Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (786)

Search Parameters:
Keywords = leaf mineral

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2988 KiB  
Article
Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions
by Alessio Vincenzo Tallarita, Rachael Simister, Lorenzo Vecchietti, Eugenio Cozzolino, Vasile Stoleru, Otilia Cristina Murariu, Roberto Maiello, Giuseppe Cozzolino, Stefania De Pascale and Gianluca Caruso
Appl. Sci. 2025, 15(15), 8620; https://doi.org/10.3390/app15158620 (registering DOI) - 4 Aug 2025
Viewed by 24
Abstract
Perennial wall rocket (Diplotaxis tenuifolia L.—DC.) exhibits genotype-dependent responses to biostimulant applications, which have not yet been deeply investigated. A two-year greenhouse factorial experiment was carried out to assess the interactions between five cultivars (Mars, Naples, Tricia, Venice, and Olivetta), three biostimulant [...] Read more.
Perennial wall rocket (Diplotaxis tenuifolia L.—DC.) exhibits genotype-dependent responses to biostimulant applications, which have not yet been deeply investigated. A two-year greenhouse factorial experiment was carried out to assess the interactions between five cultivars (Mars, Naples, Tricia, Venice, and Olivetta), three biostimulant formulations (Cystoseira tamariscifolia L. extract; a commercial legume-derived protein hydrolysate, “Dynamic”; and Spirulina platensis extract) plus an untreated control, and three crop cycles (autumn, autumn–winter, and winter) on leaf yield and dry matter, organic acids, colorimetric parameters, hydrophilic and lipophilic antioxidant activities, nitrate concentration, nitrogen use efficiency, and mineral composition, using a split plot design with three replicates. Protein hydrolysate significantly enhanced yield and nitrogen use efficiency in Mars (+26%), Naples (+25.6%), Tricia (+25%), and Olivetta (+26%) compared to the control, while Spirulina platensis increased the mentioned parameters only in Venice (+36.2%). Nitrate accumulation was reduced by biostimulant application just in Venice, indicating genotype-dependent nitrogen metabolism responses. The findings of the present research demonstrate that the biostimulant efficacy in perennial wall rocket is mainly ruled by genotypic factors, and the appropriate combinations between the two mentioned experimental factors allow for optimization of leaf yield and quality while maintaining nitrate concentration under the regulation thresholds. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

26 pages, 3326 KiB  
Article
Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress
by Eleonora Cataldo, Sergio Puccioni, Aleš Eichmeier and Giovan Battista Mattii
Horticulturae 2025, 11(8), 897; https://doi.org/10.3390/horticulturae11080897 (registering DOI) - 3 Aug 2025
Viewed by 213
Abstract
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with [...] Read more.
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with solutions inclined to respect the ecosystem. In this academic work, we focused on describing the drought stress consequences on several parameters of secondary metabolites on Vitis vinifera leaves (quercetins, kaempferol, resveratrol, proline, and xanthophylls) and on some ecophysiological characteristics (e.g., water potential, stomatal conductance, and leaf temperature) to compare the answers that diverse agronomic management techniques (i.e., irrigation with and without zeolite, pure zeolite and no application) could instaurate in the metabolic pathway of this important crop with the aim to find convincing and thought-provoking responses to use this captivating and versatile mineral, the zeolite known as the “magic rock”. Stressed grapevines reached 56.80 mmol/m2s gs at veraison and a more negative stem Ψ (+10.63%) compared to plants with zeolite. Resveratrol, in the hottest season, fluctuated from 0.18–0.19 mg/g in zeolite treatments to 0.37 mg/g in stressed vines. Quercetins were inclined to accumulate in response to drought stress too. In fact, we recorded a peak of quercetin (3-O-glucoside + 3-O-glucuronide) of 11.20 mg/g at veraison in stressed plants. It is interesting to note how the pool of metabolites was often unchanged for plants treated with zeolite and for plants treated with water only, thus elevating this mineral to a “stress reliever”. Full article
Show Figures

