, 113, 597–607. [Google Scholar] [CrossRef]
- Pouvreau, B.; Vanhercke, T.; Singh, S. From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle. Plant Sci. 2018, 273, 3–12. [Google Scholar] [CrossRef]
- Kitano, S.; Lin, C.; Foo, J.L.; Chang, M.W. Synthetic biology: Learning the way toward high-precision biological design. PLoS Biol. 2023, 21, e3002116. [Google Scholar] [CrossRef]
- Cameron, D.E.; Bashor, C.J.; Collins, J.J. A brief history of synthetic biology. Nat. Rev. Microbiol. 2014, 12, 381–390. [Google Scholar] [CrossRef]
- Church, G.M.; Elowitz, M.B.; Smolke, C.D.; Voigt, C.A.; Weiss, R. Realizing the potential of synthetic biology. Nat. Rev. Mol. Cell Biol. 2014, 15, 289–294. [Google Scholar] [CrossRef]
- Rollié, S.; Mangold, M.; Sundmacher, K. Designing biological systems: Systems Engineering meets Synthetic Biology. Chem. Eng. Sci. 2012, 69, 1–29. [Google Scholar] [CrossRef]
- Endy, D. Foundations for engineering biology. Nature 2005, 438, 449–453. [Google Scholar] [CrossRef]
- Sprinzak, D.; Elowitz, M.B. Reconstruction of genetic circuits. Nature 2005, 438, 443–448. [Google Scholar] [CrossRef]
- Shetty, R.P.; Endy, D.; Knight, T.F. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2008, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- de Lorenzo, V. Beware of metaphors: Chasses and orthogonality in synthetic biology. Bioeng. Bugs 2011, 2, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Gharat, S.A.; Tamhane, V.A.; Giri, A.P.; Aharoni, A. Navigating the challenges of engineering composite specialized metabolite pathways in plants. Plant J. 2025, 121, e70100. [Google Scholar] [CrossRef] [PubMed]
- Sator, C.; Lico, C.; Pannucci, E.; Marchetti, L.; Baschieri, S.; Warzecha, H.; Santi, L. Plant-Produced Viral Nanoparticles as a Functionalized Catalytic Support for Metabolic Engineering. Plants 2024, 13, 503. [Google Scholar] [CrossRef]
- Liu, D.; Ellison, E.E.; Myers, E.A.; Donahue, L.I.; Xuan, S.; Swanson, R.; Qi, S.; Prichard, L.E.; Starker, C.G.; Voytas, D.F. Heritable gene editing in tomato through viral delivery of isopentenyl transferase and single-guide RNAs to latent axillary meristematic cells. Proc. Natl. Acad. Sci. USA 2024, 121, e2406486121. [Google Scholar] [CrossRef]
- Danchin, A. Scaling up synthetic biology: Do not forget the chassis. FEBS Lett. 2012, 586, 2129–2137. [Google Scholar] [CrossRef]
- Davies, J.A. Real-World Synthetic Biology: Is It Founded on an Engineering Approach, and Should It Be? Life 2019, 9, 6. [Google Scholar] [CrossRef]
- Mortimer, J.C. Plant synthetic biology could drive a revolution in biofuels and medicine. Exp. Biol. Med. 2019, 244, 323–331. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.A.; Wright, D.A.; Winfrey, R.J.; Fu, F.; Maeder, M.L.; Joung, J.K.; Voytas, D.F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 2009, 459, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, B.; Spalding, M.H.; Weeks, D.P.; Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 2012, 30, 390–392. [Google Scholar] [CrossRef]
- Malzahn, A.; Lowder, L.; Qi, Y. Plant genome editing with TALEN and CRISPR. Cell Biosci. 2017, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Kleinstiver, B.P.; Prew, M.S.; Tsai, S.Q.; Topkar, V.V.; Nguyen, N.T.; Zheng, Z.; Gonzales, A.P.W.; Li, Z.; Peterson, R.T.; Yeh, J.-R.J.; et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015, 523, 481–485. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Lin, C.-Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 2013, 154, 1380–1389. [Google Scholar] [CrossRef]
