Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (552)

Search Parameters:
Keywords = leaf thickness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2613 KiB  
Article
Lingonberry Leaves Modify Rumen Protozoa Population, Carbohydrate Digestion, and Morphology of Gastrointestinal Tract in Sheep: A Preliminary Study
by Małgorzata P. Majewska, Renata Miltko, Grzegorz Bełżecki, Marcin Barszcz, Misza Kinsner and Barbara Kowalik
Molecules 2025, 30(15), 3161; https://doi.org/10.3390/molecules30153161 - 29 Jul 2025
Viewed by 176
Abstract
Leaves, the main by-product of lingonberry harvesting, can be effectively used as a functional feed additive due to their health-promoting properties. This study evaluated the effects of lingonberry leaf (LL) supplementation on rumen fermentation, protozoal populations, and gastrointestinal morphology in sheep. Eight one-year-old [...] Read more.
Leaves, the main by-product of lingonberry harvesting, can be effectively used as a functional feed additive due to their health-promoting properties. This study evaluated the effects of lingonberry leaf (LL) supplementation on rumen fermentation, protozoal populations, and gastrointestinal morphology in sheep. Eight one-year-old Polish Mountain Sheep ewes (mean body weight: 33 kg) were allocated to a control (basal diet; forage-to-concentrate ratio 60:40) or an experimental group (basal diet + 9.30 g/kg DM dried LLs) in a completely randomised design (n = 4 per group) over 34 days. Both diets were formulated to be isoenergetic and isonitrogenous. LL additive significantly reduced Isotrichidae protozoal counts (p < 0.001) and ruminal pectinolytic activity (p = 0.043), without altering short-chain fatty acid (SCFA) or methane concentrations (p > 0.1). Histological analyses showed increased ruminal papilla width and surface area (p < 0.001) and decreased duodenal villus height and muscular layer thickness (p < 0.01). Inflammatory lesions (reddish foci) were identified in the liver in both groups. These findings demonstrate that LL supplementation affected specific protozoal population, fibrolytic activity, and gastrointestinal morphology. Further study on a larger number of animals is recommended to validate the effects and assess the safety and efficacy of LLs as a dietary additive in ruminant nutrition. Full article
(This article belongs to the Special Issue Health Benefits and Applications of Bioactive Phenolic Compounds)
Show Figures

Graphical abstract

17 pages, 1941 KiB  
Article
Blue–Red LED Light Modulates Morphophysiological and Metabolic Responses in the Medicinal Plant Nepeta nuda
by Miroslava Zhiponova, Grigor Zehirov, Krasimir Rusanov, Mila Rusanova, Miroslava Stefanova, Tsveta Ganeva, Momchil Paunov, Valentina Ganeva, Kiril Mishev, Petre I. Dobrev, Roberta Vaculíková, Václav Motyka, Zhenya Yordanova, Ganka Chaneva and Valya Vassileva
Plants 2025, 14(15), 2285; https://doi.org/10.3390/plants14152285 - 24 Jul 2025
Viewed by 297
Abstract
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda [...] Read more.
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda L.) grown under controlled in vitro conditions. White light (W) was used as a control and compared with two blue–red intensities: BR (high-intensity blue–red light) and BRS (low-intensity blue–red light or “BR with shadow”). BR-treated plants showed increased leaf area, mesophyll thickness, biomass and starch content but reduced levels of plastid pigments. BR also modified the oxidative state of plants by inducing lipid peroxidation while simultaneously activating ROS scavenging mechanisms and enhancing phenolic antioxidants. Interestingly, BR decreased the accumulation of the Nepeta sp.-specific iridoid, nepetalactone. These effects appear to be regulated by the phytohormones auxin, abscisic acid and jasmonates. BRS treatment produced effects similar to the W control but led to increased plant height and reduced leaf area and thickness. Both BR and BRS regimes induced the accumulation of proteins and amino acids. We conclude that blue–red light can enhance the survival capacity of micropropagated N. nuda during subsequent soil adaptation, suggesting that similar light pre-treatment could improve plant performance under stress conditions. Full article
Show Figures