Figure 1

24 pages, 3631 KiB  
Article
Mineral–Soil–Plant–Nutrient Synergism: Carbonate Rock Leachate Irrigation Enhances Soil Nutrient Availability, Improving Crop Yield and Quality
by Yifei Du, Xiao Ge, Yimei Du, Hongrui Ding and Anhuai Lu
Minerals 2025, 15(8), 825; https://doi.org/10.3390/min15080825 (registering DOI) - 2 Aug 2025
Viewed by 244
Abstract
In the rock–soil–biology–water ecosystem, rock weathering provides essential plant nutrients. However, its supply is insufficient for rising crop demands under population growth and climate change, while excessive fertilizer causes soil degradation and pollution. This study innovatively irrigated with carbonate rock leachates to enhance [...] Read more.
In the rock–soil–biology–water ecosystem, rock weathering provides essential plant nutrients. However, its supply is insufficient for rising crop demands under population growth and climate change, while excessive fertilizer causes soil degradation and pollution. This study innovatively irrigated with carbonate rock leachates to enhance soil nutrient availability. A pot experiment with lettuce showed that irrigation significantly increased soil NO3-N (+102.20%), available K (+16.45%), available P (+17.95%), Ca (+6.04%), Mg (+11.65%), and Fe (+11.60%), and elevated the relative abundance of Firmicutes. Lettuce biomass per plant rose by 23.78%, with higher leaf minerals (P, K, Ca, and Mg) and antioxidants (carotenoids and ascorbic acid). A field experiment further confirmed improvement of soil nutrient availability and peanut yield. This carbonate rock leachate irrigation technique effectively enhances soil quality and crop productivity/quality, offering a sustainable approach for green agriculture. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

16 pages, 2902 KiB  
Article
Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag
by Liangjin Zhang, Zihao Yang, Yuzhu Zhang, Bao Liu and Shuang Cai
Sustainability 2025, 17(15), 6979; https://doi.org/10.3390/su17156979 - 31 Jul 2025
Viewed by 303
Abstract
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer [...] Read more.
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer remains a topic of significant debate, however. In this work, pakchoi (Brassica chinensis L.) was planted in CAS-fertilized soil to investigate the accumulation and migration behavior of heavy metals in the soil–plant system and perform an associated risk assessment. Our results demonstrated that CAS addition increases Ca, Si, and Cr concentrations but decreases Mg and Fe concentrations in soil leachates. Low rates (0.25–1%) of CAS fertilization facilitate the growth of pakchoi, resulting in the absence of soil contamination and posing no threat to human health. At the optimal slag addition rate of 0.25%, the pakchoi leaf biomass, stem biomass, leaf area, and seedling height increased by 34.2%, 17.2%, 26.3%, and 8.7%, respectively. The accumulation of heavy metals results in diverging characteristics in pakchoi. Cr primarily accumulates in the roots; in comparison, Pb, Cd, Ni, and Hg preferentially accumulate in the leaves. The migration rate of the investigated heavy metals from the soil to pakchoi follows the order of Cr > Cd > Hg > Ni > Pb; in comparison, that from the roots to the leaves follows the order Cd > Ni > Hg > Cr > Pb. Appropriate utilization of CAS as a mineral fertilizer can aid in improving pakchoi yield, achieving sustainable economic benefits, and preventing environmental pollution. Full article
Show Figures

Figure 1

29 pages, 15018 KiB  
Article
Investigating the Osteoregenerative Properties of Juglans regia L. Extract on Mesenchymal Stem Cells and Osteoblasts Through Evaluation of Bone Markers: A Pilot Study
by Alina Hanga-Fărcaș, Gabriela Adriana Filip, Simona Valeria Clichici, Laura Grațiela Vicaș, Olga Şoritău, Otilia Andercou, Luminița Fritea and Mariana Eugenia Mureșan
J. Funct. Biomater. 2025, 16(7), 268; https://doi.org/10.3390/jfb16070268 - 21 Jul 2025
Viewed by 479
Abstract
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) [...] Read more.
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) is rich in polyphenols with demonstrated osteoregeneration effects. In the present study, we investigated the extract’s effects on three types of cells with various stages of differentiation: adult mesenchymal stem cells (MSCs), osteoblasts at low passage (O6) and osteoblasts at advanced passage (O10). To assess the efficacy of the walnut leaf extract, in vitro treatments were performed in comparison with ellagic acid (EA) and catechin (CAT). The osteoregenerative properties of the leaf extract were evaluated in terms of cell viability, bone mineralization (by staining with alizarin red) and the expression of osteogenesis markers such as osteocalcin (OC), osteopontin (OPN), dentin matrix acidic phosphoprotein 1 (DMP1) and collagen type 1A. Another compound implicated in oxidative stress response, but also a bone homeostasis regulator, nuclear factor erythroid 2-related factor 2 (NRF2), was studied by immunocytochemistry. Together with collagen amount, alkaline phosphatase (ALP) activity and NF-kB levels were measured in cell lysates and supernatants. The obtained results demonstrate that JR treatment induced osteogenic differentiation and bone mineralization, and it showed protective effects against oxidative stress. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