- Wu, X.; Scott, D.A.; Kriz, A.J.; Chiu, A.C.; Hsu, P.D.; Dadon, D.B.; Cheng, A.W.; Trevino, A.E.; Konermann, S.; Chen, S.; et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 2014, 32, 670–676. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Q.; Zhu, Q.; Liu, W.; Chen, Y.; Qiu, R.; Wang, B.; Yang, Z.; Li, H.; Lin, Y. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 2015, 8, 1274–1284. [Google Scholar] [CrossRef]
- Bibikova, M.; Carroll, D.; Segal, D.J.; Trautman, J.K.; Smith, J.; Kim, Y.-G.; Chandrasegaran, S. Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases. Mol. Cell. Biol. 2001, 21, 289–297. [Google Scholar] [CrossRef]
- Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 1996, 93, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.; Cermak, T.; Doyle, E.L.; Schmidt, C.; Zhang, F.; Hummel, A.; Bogdanove, A.J.; Voytas, D.F. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics 2010, 186, 757–761. [Google Scholar] [CrossRef]
- Boch, J.; Scholze, H.; Schornack, S.; Landgraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science 2009, 326, 1509–1512. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Janga, M.R.; Campbell, L.M.; Rathore, K.S. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol. Biol. 2017, 94, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Janga, M.R.; Pandeya, D.; Campbell, L.M.; Konganti, K.; Villafuerte, S.T.; Puckhaber, L.; Pepper, A.; Stipanovic, R.D.; Scheffler, J.A.; Rathore, K.S. Genes regulating gland development in the cotton plant. Plant Biotechnol. J. 2019, 17, 1142–1153. [Google Scholar] [CrossRef] [PubMed]
- Svitashev, S.; Young, J.K.; Schwartz, C.; Gao, H.; Falco, S.C.; Cigan, A.M. Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiol. 2015, 169, 931–945. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Kabadi, A.M.; Ousterout, D.G.; Hilton, I.B.; Gersbach, C.A. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic. Acids. Res. 2014, 42, e147. [Google Scholar] [CrossRef]
- Abdallah, N.A.; Elsharawy, H.; Abulela, H.A.; Thilmony, R.; Abdelhadi, A.A.; Elarabi, N.I. Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crop. Food 2025, 16, 1–17. [Google Scholar] [CrossRef]
- Čermák, T.; Curtin, S.J.; Gil-Humanes, J.; Čegan, R.; Kono, T.J.; Konečná, E.; Belanto, J.J.; Starker, C.G.; Mathre, J.W.; Greenstein, R.L. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 2017, 29, 1196–1217. [Google Scholar] [CrossRef]
- Altpeter, F.; Springer, N.M.; Bartley, L.E.; Blechl, A.E.; Brutnell, T.P.; Citovsky, V.; Conrad, L.J.; Gelvin, S.B.; Jackson, D.P.; Kausch, A.P.; et al. Advancing Crop Transformation in the Era of Genome Editing. Plant Cell 2016, 28, 1510–1520. [Google Scholar] [CrossRef]
- Gelvin, S.B. Agrobacterium-mediated plant transformation: The biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 2003, 67, 16–37. [Google Scholar] [CrossRef]
- Sanford, J.C. The development of the biolistic process. Vitr. Cell. Dev. Biol.-Plant 2000, 36, 303–308. [Google Scholar] [CrossRef]
- Woo, J.W.; Kim, J.; Kwon, S.I.; Corvalán, C.; Cho, S.W.; Kim, H.; Kim, S.-G.; Kim, S.-T.; Choe, S.; Kim, J.-S. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 2015, 33, 1162–1164. [Google Scholar] [CrossRef]
- Demirer, G.S.; Zhang, H.; Goh, N.S.; González-Grandío, E.; Landry, M.P. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants. Nat. Protoc. 2019, 14, 2954–2971. [Google Scholar] [CrossRef]
- Ellison, E.E.; Nagalakshmi, U.; Gamo, M.E.; Huang, P.-j.; Dinesh-Kumar, S.; Voytas, D.F. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 2020, 6, 620–624. [Google Scholar] [CrossRef]
- Herrera-Estrella, L.; Depicker, A.; Van Montagu, M.; Schell, J. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 1983, 303, 209–213. [Google Scholar] [CrossRef]
- Klein, T.M.; Wolf, E.D.; Wu, R.; Sanford, J.C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987, 327, 70–73. [Google Scholar] [CrossRef]