Figure 1

19 pages, 2402 KiB  
Article
Wound Healing Effects of New Cream Formulations with Herbal Ingredients
by Derya Algül, Ertuğrul Kılıç, Ferda Özkan and Yasemin Yağan Uzuner
Pharmaceutics 2025, 17(7), 941; https://doi.org/10.3390/pharmaceutics17070941 - 21 Jul 2025
Viewed by 434
Abstract
Aim: To prepare two different kinds of wound care creams containing plant extracts and examine their effectiveness in comparison with a placebo cream and a commercial wound care cream, Madecassol®. Methods: The two cream formulations were developed using the [...] Read more.
Aim: To prepare two different kinds of wound care creams containing plant extracts and examine their effectiveness in comparison with a placebo cream and a commercial wound care cream, Madecassol®. Methods: The two cream formulations were developed using the same placebo cream (PC) as base cream. One formulation contained balsam of oriental sweet gum, or Levant storax, named as Levant Storax Cream (LSC); the other contained oil of Calendula, extract of St. John’s Wort, aescin (an extract of horse chestnut), and freeze-dried powder from Aloe vera (L.) Burm. f. leaf juice, designated as Complex Cream (CC). In the characterization of the creams, organoleptic properties, pH, viscosity, size distribution, and zeta potential of oil globules were measured. Furthermore, the stability of the creams was assessed under different environmental conditions. In vitro studies were performed by using an excisional wound model in rats to assess the potential of the creams for stimulating wound healing. The efficacy of LSC and CC was compared with a commercial reference cream, Madecassol® (M), and the placebo control. The study was also designed with a negative control group of rats that were not treated but handled the same way as the other treatment groups. The wound contraction rate, total skin thickness recovery, and results of histopathological parameter examinations were used to compare the effectiveness of the treatments. Results: The stability of formulated creams confirmed that they were stable for the duration of the study. In vivo studies showed that rats treated with LSC achieved the highest wound healing rates when compared with the other groups. A better response was recorded for the CC-treated population when compared to both control and placebo groups, but there was no significant difference seen in healing score between CC and M groups. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

15 pages, 2201 KiB  
Article
Shading Effects on the Growth and Physiology of Endangered Hopea hainanensis Merr. & Chun Seedlings
by Chuanteng Huang, Ling Lin, Feifei Chen, Xuefeng Wang, Mengmeng Shi, Lin Chen, Xiaoli Yang, Xiaona Dong and Mengwen Zhang
Forests 2025, 16(7), 1193; https://doi.org/10.3390/f16071193 - 19 Jul 2025
Viewed by 250
Abstract
To determine optimal light conditions for Hopea hainanensis Merr. & Chun seedling growth, this study examined growth and physiological parameters under four shading treatments (0%, 30%, 60%, and 90% irradiance reduction) over 12 months. Shading significantly affected the growth adaptability of seedlings. As [...] Read more.
To determine optimal light conditions for Hopea hainanensis Merr. & Chun seedling growth, this study examined growth and physiological parameters under four shading treatments (0%, 30%, 60%, and 90% irradiance reduction) over 12 months. Shading significantly affected the growth adaptability of seedlings. As shading increased, height, leaf traits (area, length, width), and light saturation point all initially increased, peaked at 30% shading, and then decreased. Conversely, basal diameter, leaf thickness, the maximum net photosynthetic rate, net photosynthetic rate, photosynthetic quantum efficiency, transpiration rate, and stomatal conductance progressively declined as shading increased. Biomass accumulation (in stems and roots), dark respiration rate, and light compensation point exhibited a U-shaped response to shading, being minimized under low or moderate shading. All shading treatments significantly reduced biomass and photosynthetic performance compared to controls. Multivariate analysis identified 0%–30% shading as optimal for cultivation, with 30% shading enhancing photomorphogenic responses while maintaining photosynthetic efficiency. The study findings suggest a novel seedling cultivation protocol for nursery use, in which initial establishment occurs under 30% shading to maximize vertical elongation, followed by the progressive reduction in shading to stimulate radial growth and optimal biomass partitioning. This approach mimics natural canopy gap dynamics, effectively mimicking natural regeneration in tropical rainforest ecosystems. Full article
(This article belongs to the Special Issue Physiological Mechanisms of Plant Responses to Environmental Stress)
Show Figures