17 pages, 1473 KiB  
Article
Stimulation of Maize Growth and Development and Improvement of Soil Properties Using New Specialised Organic-Mineral Materials
by Marzena S. Brodowska, Mirosław Wyszkowski and Ryszard Grzesik
Molecules 2025, 30(14), 3050; https://doi.org/10.3390/molecules30143050 - 21 Jul 2025
Viewed by 224
Abstract
The use of mineral fertilisers has increased in recent years, but this has had a negative effect on the environment, including causing the water in rivers and lakes to become too rich in nutrients, a process known as eutrophication. Current research focuses on [...] Read more.
The use of mineral fertilisers has increased in recent years, but this has had a negative effect on the environment, including causing the water in rivers and lakes to become too rich in nutrients, a process known as eutrophication. Current research focuses on producing fertiliser materials that are environmentally friendly. The aim of this study was to examine the impact of novel specialised organic-mineral fertilisers (OMFs: NP 24-12, NP 10-10, and NP 10-10 Zn+) on the yield and chemical composition of maize. These fertilisers were compared with a control (no fertiliser) and with other fertilisers (mixture of commercial fertilisers (MCFs): NP 24-12 and NP 10-10) that were used as a reference. All fertilisers increased the SPAD index at the fifth leaf unfolded stage of maize, with the majority (apart from OMF NP 10-10) also increasing it at the panicle emergence stage. MCF NP 10-10 had the most positive effect on the plant height, while OMF NP 10-10 had the least positive effect. All fertilisers had a positive effect on maize growth and development, with MCFs NP 10-10 and NP 24-12 having by far the strongest effect on increasing crop yields. The yield of plants fertilised with OMFs NP 24-12, NP 10-10, and NP 10-10 Zn+ was lower than the yields of plants fertilised with MCF NP 24-12 and MCF NP 10-10. OMF NP 10-10 caused a greater increase in the contents of all elements, and OMF NP 24-12 caused a greater increase in most elements (except P and Ca) in maize than MCFs did at an identical NP ratio. OMF NP 10-10 Zn+ was found to have a significant impact on the mineral composition of maize, resulting in a decline in Ca and P levels, along with a notable increase in Mg, Zn, and Cu concentrations. The most significant differences were observed for Cu and Zn. The OMFs, notably NP 24-12 and NP 10-10, exhibited a comparatively diminished acidifying impact in comparison with the MCFs. The application of fertilisers resulted in a significant increase in soil nutrient levels, with most fertilisers increasing the soil N, P, and Zn contents. Additionally, the OMFs led to an increase in Cu. However, MCFs NP 24-12 and NP 10-10 reduced the soil Cu and Mn contents. Studies should include other species as they have different needs. Field experiments are also needed. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

