Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = leaf crinkle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2042 KiB  
Article
Comprehensive Virome Profiling of Apple Mosaic Disease-Affected Trees in Iran Using RT-PCR and Next-Generation Sequencing
by Anahita Hamedi, Farshad Rakhshandehroo, Mohammad Reza Safarnejad, Gholamreza Salehi Jouzani, Amani Ben Slimen and Toufic Elbeaino
Viruses 2025, 17(7), 979; https://doi.org/10.3390/v17070979 - 13 Jul 2025
Viewed by 428
Abstract
Apples (Malus domestica), one of Iran’s oldest cultivated fruit crops, hold considerable economic importance. In this study, 170 apple leaf samples representing various commercial cultivars were collected across the country. RT-PCR screening targeted five common apple-infecting viruses and two viroids: apple [...] Read more.
Apples (Malus domestica), one of Iran’s oldest cultivated fruit crops, hold considerable economic importance. In this study, 170 apple leaf samples representing various commercial cultivars were collected across the country. RT-PCR screening targeted five common apple-infecting viruses and two viroids: apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple green crinkle-associated virus (AGCaV), apple mosaic virus (ApMV), apple scar skin viroid (ASSVd), and hop stunt viroid (HSVd). To identify additional or novel agents, 40 RT-PCR-negative samples were pooled into two composite groups and analyzed using next-generation sequencing (NGS). NGS was also performed on individual samples with mixed infections to retrieve full genomes. RT-PCR confirmed the presence of ACLSV, ASPV, ASGV, AGCaV, ApMV, and HSVd. NGS further revealed three additional pathogens: citrus concave gum-associated virus (CCGaV), apple hammerhead viroid (AHVd), and apricot vein clearing-associated virus (AVCaV), which were subsequently detected across the collection by RT-PCR. AGCaV was most prevalent (47.6%), followed by ACLSV (45.8%), HSVd (27.6%), AVCaV (20.5%), ASGV (17%), AHVd (15.2%), ASPV (14.1%), CCGaV (4.7%), and ApMV (3.5%). Mixed infections occurred in 67% of samples. Phylogenetic analysis based on CP genes (ACLSV, ASGV, AGCaV) and full genomes (AVCaV, AHVd) clustered Iranian isolates together, suggesting a common origin. This is the first report in Iran of AGCaV, CCGaV, ApMV, and AVCaV in apple, and notably, the first global report of AVCaV in a non-Prunus host. The findings provide the first comprehensive assessment of the sanitary status of apple trees in Iran. Full article
(This article belongs to the Special Issue Viral Diseases of Major Crops)
Show Figures