Figure 1

16 pages, 1665 KiB  
Article
Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil
by Brenda Rivas-Aratoma, Wendy E. Pérez, Luis Felipe Ortiz-Dongo, Yuri Arévalo-Aranda and Richard Solórzano-Acosta
Appl. Sci. 2025, 15(14), 8041; https://doi.org/10.3390/app15148041 - 19 Jul 2025
Viewed by 363
Abstract
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative [...] Read more.
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative effects of two organic amendments—vermicompost leachate and biochar—on the performance of popcorn maize (Zea mays L. var. everta) cultivated in saline soil conditions. Four treatments were evaluated: T0 (Control), T1 (Vermicompost leachate), T2 (Biochar), and T3 (Vermicompost leachate + Biochar), each with 10 replicates arranged in a Completely Randomized Design (CRD). Although various soil physicochemical, microbiological, and agronomic parameters displayed no significant differences compared to the control, the application of biochar resulted in considerable improvements in soil total organic carbon, the microbial community (mesophilic aerobic bacteria, molds, and yeasts), and increased seed length and diameter. In contrast, vermicompost leachate alone negatively impacted plant growth, leading to decreases in leaf area, stem thickness, and grain yield. Specifically, grain yield declined by 46% with leachate alone and by 31% when combined with biochar, compared to the control. These findings emphasize the superior effectiveness of biochar over vermicompost leachate as a soil amendment under saline conditions and highlight the potential risks of widely applying compost teas in stressed soils. It is recommended to conduct site-specific assessments and screenings for phytotoxins and phytopathogens prior to use. Additionally, the combined application of leachate and biochar may not be advisable given the tested soil characteristics. Full article
Show Figures

Figure 1

22 pages, 2291 KiB  
Article
The Effects of Soil Cover Thickness on Leaf Functional Traits of Vine Plants in Mining Areas Depend on Soil Enzyme Activities and Nutrient Cycling
by Ren Liu, Yun Sun, Zongming Cai, Ping He, Yunxia Song, Longhua Yu, Huacong Zhang and Yueqiao Li
Plants 2025, 14(14), 2225; https://doi.org/10.3390/plants14142225 - 18 Jul 2025
Viewed by 293
Abstract
Understanding the interplay between plant leaf functional traits and plant and soil factors under different soil thicknesses is significant for quantifying the interaction between plant growth and the environment. However, in the context of ecological restoration of vegetation in mining areas, there has [...] Read more.
Understanding the interplay between plant leaf functional traits and plant and soil factors under different soil thicknesses is significant for quantifying the interaction between plant growth and the environment. However, in the context of ecological restoration of vegetation in mining areas, there has been a lot of research on trees, shrubs, and grasses, but the characteristics and correlations of leaf functional traits of vines have not been fully studied to a large extent. Here, we report the differences in leaf functional traits of six vine plants (Parthenocissus quinquefolia, Pueraria lobata, Hedera nepalensis, Campsis grandiflora, Mucuna sempervirens, and Parthenocissus tricuspidata) with distinct growth forms in different soil cover thicknesses (20 cm, 40 cm, and 60 cm). In addition, soil factor indicators under different soil cover thicknesses were measured to elucidate the linkages between leaf functional traits of vine plants and soil factors. We found that P. lobata showed a resource acquisition strategy, while H. nepalensis demonstrated a resource conservation strategy. C. grandiflora and P. tricuspidata shifted toward more conservative resource allocation strategies as the soil cover thickness increased, whereas M. sempervirens showed the opposite trend. In the plant trait–trait relationships, there were synergistic associations between specific leaf area (SLA) and leaf nitrogen content (LNC); leaf moisture content (LMC) and leaf nitrogen-to-phosphorus ratio (LN/P); and leaf specific dry weight (LSW), leaf succulence degree (LSD), and leaf dry matter content (LDMC). Trade-offs were observed between SLA and LSW, LSD, and LDMC; between leaf phosphorus content (LPC) and LN/P; and between LMC, LSW, and LDMC. In the plant trait–environment relationships, soil nutrients (pH, soil total phosphorus content (STP), and soil ammonium nitrogen content (SAN)) and soil enzyme activities (cellulase (CB), leucine aminopeptidase (LAP), enzyme C/N activity ratio, and enzyme N/P activity ratio) were identified as the primary drivers of variation in leaf functional traits. Interestingly, nitrogen deficiency constrained the growth of vine plants in the mining area. Our study revealed that the responses of leaf functional traits of different vines under different soil thicknesses have significant species specificity, and each vine shows different resource acquisition and conservation strategies. Furthermore, soil cover thickness primarily influences plant functional traits by directly affecting soil enzyme activities and nutrients. However, the pathways through which soil thickness impacts these traits differ among various functional traits. Our findings provide a theoretical basis and practical reference for selecting vine plants and optimizing soil cover techniques for ecological restoration in mining areas. Full article
Show Figures