23 pages, 7168 KiB  
Article
Enhancing Soil Phosphorus Availability in Intercropping Systems: Roles of Plant Growth Regulators
by Chunhua Gao, Weilin Kong, Fengtao Zhao, Feiyan Ju, Ping Liu, Zongxin Li, Kaichang Liu and Haijun Zhao
Agronomy 2025, 15(7), 1748; https://doi.org/10.3390/agronomy15071748 - 20 Jul 2025
Viewed by 322
Abstract
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. [...] Read more.
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. Hedou 22) in fluvisols and luvisols soil according to World Reference Base for Soil Resources (WRB) standard. Under a 4-row corn and 6-row soybean strip intercropping system, three treatments were applied: a water control (CK), and two plant growth regulators—T1 (EC: ethephon [300 mg/L] + cycocel [2 g/L]) and T2 (ED: ethephon [300 mg/L] + 2-Diethyl aminoethyl hexanoate [10 mg/L]). Foliar applications were administered at the V7 stage (seventh leaf) of intercropped corn plants to assess how foliar-applied PGRs (T1/T2) modulated the soil phosphorus availability, microbial communities, and functional genes in maize intercropping systems. PGRs increased the soil organic phosphorus and available phosphorus contents, and alkaline phosphatase activity, but not total phosphorus. PGRs declined the α-diversity in fluvisols soil but increased the α-diversity in luvisols soil. The major taxa changed from Actinobacteria (CK) to Proteobacteria (T1) and Saccharibacteria (T2) in fluvisols soil, and from Actinobacteria/Gemmatimonadetes (CK) to Saccharibacteria (T1) and Acidobacteria (T2) in luvisols soil. Functional gene dynamics indicated soil-specific regulation, where fluvisols soil harbored more phoD (organic phosphorus mineralization) and relA (polyphosphate degradation) genes, whereas phnP gene dominated in luvisols soil. T1 stimulated organic phosphorus mineralization and inorganic phosphorus solubilization in fluvisols soil, upregulating regulation genes, and T2 enhanced polyphosphate synthesis and transport gene expression in luvisols soil. Proteobacteria, Nitrospirae, and Chloroflexi were positively correlated with organic phosphorus mineralization and polyphosphate cycling genes, whereas Bacteroidetes and Verrucomicrobia correlated with available potassium (AP), total phosphorus (TP), and alkaline phosphatase (ALP) activity. Thus, PGRs activated soil phosphorus by restructuring soil type-dependent microbial functional networks, connecting PGRs-induced shifts with microbial phosphorus cycling mechanisms. These findings facilitate the targeted use of PGRs to optimize microbial-driven phosphorus efficiency in strategies for sustainable phosphorus management in diverse agricultural soils. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

15 pages, 1686 KiB  
Article
Effect of Sugar Beet Molasses and Compost from Brewery Sludge on Celery (Apium graveolens var. rapaceum) Yield and Nutrient Uptake
by Boris Adamović, Đorđe Vojnović, Ivana Maksimović, Marina Putnik Delić, Dragan Kovačević, Ranko Čabilovski, Milorad Živanov, Maja Ignjatov, Janko Červenski and Dragana Latković
Horticulturae 2025, 11(7), 836; https://doi.org/10.3390/horticulturae11070836 - 15 Jul 2025
Viewed by 289
Abstract
The rising cost of mineral fertilizers and the decreasing availability of manure in vegetable farming highlight the need for alternative fertilization strategies. To examine the possibility of applying byproducts from the food processing industry, sugar beet molasses, and compost from brewery sewage sludge [...] Read more.
The rising cost of mineral fertilizers and the decreasing availability of manure in vegetable farming highlight the need for alternative fertilization strategies. To examine the possibility of applying byproducts from the food processing industry, sugar beet molasses, and compost from brewery sewage sludge in celery production, the field experiment was conducted over two years, using a randomized complete block design with three replications. The examined variants were T0—control (without fertilizer); T1—mineral fertilizer; T2—cattle manure; T3—sheep manure; T4—poultry manure; T5—supercompost; and T6—molasses. In the first year, there was no significant difference between T1 and T5 in thickened root yield, while these two variants achieved significantly higher yield compared with other variants. In both years, the highest leaf yield was achieved with T1, while no significant difference was found between T5, T6, and conventional organic fertilizers of animal origin. The highest amount of N was absorbed by roots in T1 (42.0 kg/ha and 51.2 kg/ha, respectively), while the lowest amount was absorbed in T0 (25.5 kg/ha and 26.7 kg/ha, respectively). A significantly higher amount of P2O5 was absorbed by roots in all organic fertilizer variants compared to T0 and T1. In both years, of all the nutrients, K2O was the most absorbed nutrient by the celery root, while CaO was absorbed in greater quantities than N. Based on two years of research, it can be concluded that compost from brewery sludge and sugar beet molasses can be used as an alternative source of nutrients for plants. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