- Fromm, M.; Taylor, L.P.; Walbot, V. Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA 1985, 82, 5824–5828. [Google Scholar] [CrossRef]
- Lawrence, W.; Davies, D. A method for the microinjection and culture of protoplasts at very low densities. Plant Cell Rep. 1985, 4, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Kaeppler, H.F.; Gu, W.; Somers, D.A.; Rines, H.W.; Cockburn, A.F. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 1990, 9, 415–418. [Google Scholar] [CrossRef]
- Zhou, G.-y.; Weng, J.; Zeng, Y.; Huang, J.; Qian, S.; Liu, G. Introduction of exogenous DNA into cotton embryos. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1983; Volume 101, pp. 433–481. [Google Scholar]
- Torney, F.; Trewyn, B.G.; Lin, V.S.Y.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2007, 2, 295–300. [Google Scholar] [CrossRef]
- Gronenborn, B.; Gardner, R.C.; Schaefer, S.; Shepherd, R.J. Propagation of foreign DNA in plants using cauliflower mosaic virus as vector. Nature 1981, 294, 773–776. [Google Scholar] [CrossRef]
- Chilton, M.-D.; Tepfer, D.A.; Petit, A.; David, C.; Casse-Delbart, F.; Tempé, J. Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 1982, 295, 432–434. [Google Scholar] [CrossRef]
- Birch, R.G. PLANT TRANSFORMATION: Problems and Strategies for Practical Application. Annu. Rev. Plant Biol. 1997, 48, 297–326. [Google Scholar] [CrossRef]
- Frame, B.R.; Drayton, P.R.; Bagnall, S.V.; Lewnau, C.J.; Bullock, W.P.; Wilson, H.M.; Dunwell, J.M.; Thompson, J.A.; Wang, K. Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J. 1994, 6, 941–948. [Google Scholar] [CrossRef]
- Kaur, R.P.; Devi, S. In planta transformation in plants: A review. Agric. Rev. 2019, 40, 159–174. [Google Scholar] [CrossRef]
- McCabe, D.E.; Swain, W.F.; Martinell, B.J.; Christou, P. Stable Transformation of Soybean (Glycine Max) by Particle Acceleration. Bio/Technol. 1988, 6, 923–926. [Google Scholar] [CrossRef]
- Cunningham, F.J.; Goh, N.S.; Demirer, G.S.; Matos, J.L.; Landry, M.P. Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering. Trends Biotechnol. 2018, 36, 882–897. [Google Scholar] [CrossRef]
- Irigoyen, S.; Ramasamy, M.; Pant, S.; Niraula, P.; Bedre, R.; Gurung, M.; Rossi, D.; Laughlin, C.; Gorman, Z.; Achor, D.; et al. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus liberibacter spp. Nat. Commun. 2020, 11, 5802. [Google Scholar] [CrossRef]
- Ramasamy, M.; Dominguez, M.M.; Irigoyen, S.; Padilla, C.S.; Mandadi, K.K. Rhizobium rhizogenes-mediated hairy root induction and plant regeneration for bioengineering citrus. Plant Biotechnol. J. 2023, 21, 1728–1730. [Google Scholar] [CrossRef] [PubMed]
- Montecillo, J.A.V.; Chu, L.L.; Bae, H. CRISPR-Cas9 system for plant genome editing: Current approaches and emerging developments. Agronomy 2020, 10, 1033. [Google Scholar] [CrossRef]
- Mei, G.; Chen, A.; Wang, Y.; Li, S.; Wu, M.; Hu, Y.; Liu, X.; Hou, X. A simple and efficient in planta transformation method based on the active regeneration capacity of plants. Plant Commun. 2024, 5, 100822. [Google Scholar] [CrossRef] [PubMed]
- Anami, S.; Njuguna, E.; Coussens, G.; Aesaert, S.; Van Lijsebettens, M. Higher plant transformation: Principles and molecular tools. Int. J. Dev. Biol. 2013, 57, 483–494. [Google Scholar] [CrossRef]
- Luo, Z.-x.; Wu, R. A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol. Biol. Rep. 1989, 7, 69–77. [Google Scholar] [CrossRef]
- Nakamura, A.; Yano, T.; Mitsuda, N.; Furubayashi, M.; Ito, S.; Sugano, S.S.; Terakawa, T. The sonication-assisted whisker method enables CRISPR-Cas9 ribonucleoprotein delivery to induce genome editing in rice. Sci. Rep. 2023, 13, 14205. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef]