Graphical abstract

25 pages, 1781 KiB  
Article
Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry
by Hafsa El Horri, Susanna Bartolini, Damiano Remorini, Costanza Ceccanti, Marta Florio, Lorenzo D’Asaro, Gagandeep Jain, Rossano Massai, Marco Landi and Lucia Guidi
Agronomy 2025, 15(7), 1708; https://doi.org/10.3390/agronomy15071708 - 16 Jul 2025
Viewed by 370
Abstract
This study examined three innovative ‘light-converting films’ that convert green light (−23%) into red light (+8%; Red film), ultraviolet light (−80%) into blue light (+9%; Blue film), and green light (−5.7%) into red light (+4%; Pink film) but also ultraviolet light (−76%) into [...] Read more.
This study examined three innovative ‘light-converting films’ that convert green light (−23%) into red light (+8%; Red film), ultraviolet light (−80%) into blue light (+9%; Blue film), and green light (−5.7%) into red light (+4%; Pink film) but also ultraviolet light (−76%) into blue light (+5.6%; Pink film). These films were used for growing blueberry plants under cover under controlled tunnel conditions (27.3 ± 11.7 °C, 51.9 ± 21.6% RH). The use of Red film led to increases in the total plant biomass (+54.2%), and Red and Pink films enhanced the leaf thickness (+17.1% and +14.4%, respectively) as compared to the control (a transparent polyethylene film). No differences in the photosynthetic rate (Pn) were observed at the flowering stage, but a decrease (−25.9%) was observed in plants grown under the Pink film during the green fruit stage. The plants grown under Blue film boosted flower production, leading to +86.8% increase in the total yield. The Blue film improved the total phenolic content (+15.2%) in the fruit, and a +25.3% greater total antioxidant capacity was observed in fruit grown under Pink film. Freshly harvested blueberries were subjected to postharvest experiments (4 °C; in dark conditions; 90–95% RH). The results suggest the importance of Red film in enhancing plant biomass and Red and Blue films in improving fruit yield and maintaining nutraceutical postharvest quality in blueberry fruit. Full article
Show Figures