17 pages, 504 KiB  
Article
Yield, Phytonutritional and Essential Mineral Element Profiles of Selected Aromatic Herbs: A Comparative Study of Hydroponics, Soilless and In-Soil Production Systems
by Beverly M. Mampholo, Mariette Truter and Martin M. Maboko
Plants 2025, 14(14), 2179; https://doi.org/10.3390/plants14142179 - 14 Jul 2025
Viewed by 246
Abstract
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of [...] Read more.
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of research has focused on enhancing yield, frequently overlooking the impact of production practices on the antioxidant and phytonutritional content of the produce. Thus, the study aimed to evaluate the yield, phytonutrients, and essential mineral profiling in selected aromatic herbs and their intricate role in nutritional quality when grown under different production systems. Five selected aromatic herbs (coriander, rocket, fennel, basil, and moss-curled parsley) were evaluated at harvest when grown under three production systems: in a gravel-film technique (GFT) hydroponic system and in soil, both under the 40% white shade-net structure, as well as in a soilless medium using sawdust under a non-temperature-controlled plastic tunnel (NTC). The phytonutritional quality properties (total phenolic, flavonoids, β-carotene-linoleic acid, and condensed tannins contents) as well as 1,1-diphenyl-2-picrylhydrazyl (DPPH) were assessed using spectrophotometry, while vitamin C and β-carotene were analyzed using HPLC-PDA, and leaf mineral content was evaluated using ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The results show that the health benefits vary greatly owing to the particular culinary herb. The fresh leaf mass (yield) of coriander, parsley, and rocket was not significantly affected by the production system, whereas basil was high in soil cultivation, followed by GFT. Fennel had a high yield in the GFT system compared to in-soil and in-soilless cultivation. The highest levels of vitamin C were found in basil leaves grown in GFT and in soil compared to the soilless medium. The amount of total phenolic and flavonoid compounds, β-carotene, β-carotene-linoleic acid, and DPPH, were considerably high in soil cultivation, except on condensed tannins compared to the GFT and soilless medium, which could be a result of Photosynthetic Active Radiation (PAR) values (683 μmol/m2/s) and not favoring the accumulation of tannins. Overall, the mineral content was greatly influenced by the production system. Leaf calcium and magnesium contents were highly accumulated in rockets grown in the soilless medium and the GFT hydroponic system. The results have highlighted that growing environmental conditions significantly impact the accumulation of health-promoting phytonutrients in aromatic herbs. Some have positive ramifications, while others have negative ramifications. As a result, growers should prioritize in-soil production systems over GFT (under the shade-net) and soilless cultivation (under NTC) to produce aromatic herbs to improve the functional benefits and customer health. Full article
(This article belongs to the Topic Nutritional and Phytochemical Composition of Plants)
Show Figures

Figure 1

15 pages, 625 KiB  
Article
Fluoride Content in Infusions of Selected Teas Available on the Polish Market—An In Vitro Study
by Agata Małyszek, Ireneusz Zawiślak, Michał Kulus, Adam Watras, Julia Kensy, Agnieszka Kotela, Marzena Styczyńska, Maciej Janeczek, Jacek Matys and Maciej Dobrzyński
Foods 2025, 14(14), 2452; https://doi.org/10.3390/foods14142452 - 12 Jul 2025
Viewed by 615
Abstract
This study aimed to evaluate the fluoride content and other key physicochemical properties in commercially available black tea infusions, with a focus on tea form and geographic origin, in order to assess their contribution to total dietary fluoride intake. Methods: A total of [...] Read more.
This study aimed to evaluate the fluoride content and other key physicochemical properties in commercially available black tea infusions, with a focus on tea form and geographic origin, in order to assess their contribution to total dietary fluoride intake. Methods: A total of 121 black tea samples were analyzed, including 66 loose-leaf, 42 bags, and 13 pyramid-bag teas. Infusions were prepared using standardized brewing protocols. Fluoride concentrations were determined with an ion-selective electrode, while the pH, buffer capacity, titratable acidity, calcium, and inorganic phosphorus were also measured. Statistical analysis included ANOVA, Tukey post hoc tests, and Pearson correlation analysis. Results: Fluoride content varied significantly by tea form and origin. Infusion of tea bags exhibited the highest fluoride, calcium, and acidity levels, while loose-leaf teas had the lowest. Teas from Africa contained approximately twice as much fluoride as those from Central or East Asia. Significant correlations between fluoride, calcium, and phosphorus were observed, particularly in tea-bag infusions, suggesting processing influences mineral release. Conclusions: Black tea, particularly in bag form and sourced from African regions, may significantly contribute to daily fluoride intake. Given the potential to exceed recommended fluoride thresholds, especially in individuals consuming multiple cups daily or living in fluoridated areas, these findings underscore the importance of consumer awareness and possible product labeling to guide safe consumption. Full article
Show Figures

