The Effects of Soil Cover Thickness on Leaf Functional Traits of Vine Plants in Mining Areas Depend on Soil Enzyme Activities and Nutrient Cycling
Abstract
1. Introduction
2. Results
2.1. Differences in Leaf Functional Traits of Vines Under Different Soil Cover Thickness Treatments
2.2. The Effect of Vines on Soil Physical and Chemical Properties of Different Soil Cover Thicknesses in the Mining Area
2.3. The Effect of Vines on Soil Enzyme Activities and Stoichiometric Characteristics of Different Soil Cover Thicknesses in the Mining Area
2.4. The Relationship Between Leaf Functional Traits of Vines and Its Relationship with Soil Factors
2.5. Effects of Soil Cover Thickness and Soil Factors on Plant Functional Traits
3. Discussion
3.1. Effect of Soil Cover Thickness on Leaf Functional Traits of Vines
3.2. Effects of Soil Cover Thickness on Soil Physical and Chemical Properties
3.3. Effects of Soil Cover Thickness on Soil Enzyme Activities and Stoichiometric Characteristics
3.4. Trade-Offs and Synergies Between Plant Functional Traits
3.5. Soil Cover Thickness Affects Plant Functional Traits Through Soil Factors
4. Materials and Methods
4.1. Site Description and Experimental Design
4.2. Sample Collection
4.3. Determination of Leaf Functional Traits
4.4. Soil Chemical Properties Measurements
4.5. Soil Enzyme Activity Measurements
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guan, Y.J.; Wang, J.; Zhou, W.; Bai, Z.K.; Cao, Y.G. Identification of land reclamation stages based on succession characteristics of rehabilitated vegetation in the Pingshuo opencast coal mine. J. Environ. Manag. 2022, 305, 114352. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Bai, Z.K.; Yang, B.Y.; Xie, L.J. Study on Ecological Loss in Coal Mining Area Based on Net Primary Productivity of Vegetation. Land 2022, 11, 1004. [Google Scholar] [CrossRef]
- Sun, Y.; Yao, X.X.; Li, C.H.; Xie, Y.L. Physiological adaptability of three gramineae plants under various vegetation restoration models in mining area of Qinghai-Tibet Plateau. J. Plant Physiol. 2022, 276, 153760. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.S.; Qin, H.J.; He, M.Z.; Han, G.J. A comparative evaluation of rehabilitation approaches for ecological recovery in arid limestone mine sites. J. Environ. Manag. 2025, 373, 123876. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Q.; Liber, K. Influence of different revegetation choices on plant community and soil development nine years after initial planting on a reclaimed coal gob pile in the Shanxi mining area, China. Sci. Total Environ. 2018, 618, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, X.Y.; Hu, Z.Y.; Fan, T.Y.; Zhang, S.W.; Liu, Y. Contribution of root respiration to total soil respiration during non-growing season in mine reclaimed soil with different covering-soil thicknesses. Int. J. Coal Sci. Technol. 2021, 8, 1130–1137. [Google Scholar] [CrossRef]
- Han, X.N.; Dong, Y.; Geng, Y.Q.; Li, N.; Zhang, C.Y. Influence of coal gangue mulching with various thicknesses and particle sizes on soil water characteristics. Sci. Rep. 2021, 11, 15368. [Google Scholar] [CrossRef] [PubMed]
- Luna, L.; Pastorelli, R.; Bastida, F.; Hernández, T.; García, C.; Miralles, I.; Solé-Benet, A. The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties. Appl. Soil Ecol. 2016, 107, 33–47. [Google Scholar] [CrossRef]