Figure 1

16 pages, 1286 KiB  
Communication
Pectins as Brakes? Their Potential Implication in Adjusting Mesophyll Conductance Under Water Deficit and Salt Stresses
by Margalida Roig-Oliver, Josefina Bota and Jaume Flexas
Plants 2025, 14(14), 2180; https://doi.org/10.3390/plants14142180 - 14 Jul 2025
Viewed by 274
Abstract
Water and salt stresses reduce net CO2 assimilation (AN) primarily by restricting stomatal conductance (gs) and mesophyll conductance (gm), while altering leaf structure, anatomy, and cell wall composition. Although some reports observed relationships [...] Read more.
Water and salt stresses reduce net CO2 assimilation (AN) primarily by restricting stomatal conductance (gs) and mesophyll conductance (gm), while altering leaf structure, anatomy, and cell wall composition. Although some reports observed relationships between these modifications and gm, in others they remain less clear. Here, we compiled data on studies in which major cell wall components (cellulose; C, hemicellulose; H; pectins; P) were determined with photosynthetic, structural and anatomical features, obtaining a dataset presenting distinct species subjected to both stresses. Among parameters previously reported to affect gm (leaf mass per area: LMA; chloroplast surface area exposed to intercellular air spaces per unit of leaf surface area: Sc/S; fraction of intercellular air spaces: fias; cell wall thickness: Tcw), pectins and the P/(C + H) ratio were the unique consistently varying in salt- and water-stressed plants. Despite no single trait correlated with gm, it was positively linked with [P/(C + H) × Sc/S × fias]/[Tcw × Lignin × LMA] in studies in which all parameters were tested, suggesting that distinct traits may exert antagonistic influences on gm. Although further experiments are needed to reinforce our findings, we hypothesize that increases in pectins under stress could limit larger gm declines, improving gm/gs ratio and water use efficiency (WUE). Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

9 pages, 817 KiB  
Article
A Green and Simple Analytical Method for the Evaluation of the Effects of Zn Fertilization on Pecan Crops Using EDXRF
by Marcelo Belluzzi Muiños, Javier Silva, Paula Conde, Facundo Ibáñez, Valery Bühl and Mariela Pistón
Processes 2025, 13(7), 2218; https://doi.org/10.3390/pr13072218 - 11 Jul 2025
Viewed by 322
Abstract
A simple and fast analytical method was developed and applied to assess the effect of two forms of zinc fertilization on a pecan tree cultivar in Uruguay: fertigation and foliar application with a specially formulated fertilizer. Zinc content was determined in 36 leaf [...] Read more.
A simple and fast analytical method was developed and applied to assess the effect of two forms of zinc fertilization on a pecan tree cultivar in Uruguay: fertigation and foliar application with a specially formulated fertilizer. Zinc content was determined in 36 leaf samples from two crop cycles: 2020–2021 and 2021–2022. Fresh samples were dried, ground, and sieved. Analytical determinations were performed by flame atomic absorption spectrometry (FAAS, considered a standard method) and energy dispersive X-ray spectrometry (EDXRF, the proposed method). In the first case, sample preparation was carried out by microwave-assisted digestion using 4.5 mol L−1 HNO3. In the second case, pellets (Φ 13 mm, 2–3 mm thick) were prepared by direct mechanical pressing. Figures of merit of both methodologies were adequate for the purpose of zinc monitoring. The results obtained from both methodologies were statistically compared and found to be equivalent (95% confidence level). Based on the principles of Green Analytical Chemistry, both procedures were evaluated using the Analytical Greenness Metric Approach (AGREE and AGREEprep) tools. It was concluded that EDXRF was notably greener than FAAS and can be postulated as an alternative to the standard method. The information emerging from the analyses aided decision-making at the agronomic level. Full article
Show Figures

Figure 1

16 pages, 3549 KiB  
Article
Functional Characterization of PtoWOX1 in Regulating Leaf Morphogenesis and Photosynthesis in Populus tomentosa
by Feng Tang, Minghui He, Shi Liang, Meng Zhang, Xiaowei Guo, Yuxian Dou, Qin Song, Cunfeng Zhao and Ting Lan
Plants 2025, 14(14), 2138; https://doi.org/10.3390/plants14142138 - 10 Jul 2025
Viewed by 283
Abstract
Leaves are essential for photosynthesis and transpiration, directly influencing plant growth and development. Leaf morphology, such as length, width, and area, affects photosynthetic efficiency and transpiration rates. In this study, we investigated the role of PtoWOX1 in leaf morphogenesis by generating both overexpression [...] Read more.
Leaves are essential for photosynthesis and transpiration, directly influencing plant growth and development. Leaf morphology, such as length, width, and area, affects photosynthetic efficiency and transpiration rates. In this study, we investigated the role of PtoWOX1 in leaf morphogenesis by generating both overexpression and CRISPR/Cas9 knockout lines in P. tomentosa. The results showed that PtoWOX1A and PtoWOX1B encode nuclear-localized transcription factors highly expressed in young leaves, particularly in palisade and epidermal cells. Knockout of PtoWOX1 resulted in reduced leaf width and area, enlarged upper epidermal cells, and lower stomatal density. Overexpression led to wrinkled leaf surfaces and reduced margin serration. Anatomical analysis revealed altered palisade cell arrangement and increased leaf thickness in knockout lines, accompanied by higher chlorophyll content and enhanced photosynthetic rates. Additionally, PtoWOX1A interacts with PtoYAB3B, suggesting a complex that regulates leaf margin development. These findings clarify the function of PtoWOX1 in regulating mid-lateral axis development and leaf margin morphology and provide new insights for the molecular breeding of poplar. Full article
Show Figures