Figure 1

16 pages, 3123 KiB  
Article
Ammonia Losses, Wheat Biomass, and N Dynamics as Influenced by Organo-Mineral Fertilizer
by Helen Carla Santana Amorim, Francielle Roberta Dias de Lima, Mariene Helena Duarte, Rafael Marta Carbone Carneiro, Gustavo Avelar Zorgdrager Van Opbergen, Raphael Felipe Rodrigues Corrêa and Luiz Roberto Guimarães Guilherme
Biosphere 2025, 1(1), 4; https://doi.org/10.3390/biosphere1010004 - 1 Jul 2025
Viewed by 321
Abstract
Organo-mineral fertilizers can slow N release to plants, reducing N losses to the environment and enhancing N use efficiency (NUE). Yet, this greater NUE is not always coupled to greater crop yields, which warrants further investigation. Here, we assessed the relationship between N-NH [...] Read more.
Organo-mineral fertilizers can slow N release to plants, reducing N losses to the environment and enhancing N use efficiency (NUE). Yet, this greater NUE is not always coupled to greater crop yields, which warrants further investigation. Here, we assessed the relationship between N-NH3 losses from volatilization and wheat (Triticum aestivum L.) biomass and N status. The following treatments were tested: conventional urea (U, 45% N), urea treated with NBPT (N-(n-butyl) thiophosphoric triamide) (U + NBPT, 45.6% N), S-coated urea (U + S; 37% N), Se-coated urea (U + Se; 45% N), organo-mineral fertilizer Azoslow 29 (OMF, 29% N + 50% Azogel®). The above treatments and non-fertilized control were tested in two soils (LVd and LVAd, 71 and 25% clay, respectively). Semi-open static collectors were used to determine N-NH3 volatilization 1, 2, 4, 8, 11, 15, 18, 23, 29, and 36 days after application of treatments. Wheat was cultivated for 35 days, and shoot dry mass and total leaf N were determined after harvest. Cumulative N-NH3 losses from OMF (27 and 32% of N applied in the LVd and LVAd soils, respectively) did not differ from U and (26–32%) and U + Se (24–31%), likely due to organic matter inputs enhancing urease activity in soils. Nevertheless, OMF resulted in 2–4 times greater wheat dry matter than U, U + Se, and U + S, with similar dry mass of U + NBPT for LVAd soils. OMF application enhanced total N removal in wheat leaves relative to the unfertilized control and most N sources. N-NH3 losses did not reduce biomass yield, but were negatively linked to N accumulation in wheat. The OMF enhanced wheat biomass and nutrition while sustaining environmental quality and promoting circularity in agroecosystems. Full article
Show Figures