- Jin, L.Q.; Li, X.L.; Sun, H.F.; Zhang, J.; Zhang, Y.F.; Wang, R. Responses of soil microbial activities to soil overburden thickness in restoring a coal gangue mound in an alpine mining area. Ecol. Indic. 2023, 151, 110294. [Google Scholar] [CrossRef]
- Feng, S.H.; Li, Z.W.; Zhang, C.; Qi, R.; Yang, L.Y. Ecological restoration in high-altitude mining areas: Evaluation soil reconstruction and vegetation recovery in the Jiangcang coal mining area on the Qinghai-Tibet Plateau. Front. Environ. Sci. 2025, 12, 1538243. [Google Scholar] [CrossRef]
- He, N.P.; Liu, C.C.; Piao, S.L.; Sack, L.; Xu, L.; Luo, Y.Q.; He, J.S.; Han, X.G.; Zhou, G.S.; Zhou, X.H.; et al. Ecosystem Traits Linking Functional Traits to Macroecology. Trends Ecol. Evol. 2019, 34, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Wang, H.; Gou, W.; White, J.F.; Su, P.X. Leaf functional traits of dominant desert plants in the Hexi Corridor, Northwest China: Trade-off relationships and adversity strategies. Glob. Ecol. Conserv. 2021, 28, e01666. [Google Scholar]
- Jager, M.M.; Richardson, S.J.; Bellingham, P.J.; Clearwater, M.J.; Laughlin, D.C. Soil fertility induces coordinated responses of multiple independent functional traits. J. Ecol. 2015, 103, 374. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, J.P.; He, Y.J.; Yu, L.F.; Yan, L.B.; Du, Y.; Liu, J.C. Soil depth drives community assembly and functional traits of karst shrubland. Basic Appl. Ecol. 2024, 80, 40–48. [Google Scholar] [CrossRef]
- Ji, M.; Jin, G.Z.; Liu, Z.L. Effects of ontogenetic stage and leaf age on leaf functional traits and the relationships between traits in Pinus koraiensis. J. For. Res. 2021, 32, 2459–2471. [Google Scholar] [CrossRef]
- Song, Y.P.; Yu, Y.H.; Li, Y.T. Leaf Functional Traits and Relationships with Soil Properties of Zanthoxylum planispinum ‘dintanensis’ in Plantations of Different Ages. Agronomy 2022, 12, 1891. [Google Scholar] [CrossRef]
- Ananbeh, H.; Stojanović, M.; Pompeiano, A.; Voběrková, S.; Trasar-Cepeda, C. Use of soil enzyme activities to assess the recovery of soil functions in abandoned coppice forest systems. Sci. Total Environ. 2019, 694, 133692. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Powell, J.R.; Hamonts, K.; Reith, F.; Mele, P.; Brown, M.V.; Dennis, P.G.; Ferrari, B.C.; Fitzgerald, A.; Young, A.; et al. Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale. New Phytol. 2017, 215, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Rueda-Trujillo, M.A.; Veldhuis, M.P.; van Bodegom, P.M.; de Deurwaerder, H.P.T.; Visser, M. Global increase of lianas in tropical forests. Glob. Change Biol. 2024, 30, e17485. [Google Scholar] [CrossRef] [PubMed]
- Bruelheide, H.; Dengler, J.; Purschke, O.; Lenoir, J.; Jiménez-Alfaro, B.; Hennekens, S.M.; Botta-Dukát, Z.; Chytrý, M.; Field, R.; Jansen, F.; et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2018, 2, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Kemppinen, J.; Niittynen, P.; le Roux, P.C.; Momberg, M.; Happonen, K.; Aalto, J.; Rautakoski, H.; Enquist, B.J.; Vandvik, V.; Halbritter, A.H.; et al. Consistent trait–environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 2021, 5, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Cieraad, E.; van Bodegom, P.M. Global analysis of trait–trait relationships within and between species. New Phytol. 2022, 233, 1643–1656. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Z.; Prentice, I.C. Global patterns of plant functional traits and their relationships to climate. Commun. Biol. 2024, 7, 1136. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M. The worldwide leaf economics spectrum. Nature 2004, 428, 821. [Google Scholar] [CrossRef] [PubMed]