- Allocca, M.; Doria, M.; Petrillo, M.; Colella, P.; Garcia-Hoyos, M.; Gibbs, D.; Kim, S.R.; Maguire, A.; Rex, T.S.; Di Vicino, U. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J. Clin. Investig. 2008, 118, 1955–1964. [Google Scholar] [CrossRef]
- Labbé, R.P.; Vessillier, S.; Rafiq, Q.A. Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives. Viruses 2021, 13, 1528. [Google Scholar] [CrossRef]
- Khan, M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers 2024, 16, 2629. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Qin, Y.Y.; Wei, N.N.; Xue, H.Y.; Dai, W.S. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation in citrus seeds and its application in gene functional analysis. Front. Plant Sci. 2023, 14, 1293374. [Google Scholar] [CrossRef] [PubMed]
- Gelvin, S.B. Integration of Agrobacterium T-DNA into the plant genome. Annu. Rev. Genet. 2017, 51, 195–217. [Google Scholar] [CrossRef]
- Gelvin, S.B. Plant DNA repair and Agrobacterium T− DNA integration. Int. J. Mol. Sci. 2021, 22, 8458. [Google Scholar] [CrossRef]
- Hwang, H.-H.; Wang, C.-H.; Chen, H.-H.; Ho, J.-F.; Chi, S.-F.; Huang, F.-C.; Yen, H.E. Effective Agrobacterium-mediated transformation protocols for callus and roots of halophyte ice plant (Mesembryanthemum crystallinum). Bot. Stud. 2019, 60, 1. [Google Scholar] [CrossRef] [PubMed]
- Christou, P. Genetic transformation of crop plants using microprojectile bombardment. Plant J. 1992, 2, 275–281. [Google Scholar] [CrossRef]
- Craig, W.; Gargano, D.; Scotti, N.; Nguyen, T.; Lao, N.; Kavanagh, T.; Dix, P.; Cardi, T. Direct gene transfer in potato: A comparison of particle bombardment of leaf explants and PEG-mediated transformation of protoplasts. Plant Cell Rep. 2005, 24, 603–611. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Yucebilgili Kurtoglu, K. Particle bombardment technology and its applications in plants. Mol. Biol. Rep. 2020, 47, 9831–9847. [Google Scholar] [CrossRef]
- Das, A.; Gupta, P.; Chakraborty, D. Physical methods of gene transfer: Kinetics of gene delivery into cells: A Review. Agric. Rev. 2015, 36, 61–66. [Google Scholar] [CrossRef]
- Xu, N.; Kang, M.; Zobrist, J.D.; Wang, K.; Fei, S.Z. Genetic Transformation of Recalcitrant Upland Switchgrass Using Morphogenic Genes. Front. Plant Sci. 2021, 12, 781565. [Google Scholar] [CrossRef]
- Lowe, K.; Wu, E.; Wang, N.; Hoerster, G.; Hastings, C.; Cho, M.J.; Scelonge, C.; Lenderts, B.; Chamberlin, M.; Cushatt, J.; et al. Morphogenic Regulators Baby boom and Wuschel Improve Monocot Transformation. Plant Cell 2016, 28, 1998–2015. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gallagher, J.; Arevalo, E.D.; Chen, R.; Skopelitis, T.; Wu, Q.; Bartlett, M.; Jackson, D. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat. Plants 2021, 7, 287–294. [Google Scholar] [CrossRef]
- Awan, M.J.A.; Farooq, M.A.; Buzdar, M.I.; Zia, A.; Ehsan, A.; Waqas, M.A.B.; Hensel, G.; Amin, I.; Mansoor, S. Advances in gene editing-led route for hybrid breeding in crops. Biotechnol. Adv. 2025, 81, 108569. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Himmel, M.E.; Ding, S.-Y. Visualizing chemical functionality in plant cell walls. Biotechnol. Biofuels 2017, 10, 263. [Google Scholar] [CrossRef]
- Bohmert-Tatarev, K.; McAvoy, S.; Daughtry, S.; Peoples, O.P.; Snell, K.D. High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol. 2011, 155, 1690–1708. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, P.; Park, S.; Melis, A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 2010, 12, 70–79. [Google Scholar] [CrossRef]
- Atsumi, S.; Higashide, W.; Liao, J.C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 2009, 27, 1177–1180. [Google Scholar] [CrossRef]