Figure 1

32 pages, 3592 KiB  
Article
Effects of Zinc on Metallicolous and Non-Metallicolous Populations of Noccaea caerulescens
by Anna D. Kozhevnikova, Alexander V. Kartashov and Ilya V. Seregin
Plants 2025, 14(13), 1975; https://doi.org/10.3390/plants14131975 - 27 Jun 2025
Viewed by 434
Abstract
The aim of this study was to evaluate whether intraspecific differences in zinc (Zn) tolerance and accumulation in the hyperaccumulator Noccaea caerulescens are linked to Zn-induced changes in transpiration and mineral composition. At 500 µM Zn in the nutrient solution, a decrease in [...] Read more.
The aim of this study was to evaluate whether intraspecific differences in zinc (Zn) tolerance and accumulation in the hyperaccumulator Noccaea caerulescens are linked to Zn-induced changes in transpiration and mineral composition. At 500 µM Zn in the nutrient solution, a decrease in the root and shoot biomass, the water content in roots, and the contents of photosynthetic pigments in shoots was observed only in the non-metallicolous population Wilwerwiltz, whereas in the calamine population Prayon, root growth was stimulated. Zinc-induced impairment of mineral nutrition was greater in Wilwerwiltz than in Prayon, which determined the manifestation of Zn toxicity in Wilwerwiltz. The absence of signs of Zn toxicity and the stimulation of root growth in Prayon may be due to lower Zn accumulation in Prayon than in Wilwerwiltz, as well as more effective mechanisms of Zn detoxification. The higher Zn content in the shoots and, in particular, in the water-storage cells of the leaf epidermis in Wilwerwiltz compared to Prayon may be partly due to the higher transpiration rate in Wilwerwiltz, at least at 500 µM Zn. These findings suggest that the metallicolous population maintains better control over Zn accumulation, which may be a part of the adaptive response to Zn-enriched media. Full article
(This article belongs to the Special Issue Heavy Metal Tolerance in Plants and Algae—2nd Edition)
Show Figures

Figure 1

13 pages, 1433 KiB  
Article
In Vitro Evaluation of Olive Leaf (Olea europaea L.) Extract as a Functional Food Component in Combination with Chemotherapeutics in MCF-7 Breast Cancer Cells
by Eda Büker, Fadime Kiran, Seval Taliboglu, Dorina Casoni and Ayşe Ipekel
Pharmaceuticals 2025, 18(7), 965; https://doi.org/10.3390/ph18070965 - 27 Jun 2025
Viewed by 427
Abstract
Background: Since breast cancer is a major cause of mortality, investigation of the synergistic effect of Olea europaea L. leaf extract in combination with some cancer medications is important for obtaining cost-effective and high-achieving treatments for breast cancer. This study aims to [...] Read more.
Background: Since breast cancer is a major cause of mortality, investigation of the synergistic effect of Olea europaea L. leaf extract in combination with some cancer medications is important for obtaining cost-effective and high-achieving treatments for breast cancer. This study aims to investigate the potential effects of Olea europaea L. extract in inhibiting breast cancer cell growth and enhancing the efficacy of chemotherapy agents against breast cancer under in vitro conditions. Methods: We conducted an analysis of some minerals and vitamins of three different viscosities (200 V, 300 V, and 400 V as a natural food product) of Olea europaea L. leaf water-based extract (OWE) derived from a natural cold maceration. We investigated the cytotoxic effects of Olea europaea L. extract with different viscosities (200–400 V) and various chemotherapy agents, either alone or in combination, in estrogen receptor-positive MCF-7 human breast carcinoma cells by MTT assay. Olea europaea L. extract treatment of cells resulted in growth inhibition in a dose- and time-dependent manner. Results: The 400 V OWE showed the highest calcium (301 ± 12 mg/100 g), potassium (1744 ± 33 mg/100 g), and vitamin E (0.36 ± 0.01 mg/100 g) amounts. Based on MTT results, combinations of 400V Olea europaea L. extract, which exhibited the strongest inhibitory effect with an IC50 value of 940 µg/mL, and anticancer drugs were next assessed for their synergistic efficacy towards cell growth inhibition. Conclusions: Combinations of the IC50 value of 400 V OWE with docetaxel, paclitaxel, and trastuzumab (1 µg/mL) treatment showed a strong synergistic effect in the growth inhibition of MCF-7 cells. Full article
(This article belongs to the Special Issue The Discovery and Development of Drug Ingredients from Food Sources)
Show Figures