- Onoda, Y.; Wright, I.J.; Evans, J.R.; Hikosaka, K.; Kitajima, K.; Niinemets, Ü.; Poorter, H.; Tosens, T.; Westoby, M. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol. 2017, 214, 1447–1463. [Google Scholar] [CrossRef] [PubMed]
- Nadal, M.; Clemente-Moreno, M.J.; Perera-Castro, A.V.; Roig-Oliver, M.; Onoda, Y.; Gulías, J.; Flexas, J. Incorporating pressure–volume traits into the leaf economics spectrum. Ecol. Lett. 2023, 26, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.B.; Han, J.C.; Li, P.; Li, J. Effect of covering-soil thickness on crop growth on bare rock and gravel land in an ecological restoration project. J. Res. Ecol. 2018, 9, 484–492. [Google Scholar]
- Güsewell, S. N : P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.J.; Arzola, C.I.; Nunez, G.H. High pH stress affects root morphology and nutritional status of hydroponically grown rhododendron (Rhododendron spp.). Plants 2020, 9, 1019. [Google Scholar] [CrossRef] [PubMed]
- Dovrat, G.; Masci, T.; Bakhshian, H.; Mayzlish Gati, E.; Golan, S.; Sheffer, E. Drought-adapted plants dramatically downregulate dinitrogen fixation: Evidences from Mediterranean legume shrubs. J. Ecol. 2018, 106, 1534–1544. [Google Scholar] [CrossRef]
- Darcy, J.L.; Schmidt, S.K.; Knelman, J.E.; Cleveland, C.C.; Castle, S.C.; Nemergut, D.R. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat. Sci. Adv. 2018, 4, eaaq942. [Google Scholar] [CrossRef] [PubMed]
- Molefe, R.R.; Amoo, A.E.; Babalola, O.O. Communication between plant roots and the soil microbiome; involvement in plant growth and development. Symbiosis 2023, 90, 231–239. [Google Scholar] [CrossRef]
- Chen, S.X.; Huang, J.; Guo, R.J.; Ma, H.L.; Guo, J.J.; Ling, N.; Xu, Q.C.; Wang, M.; Shen, Q.R.; Guo, S.W. Soil net carbon balance depends on soil C: N: P stoichiometry. Soil Till. Res. 2025, 245, 106298. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Fang, X.; Wang, L.F.; Xiang, W.H.; Alharbi, H.A.; Lei, P.F.; Kuzyakov, Y. Regulation of soil phosphorus availability and composition during forest succession in subtropics. For. Ecol. Manag. 2021, 502, 119706. [Google Scholar] [CrossRef]
- Zhang, J.B.; Wang, G.H. Revegetation type affected soil C, N, P stocks and stoichiometry in a reclaimed mine area in Shanxi province, China. Ecol. Eng. 2023, 197, 107120. [Google Scholar] [CrossRef]
- Mcgroddy, M.E.; Daufresne, T.; Hedin, L.O. Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology 2004, 85, 2390–2401. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, C.; Wang, Y.Q.; Cheng, H.; An, S.S.; Chang, S.X. Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration. Soil Biol. Biochem. 2020, 149, 107928. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E.; et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Shouman, S.; Mason, N.; Heberling, J.M.; Kichey, T.; Decocq, G. Leaf functional traits at home and abroad: A community perspective of sycamore maple invasion. For. Ecol. Manag. 2020, 464, 118061. [Google Scholar] [CrossRef]
- Zhao, N.; Yu, G.R.; Wang, Q.F.; Wang, R.L.; Zhang, J.H.; Liu, C.C.; He, N.P. Conservative allocation strategy of multiple nutrients among major plant organs: From species to community. J. Ecol. 2020, 108, 267–278. [Google Scholar] [CrossRef]