Figure 1

24 pages, 6634 KiB  
Article
Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications
by Yasmin M. Heikal, Amal M. Albahi, Amal A. Alyamani, Hala M. Abdelmigid, Samia A. Haroun and Hoda M. Soliman
Cells 2025, 14(14), 1055; https://doi.org/10.3390/cells14141055 - 10 Jul 2025
Viewed by 405
Abstract
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy [...] Read more.
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy of salicylic acid (SA), humic acid (HA), and zinc oxide nanoparticles (ZnO-NPs) as control and inducer agents. FW infection resulted in notable structural alterations, including decreased leaf blade and mesophyll thickness and increased Adaxial epidermal cell wall thickness, thereby disrupting the leaf structure. Also, it caused severe chloroplast damage, such as membrane detachment and a reduced count of starch granules, which could impair photosynthetic efficiency. The different treatments exhibited significant effectiveness in reversing these adverse effects, leading to increased thickness of the leaf blade, mesophyll, palisade, and spongy tissues and enhanced structural integrity. Furthermore, ultrastructural improvements included activated mitochondria, compact chloroplasts with increased numbers, and proliferation of plastoglobuli, indicating adaptive metabolic changes. Principal component analysis (PCA-biplot) highlighted the significant parameters distinguishing treatment groups, providing insights into trait-based differentiation. This study concluded the potential of SA, HA, and ZnO-NPs as sustainable solutions for managing Fusarium wilt and enhancing tomato plant resilience, thereby contributing to improved agricultural practices and food security. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Graphical abstract

18 pages, 1870 KiB  
Article
Flowering and Morphology Responses of Greenhouse Ornamentals to End-of-Day Blue-Dominant Lighting with Different Phytochrome Photostationary States
by Yun Kong, Qingming Li, David Llewellyn and Youbin Zheng
Agronomy 2025, 15(7), 1649; https://doi.org/10.3390/agronomy15071649 - 7 Jul 2025
Viewed by 313
Abstract
To investigate whether blue-dominant spectra from end-of-day (EOD) lighting can regulate crop morphological and flowering responses, chrysanthemum (Chrysanthemum × morifolium; obligate short day), geranium (Pelargonium × hortorum; day neutral), calibrachoa (Calibrachoa × hybrida; facultative long day), and gerbera ( [...] Read more.
To investigate whether blue-dominant spectra from end-of-day (EOD) lighting can regulate crop morphological and flowering responses, chrysanthemum (Chrysanthemum × morifolium; obligate short day), geranium (Pelargonium × hortorum; day neutral), calibrachoa (Calibrachoa × hybrida; facultative long day), and gerbera (Gerbera jamesonii; facultative short day) plants were grown under different light-emitting diode (LED) spectrum treatments from January to April 2020, in Guelph, Canada. The spectrum treatments were (1) no EOD lighting, (2) narrowband blue from LEDs (B), (3) a combination of narrowband blue, red, and far-red LEDs with a photon flux ratio of 47:3:1 (blue:red:far-red; BRFR). The B and BRFR treatments ran daily from 0.5 h to 4.5 h after dusk. Compared to the control without EOD lighting, chrysanthemum flower initiation was completely inhibited under BRFR. Flowering time was slightly delayed, but flower bud number increased under B. Side branch number, leaf area, and main stem length and diameter increased under B and BRFR. In the geranium B and BRFR did not affect flowering, but increased side branch number and length and diameter of the main stem. Both spectrum treatments promoted earlier flowering in the calibrachoa, but BRFR produced more flower buds. The calibrachoa aerial dry biomass and main stem length increased under B and BRFR. The gerbera leaf chlorophyll index and leaf thickness increased under BRFR. Both spectrum treatments increased the gerbera flower bud size, despite having little effect on flowering time. In all species, at least one of the LED treatments increased canopy size. Therefore, low levels of B or BRFR can be potentially used for EOD lighting to regulate the flowering and morphology of potted ornamentals. Full article
Show Figures