Graphical abstract

13 pages, 4991 KiB  
Article
Antenna-Specific TabsOBP45 and TabsOBP46 Mediate Plant Volatile Recognition in Tuta absoluta (Lepidoptera: Gelechiidae)
by Qingyu Liu, Liuyang Wang, Panjing Liu, Lingrui Li, Jun Ning and Tao Zhang
Agronomy 2025, 15(7), 1539; https://doi.org/10.3390/agronomy15071539 - 25 Jun 2025
Viewed by 415
Abstract
The tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), is a destructive pest of Solanaceae crops worldwide. Its olfactory system plays an important role in locating mating partners and recognizing host plants. Understanding its olfactory recognition mechanism, particularly the function of odorant-binding proteins (OBPs), [...] Read more.
The tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), is a destructive pest of Solanaceae crops worldwide. Its olfactory system plays an important role in locating mating partners and recognizing host plants. Understanding its olfactory recognition mechanism, particularly the function of odorant-binding proteins (OBPs), may reveal potential targets for pest management. In this study, we characterized two antenna-specific OBPs, TabsOBP45 and TabsOBP46, which were identified from the T. absoluta genome. Sequence analysis revealed that both TabsOBPs belong to the classic OBP subfamily, which is characterized by the presence of six conserved cysteine residues and an N-terminal signal peptide. Both TabsOBPs showed predominant antennal expression in quantitative real-time PCR (qRT-PCR) assays, suggesting their key roles in olfactory perception. Fluorescence competitive binding assays with a total of 63 tested volatiles revealed that 13 compounds exhibited strong binding affinities (Ki < 22 µM) to TabsOBP45, with the highest binding affinity to β-ionone, β-caryophyllene, terpinolene, and cinnamaldehyde. Nine compounds showed strong binding affinities to TabsOBP46, with the strongest binding to 4-anisaldehyde, 4-methoxybenzaldehyde, cinnamaldehyde, and β-ionone. Molecular docking analysis revealed the key residues involved in β-ionone binding: TabsOBP45 interacted with ILE8, ALA9, PHE12, TRP37, ILE92, PHE94, THR115, and PHE118, while TabsOBP46 interacted with ILE8, PHE12, PHE36, TRP37, ILE92, LEU94, PHE118, and VAL134. These results provide new insights into the olfactory mechanism of T. absoluta and potential molecular targets for the development of olfactory-based pest control strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 1254 KiB  
Article
A Sustainable Approach to Phosphorus Nutrition in Banana Plantations
by Hebert Teixeira Cândido, Magali Leonel, Sarita Leonel, Adalton Mazetti Fernandes, Jackson Myrellis Azevêdo Souza, Lucas Felipe dos Ouros and Paulo Ricardo Rodrigues de Jesus
Plants 2025, 14(13), 1923; https://doi.org/10.3390/plants14131923 - 23 Jun 2025
Viewed by 455
Abstract
The genetic diversity of banana plants (Musa spp.) can result in different phosphorus requirements, highlighting the importance of studies performed to optimize phosphate fertilization in order to improve the productivity and sustainability of banana plantations. This study assessed the effects of phosphate [...] Read more.
The genetic diversity of banana plants (Musa spp.) can result in different phosphorus requirements, highlighting the importance of studies performed to optimize phosphate fertilization in order to improve the productivity and sustainability of banana plantations. This study assessed the effects of phosphate fertilization on the duration of the harvest season, bunch mass, soil fertility and foliar nutrition of BRS SCS Belluna banana plants. A replicated trial was performed in two consecutive harvests, with different phosphorus levels, i.e., 25, 50, 75, 100, 125 and 150% of the recommended level for the crop. Soil analyses included macro- and micronutrients, silicon, acidity, organic matter, cation exchange capacity and base saturation. Leaf tissue was analyzed for mineral content. Thermophosphate had different effects on soil fertility and leaf nutrients. Calcium and phosphorus in the soil increased linearly. In the leaf, a reduction in zinc content was mainly observed. The lower temperatures and accumulated rainfall that occurred during the second harvest season are related to a greater number of days between flowering and harvest and a lower bunch mass. These results could support fertilization programs aimed at ensuring the long-term sustainability of phosphorus nutrition in banana plantations. Full article
(This article belongs to the Special Issue Soil Ecology and Nutrients' Cycling in Crops and Fruits)
Show Figures

Figure 1

Back to TopTop