- Zhao, L.J.; Xiang, W.H.; Li, J.X.; Liu, W.Q.; Hu, Y.T.; Wu, H.L.; Zhang, Y.L.; Cheng, X.; Wang, W.J.; Wang, W.T. “Realistic strategies” and neutral processes drive the community assembly based on leaf functional traits in a subtropical evergreen broad-leaved forest. Ecol. Evol. 2022, 12, e9323. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.G.; Jia, Z.Y.; Li, J.Q.; Wu, S.H. The influencing factors of leaf functional traits variation of Pinus densiflora Sieb. et Zucc. Glob. Ecol. Conserv. 2022, 38, e2177. [Google Scholar] [CrossRef]
- Kaproth, M.A.; Fredericksen, B.W.; González-Rodríguez, A.; Hipp, A.L.; Cavender-Bares, J. Drought response strategies are coupled with leaf habit in 35 evergreen and deciduous oak (Quercus) species across a climatic gradient in the Americas. New Phytol. 2023, 239, 888–904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.H.; Tan, J.Y.; Li, W.B.; Singh, B.P.; Yang, X.N.; Bolan, N.; Chen, X.; Xu, S.; Bao, Y.P.; et al. An overview of the direct and indirect effects of acid rain on plants: Relationships among acid rain, soil, microorganisms, and plants. Sci. Total Environ. 2023, 873, 162388. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Gupta, S.; Singh, A.P. Review: Nutrient-nutrient interactions governing underground plant adaptation strategies in a heterogeneous environment. Plant Sci. 2024, 342, 112024. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.S.; Wang, D.M. C:N:P stoichiometric characteristics and seasonal dynamics of leaf-root-litter-soil in plantations on the loess plateau. Ecol. Indic. 2021, 127, 107772. [Google Scholar] [CrossRef]
- Li, X.D.; Su, L.B.; Jing, M.; Wang, K.Q.; Song, C.G.; Song, Y.L. Nitrogen addition restricts key soil ecological enzymes and nutrients by reducing microbial abundance and diversity. Sci. Rep. 2025, 15, 5560. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.Y.; Sun, W.; Delgado-Baquerizo, M.; Song, W.Z.; Ma, J.Y.; Wang, K.Y.; Ling, X.L. Cascading effects of N fertilization activate biologically driven mechanisms promoting P availability in a semi-arid grassland ecosystem. Funct. Ecol. 2021, 35, 1001–1011. [Google Scholar] [CrossRef]
- Funk, J.L.; Larson, J.E.; Blair, M.D.; Nguyen, M.A.; Rivera, B.J. Drought response in herbaceous plants: A test of the integrated framework of plant form and function. Funct. Ecol. 2024, 38, 679–691. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Q.; Wang, W.; Liu, X.; Song, L.; Hou, L. Effects of different native plants on soil remediation and microbial diversity in Jiulong iron tailings area, Jiangxi. Forests 2022, 13, 1106. [Google Scholar] [CrossRef]
- Long, H.Y.; Lu, C.A.; Ji, H.J.; Zhang, R.L. A retrieval system for great soil groups from China’s provisional soil classification system for the 3rd national soil census. Sci. Agric. Sin. 2024, 57, 4264–4275. [Google Scholar]
- Jiang, P.P.; Liu, J.; Yu, G.; Lei, L.; Jiang, X.S. Moderate Mn accumulation enhances growth and alters leaf hormone contents in the hyperaccumulator Celosia argentea Linn. Environ. Exp. Bot. 2021, 191, 104603. [Google Scholar] [CrossRef]
- Caldwell, B.T.; Hara, K.L.O. Correlation of Leaf Area Index to Root Biomass in Populus tremuloides Michx supports the Pipe Model Theory. J. Biodivers. Manag. For. 2017, 6, 4. [Google Scholar]
- Jiang, L.Z.; Luo, J.F.; Wu, S.N.; Sui, X.; Liu, J.; Liu, Y. Impacts of habitat heterogeneity caused by photovoltaic arrays in rocky desertification area on functional traits of plant leaves. Acta Energiae Solaris Sin. 2023, 44, 252–259. [Google Scholar]