Figure 1

14 pages, 4290 KiB  
Article
Multifunctional Green-Synthesized Cu2O-Cu(OH)2 Nanocomposites Grown on Cu Microfibers for Water Treatment Applications
by Hala Al-Jawhari, Nuha A. Alhebshi, Roaa Sait, Reem Altuwirqi, Laila Alrehaili, Noorah Al-Ahmadi and Nihal Elbialy
Micro 2025, 5(3), 33; https://doi.org/10.3390/micro5030033 - 5 Jul 2025
Viewed by 341
Abstract
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and [...] Read more.
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and morphology. The resulting Cu2O-Cu(OH)2@Cu mesh exhibited notable hydrophobicity, achieving a contact angle of 137.5° ± 0.6, and demonstrated the ability to separate thick oils, such as HD-40 engine oil, from water with a 90% separation efficiency. Concurrently, its photocatalytic performance was evaluated by the degradation of methylene blue (MB) under a weak light intensity of 5 mW/cm2, achieving 85.5% degradation within 30 min. Although its application as a functional membrane in water treatment may raise safety concerns, the mesh showed significant antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria under both dark and light conditions. Using the disk diffusion method, strong bacterial inhibition was observed after 24 h of exposure in the dark. Upon visible light irradiation, bactericidal efficiency was further enhanced—by 17% for S. aureus and 2% for E. coli. These findings highlight the potential of the Cu2O-Cu(OH)2@Cu microfibers as a multifunctional membrane for industrial wastewater treatment, capable of simultaneously removing oil, degrading organic dyes, and inactivating pathogenic bacteria through photo-assisted processes. Full article
Show Figures

Figure 1

16 pages, 5169 KiB  
Article
Analysis of Walnut Source–Sink–Flow Anatomical Structure Under Source–Sink Regulation Based on Fruit-Bearing Branch Scale
by Luyu Lv, Cuifang Zhang, Zhilong Yang, Zeyun Zhao and Shiwei Wang
Appl. Sci. 2025, 15(13), 7523; https://doi.org/10.3390/app15137523 - 4 Jul 2025
Viewed by 197
Abstract
This study used Xinxin 2 (Juglans regia L. ‘Xinxin2’), a major cultivated walnut variety in Xinjiang, China, to clarify the response and adaptation mechanisms of the anatomical structures of walnut related to source–sink–flow under altered source–sink relationships. We anatomically observed the leaves, [...] Read more.
This study used Xinxin 2 (Juglans regia L. ‘Xinxin2’), a major cultivated walnut variety in Xinjiang, China, to clarify the response and adaptation mechanisms of the anatomical structures of walnut related to source–sink–flow under altered source–sink relationships. We anatomically observed the leaves, fruit stalks, and fruit of bearing branches by artificially adjusting the leaf-to-fruit ratio (LFR). The LFR substantially affected the leaf structure and thickness of the fruit-bearing branches obtained via girdled (p < 0.05). The results of the analysis of the leaf anatomy revealed that a low LFR impeded leaf growth and internal structural development while accelerating senescence, whereas a high LFR promoted leaf growth and delayed senescence. The same trend was observed for the phloem area (PA) of the fruit stalk with the increase in fruit load when the number of leaves on the fruit branch was the same. The maximum PA was reached when the number of fruits was high (except for 4L:3F). This indicates that the micro-anatomical structure of the fruit stalk is more developed under the treatment of a higher number of pinnate compound leaves and fruit level of LFRs. The cells of the 1L:3F and 2L:3F were considerably smaller in the green peel and kernel of the fruit on the branches obtained via girdled than those of 5L:1F plants (p < 0.05). No significant difference was found in the number of cells per unit area or the cross-sectional area of cells in the pericarp and kernel of the fruit under LFRs (p > 0.05); however, a large difference was noted in the microanatomical structure of the pericarp and kernel of fruit. Changes in the structural adaptation characteristics of walnut leaves (source), fruit stalk (flow), and fruit (sink) are related to source–sink regulation. A change in the LFR affects the carbohydrate synthesis in the leaves (source), transport in fruit stalks (flow), and the carbohydrate reception in fruits (sink). Full article
Show Figures