- Sharma, P.; Aggarwal, P.; Kaur, A. Biofortification: A new approach to eradicate hidden hunger. Food Rev. Int. 2017, 33, 1–21. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, B.; Tan, J.; Liu, T.; Li, L.; Liu, Y.-G. Plant Synthetic Metabolic Engineering for Enhancing Crop Nutritional Quality. Plant Commun. 2020, 1, 100017. [Google Scholar] [CrossRef]
- Zhu, Q.; Zeng, D.; Yu, S.; Cui, C.; Li, J.; Li, H.; Chen, J.; Zhang, R.; Zhao, X.; Chen, L. From golden rice to aSTARice: Bioengineering astaxanthin biosynthesis in rice endosperm. Mol. Plant 2018, 11, 1440–1448. [Google Scholar] [CrossRef]
- Jagadeesh Chandra Bose, K.; Kaur, S.; Sharma, S.; Sarwan, J.; Uddin, N. Methods from the Field of Synthetic Biology that Aim to Improve Plant Growth and Resistance to Stress through the Use of Genetic Engineering. In Metabolomics, Proteomics and Gene Editing Approaches in Biofertilizer Industry; Springer: Berlin/Heidelberg, Germany, 2024; Volume II, pp. 99–121. [Google Scholar]
- Ke, J.; Wang, B.; Yoshikuni, Y. Microbiome engineering: Synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol. 2021, 39, 244–261. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Deng, Z.; Liu, H.; Ji, X. Current Advancement and Future Prospects in Simplified Transformation-Based Plant Genome Editing. Plants 2025, 14, 889. [Google Scholar] [CrossRef] [PubMed]
- Venezia, M.; Creasey Krainer, K.M. Current Advancements and Limitations of Gene Editing in Orphan Crops. Front. Plant Sci. 2021, 12, 742932. [Google Scholar] [CrossRef]
- Tian, C.; Li, J.; Wu, Y.; Wang, G.; Zhang, Y.; Zhang, X.; Sun, Y.; Wang, Y. An integrative database and its application for plant synthetic biology research. Plant Commun. 2024, 5, 100827. [Google Scholar] [CrossRef]
- Ahmad, A.; Jamil, A.; Munawar, N. GMOs or non-GMOs? The CRISPR Conundrum. Front. Plant Sci. 2023, 14, 2938. [Google Scholar] [CrossRef]
- McCarthy, D.M.; Medford, J.I. Quantitative and Predictive Genetic Parts for Plant Synthetic Biology. Front. Plant Sci. 2020, 11, 512526. [Google Scholar] [CrossRef]
- Maher, M.F.; Nasti, R.A.; Vollbrecht, M.; Starker, C.G.; Clark, M.D.; Voytas, D.F. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 2020, 38, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Chao, R.; Mishra, S.; Si, T.; Zhao, H. Engineering biological systems using automated biofoundries. Metab. Eng. 2017, 42, 98–108. [Google Scholar] [CrossRef]
- Wang, X.; Xu, K.; Huang, Z.; Lin, Y.; Zhou, J.; Zhou, L.; Ma, F. Accelerating promoter identification and design by deep learning. Trends Biotechnol. 2025, in press. [CrossRef]
- Murmu, S.; Sinha, D.; Chaurasia, H.; Sharma, S.; Das, R.; Jha, G.K.; Archak, S. A review of artificial intelligence-assisted omics techniques in plant defense: Current trends and future directions. Front. Plant Sci. 2024, 15, 1292054. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, F.; Wang, F.; Le, L.; Pu, L. Synthetic biology and artificial intelligence in crop improvement. Plant Commun. 2024, 6, 101220. [Google Scholar] [CrossRef] [PubMed]
Feature | ZFNs | TALENs | CRISPR-Cas9 |
---|---|---|---|
Origin | Artificial, based on zinc-finger domains + FokI. | TALE proteins from Xanthomonas + FokI. | Bacterial adaptive immune system (Streptococcus pyogenes). |
DNA Recognition Mechanism | Zinc-finger domains recognize triplet nucleotides. | TALE repeats recognize single nucleotides. | sgRNA base pairs with DNA target. |
Targeting Design | Complex, labor-intensive protein engineering required. | Modular and easier than ZFNs. | Simple; change sgRNA sequence. |
Nuclease Domain | FokI (requires dimerization). | FokI (requires dimerization). | Cas9 (cleaves directly as a single unit). |