- Xie, Y.C.; Wang, Y.S.D.; He, P.C.; Zhang, H.P.; Liu, N.; Ren, H.; Liu, D.M.; Liu, H.X.; Lu, H.F.; Jian, S.G.; et al. Plant key functional traits in species adaptation and screening for vegetation restoration on coral islands. J. Environ. Manag. 2025, 376, 124545. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, X.; Wang, H.; Fu, X.; Wen, X.; Zhang, C.; Chen, F.; Wan, S. How understory vegetation affects the catalytic properties of soil extracellular hydrolases in a Chinese fir (Cunninghamia lanceolata) forest. Eur. J. Soil. Biol. 2019, 90, 15–21. [Google Scholar] [CrossRef]
- National Forestry Administration. Forestry Industry Standard of the People’s Republic of China: Forest Soil Analysis Method; Standards Press of China: Beijing, China, 1999. [Google Scholar]
- Zhang, X.Y.; Lu, Z.L.; Yin, S.A.; Pang, X.S.; Liang, Y.F.; Zhou, Z.H. Microbial genomic traits and mineral protection jointly regulate the temperature sensitivity of soil carbon decomposition in boreal forests. For. Ecosyst. 2025, 13, 100333. [Google Scholar] [CrossRef]
- Chen, Y.P.; Li, S.K.; Zeng, L.; An, B.; Xiao, T.Q.; Mao, R.; Zhang, Y. Effects of mycorrhizal and extraradical hyphae of subtropical native tree species on soil enzyme activities and their stoichiometric ratios. Forests 2023, 14, 2112. [Google Scholar] [CrossRef]
- Guan, X.; Chen, J.; Liu, G.; Wang, X. Soil phosphorus forms in saline soil after the application of biomass materials. Agronomy 2024, 14, 255. [Google Scholar] [CrossRef]
- Liang, X.; Fu, R.; Li, J.; Gu, Y.; Yi, K.; Li, M.; Chen, C.; Zhang, H.; Li, J.; Ma, L.; et al. Quinoa–Peanut Relay Intercropping Promotes Peanut Productivity Through the Temporal Optimization of Soil Physicochemical Properties and Microbial Community Composition in Saline Soil. Plants 2025, 14, 2102. [Google Scholar] [CrossRef]
- German, D.P.; Weintraub, M.N.; Grandy, A.S.; Lauber, C.L.; Rinkes, Z.L.; Allison, S.D. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 2011, 43, 1387–1397. [Google Scholar] [CrossRef]
- Otgonsuren, B.; Rosinger, C.; Wang, L.X.; Godbold, D.L. Winter soils of Mongolian forests have viable ectomycorrhizas and soil enzymatic activity. Soil Biol. Biochem. 2020, 148, 107914. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; The Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Sun, Y.; Cai, Z.; He, P.; Song, Y.; Yu, L.; Zhang, H.; Li, Y. The Effects of Soil Cover Thickness on Leaf Functional Traits of Vine Plants in Mining Areas Depend on Soil Enzyme Activities and Nutrient Cycling. Plants 2025, 14, 2225. https://doi.org/10.3390/plants14142225
Liu R, Sun Y, Cai Z, He P, Song Y, Yu L, Zhang H, Li Y. The Effects of Soil Cover Thickness on Leaf Functional Traits of Vine Plants in Mining Areas Depend on Soil Enzyme Activities and Nutrient Cycling. Plants. 2025; 14(14):2225. https://doi.org/10.3390/plants14142225
Chicago/Turabian StyleLiu, Ren, Yun Sun, Zongming Cai, Ping He, Yunxia Song, Longhua Yu, Huacong Zhang, and Yueqiao Li. 2025. "The Effects of Soil Cover Thickness on Leaf Functional Traits of Vine Plants in Mining Areas Depend on Soil Enzyme Activities and Nutrient Cycling" Plants 14, no. 14: 2225. https://doi.org/10.3390/plants14142225
APA StyleLiu, R., Sun, Y., Cai, Z., He, P., Song, Y., Yu, L., Zhang, H., & Li, Y. (2025). The Effects of Soil Cover Thickness on Leaf Functional Traits of Vine Plants in Mining Areas Depend on Soil Enzyme Activities and Nutrient Cycling. Plants, 14(14), 2225. https://doi.org/10.3390/plants14142225