Figure 1

19 pages, 26828 KiB  
Article
Synergistic Effects of Elevated CO2 and Enhanced Light Intensity on Growth Dynamics, Stomatal Phenomics, Leaf Anatomy, and Photosynthetic Performance in Tomato Seedlings
by Tonghua Pan, Wenya Zhang, Wentao Du, Bingyan Fu, Xiaoting Zhou, Kai Cao, Encai Bao, Yunlong Wang and Gaoqiang Lv
Horticulturae 2025, 11(7), 760; https://doi.org/10.3390/horticulturae11070760 - 1 Jul 2025
Viewed by 339
Abstract
Elevated [CO2] enhances light interception and carboxylation efficiency in plants. The combined effects of [CO2] and photosynthetic photon flux density (PPFD) on stomatal morphology, leaf anatomy, and photosynthetic capacity in tomato seedlings remain unclear. This study subjected tomato seedlings [...] Read more.
Elevated [CO2] enhances light interception and carboxylation efficiency in plants. The combined effects of [CO2] and photosynthetic photon flux density (PPFD) on stomatal morphology, leaf anatomy, and photosynthetic capacity in tomato seedlings remain unclear. This study subjected tomato seedlings (Solanum lycopersicum Mill. cv. Jingpeng No.1) to two [CO2] (ambient [a[CO2], 400 µmol·mol−1] and enriched [e[CO2], 800 µmol·mol−1]) and three PPFD levels (L; low[Ll: 200 µmol·m−2·s−1], moderate[Lm: 300 µmol·m−2·s−1], and high[Lh: 400 µmol·m−2·s−1]) to assess their interactive impacts. Results showed that e[CO2] and increased PPFD synergistically improved relative growth rate and net assimilation rate while reducing specific leaf area and leaf area ratio. Notably, e[CO2] decreased stomatal aperture (−13.81%) and density (−27.76%), whereas elevated PPFD promoted stomatal morphological adjustments. Additionally, Leaf thickness increased by 72.98% under e[CO2], with Lm and Lh enhancing this by 10.79% and 41.50% compared to Ll. Furthermore, photosynthetic performance under e[CO2] was further evidenced by improved chlorophyll fluorescence parameters (excluding non-photochemical quenching). While both e[CO2] and increased PPFD Photosynthetic performance under e[CO2] was further evidenced by improved chlorophyll fluorescence parameters (excluding non-photochemical quenching). Moreover, e[CO2]-Lh treatment maximized total dry mass and seedling health index. Correlation analysis indicated that synergistic optimization of stomatal traits and leaf structure under a combination of e[CO2] and increased PPFD enhanced light harvesting and CO2 diffusion, thereby promoting carbon assimilation. These findings highlight e[CO2]-Lh as an optimal strategy for tomato seedling growth, providing empirical guidance for precision CO2 fertilization and light management in controlled cultivation. Full article
(This article belongs to the Special Issue Latest Advances in Horticulture Production Equipment and Technology)
Show Figures

Figure 1

Back to TopTop