PAM Requirement | No strict PAM, but binding context-dependent. | No strict PAM, but spacer length is critical. | Yes, PAM required (e.g., NGG for SpCas9). |
Multiplexing Capability | Limited. | Limited. | High (multiple sgRNAs can guide one Cas9). |
Specificity | High, but off-target risk exists. | High; more predictable than ZFNs. | Good, but off-targets can occur without careful design. |
Delivery Challenges | Smaller size (~1 kb); easier to deliver. | Larger size (~3 kb); more difficult for vectors. | Medium; size ~4.2 kb for SpCas9; deliverable via viral/non-viral means. |
Ease of Use | Low (complex protein design). | Moderate (modular design). | High (RNA guided, programmable). |
Applications in Plants | Demonstrated (e.g., maize, rice, and soybean). | Widely used (e.g., Arabidopsis, tobacco, and rice). | Broad adoption across plant species. |
First Demonstrated | Late 1990s–early 2000s [36,37]. | Around 2010 [38,39]. | 2012 [40]. |
Method | Type | Advantages | Limitations | Size | Reference |
---|---|---|---|---|---|
Agrobacterium Mediated | Indirect (Biological) | Low copy number; high efficiency in some species; stable integration. | Genotype-specific; random integration. | ~150 kb | [53] |
Particle Bombardment | Direct (Physical) | Broad species range; useful for organelle transformation. | Tissue damage; random integration; costly equipment. | <10 kb | [2,67] |
Electroporation | Direct (Electrical) | Simultaneous DNA delivery to many cells; no vector needed. | Requires protoplasts; lower efficiency; potential cell damage. | ~10–20 | [2] |
Microinjection | Direct (Physical) | Precise DNA delivery to specific cells or nuclei. | Technically demanding; low efficiency. | ~50 kb | [68] |
Silicon Carbide Whiskers | Direct (Physical) | Simple, low-cost, no expensive equipment. | Low efficiency; potential cell toxicity. | Typically small, <10 kb | [2,62,69] |
Pollen Tube Pathway | Direct (Biological) | No tissue culture required; easy to perform. | Very low efficiency; species limited. | Typically small, <10 kb | [68] |
Nanoparticle Mediated | Direct (Chemical/Physical) | Low cytotoxicity; potential species versatility. | Emerging field; mechanism not fully understood. | 5–30 kb | [70] |
In Planta Methods | In planta (Biological) | Bypasses tissue culture; potentially genotype independent. | Still under development; species-specific performance. | Typically small, <10 kb | [71] |
Viral Vector Mediated | Indirect (Biological) | High expression levels; transient delivery; useful for gene function studies. | Limited to transient expression; germline exclusion. | ~10 kb | [72,73,74] |
Hairy-Root Transformation | Indirect (Biological) | High transformation efficiency; rapid high-density root growth; robust secondary metabolite production. | Only roots; non-heritable. | ~150 kb | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kambampati, S.; Verma, P.K.; Janga, M.R. Plant Transformation and Genome Editing for Precise Synthetic Biology Applications. SynBio 2025, 3, 9. https://doi.org/10.3390/synbio3030009
Kambampati S, Verma PK, Janga MR. Plant Transformation and Genome Editing for Precise Synthetic Biology Applications. SynBio. 2025; 3(3):9. https://doi.org/10.3390/synbio3030009
Chicago/Turabian StyleKambampati, Sharathchandra, Pankaj K. Verma, and Madhusudhana R. Janga. 2025. "Plant Transformation and Genome Editing for Precise Synthetic Biology Applications" SynBio 3, no. 3: 9. https://doi.org/10.3390/synbio3030009
APA StyleKambampati, S., Verma, P. K., & Janga, M. R. (2025). Plant Transformation and Genome Editing for Precise Synthetic Biology Applications. SynBio, 3(3), 9. https://doi.org/10.3390/synbio3030009