Figure 1

19 pages, 5696 KiB  
Article
The Antifungal Activity and Mechanism of Dehydroabietic Acid Against Alternaria alternata Causing Poplar Leaf Spot
by Yun-Ze Chen, Yun-Di Zhang, Cheng Chen, Qiu-Er Sa, Jing Yang and Guo-Cai Zhang
J. Fungi 2025, 11(4), 265; https://doi.org/10.3390/jof11040265 - 28 Mar 2025
Viewed by 540
Abstract
Dehydroabietic acid (DHA) is a secondary metabolite isolated from rosin, which has certain antifungal activity, but its inhibitory effects against Alternaria alternata are unclear. In the present study, we found that DHA inhibited the mycelial growth of A. alternata, Botrytis cinerea, [...] Read more.
Dehydroabietic acid (DHA) is a secondary metabolite isolated from rosin, which has certain antifungal activity, but its inhibitory effects against Alternaria alternata are unclear. In the present study, we found that DHA inhibited the mycelial growth of A. alternata, Botrytis cinerea, Valsa mali, Pestalotiopsis neglecta, and Fusarium oxysporum in a concentration-dependent manner, with the best inhibitory effect against A. alternata. Moreover, DHA can also inhibit the spore germination of A. alternata. Then, in vivo inoculation experiments showed that the leaf lesions of Populus alba gradually decreased with the increase in DHA concentration. The disease of P. alba leaves inoculated with A. alternata was not obvious after treatment with 800 mg/L DHA. The scanning electron microscopy showed that the mycelial morphology was abnormal, with crinkles and depressions. Meanwhile, the relative conductivity, soluble protein content, malondialdehyde content and hydrogen peroxide content of A. alternata were significantly increased after DHA treatment, which affected the integrity of the cell membrane and increased the permeability of A. alternata, resulting in a large leakage of intracellular substances, exacerbating the degree of lipid peroxidation of the cell membrane of A. alternata and causing oxidative damage to cells. The enzyme activity assay showed that treatment with 56.015 mg/L (EC50) DHA significantly reduced the activities of antioxidant enzymes (superoxide dismutase, catalase, peroxidase) and cell-wall-degrading enzymes (endoglucanase, polygalacturonase, pectin lyase) in A. alternata (p < 0.05), resulting in a decrease in the activity of pathogenic fungi, as well as a reduction in the ability of the A. alternata to degrade the cell wall of the host plant, which led to a decrease in the ability of the A. alternata to infest the host plant. Moreover, the decrease in the relative expression of defense-related enzyme genes (AaSOD, AaPOD, AaCAT) and pathogenicity-related enzyme genes (AaPL, AaPG) was consistent with the enzyme activity results. Thus, the present study revealed the fungicidal activity and mechanism of DHA against A. alternata and the potential of DHA to be developed as a plant-derived antifungal agent was established. Full article
(This article belongs to the Special Issue Integrated Management of Plant Fungal Diseases)
Show Figures

Figure 1

13 pages, 3594 KiB  
Article
Candidatus Phytoplasma solani’ Predicted Effector SAP11-like Alters Morphology of Transformed Arabidopsis Plants and Interacts with AtTCP2 and AtTCP4 Plant Transcription Factors
by Marina Drcelic, Andreja Skiljaica, Bruno Polak, Natasa Bauer and Martina Seruga Music
Pathogens 2024, 13(10), 893; https://doi.org/10.3390/pathogens13100893 - 11 Oct 2024
Cited by 3 | Viewed by 1843
Abstract
Phytoplasmas are obligate intracellular pathogens that profoundly modify the development, physiology and behavior of their hosts by secreting effector proteins that disturb signal pathways and interactions both in plant and insect hosts. The characterization of effectors and their host-cell targets was performed for [...] Read more.
Phytoplasmas are obligate intracellular pathogens that profoundly modify the development, physiology and behavior of their hosts by secreting effector proteins that disturb signal pathways and interactions both in plant and insect hosts. The characterization of effectors and their host-cell targets was performed for only a few phytoplasma species where it was shown that the SAP11 effector alters plant morphology by destabilizing plant transcription factors: TEOSINTE BRANCHED 1-CYCLOIDEA-PROLIFERATING CELL FACTOR (TCPs). To explore the possible role of the SAP11-like effector from ‘Ca. P. solani’, we used Arabidopsis thaliana as a model plant. The SAP11-like effector gene from ‘Ca. P. solani’ was introduced into arabidopsis by floral dip and transgenic lines were regenerated. In planta bimolecular fluorescence complementation (BIFC) assays in agroinfiltrated Nicotiana benthamiana leaf cells were conducted to detect interactions between SAP11-like and AtTCP2 and AtTCP4 using confocal microscopy. SAP11-like from ‘Ca. P. solani’ induced significant phenotypic changes in arabidopsis, including crinkled leaves with reduced size, lower biomass, more axillary branches, changes in root morphology, and crinkled and smaller siliques. The BIFC assays proved in planta interaction of SAP11-like effector with AtTCP2 and AtTCP4. To our knowledge, this is the first characterization of the interaction between the ‘Ca. P. solani’ effector and plant transcription factors, suggesting a potential mechanism of modulating plant development and induction of characteristic symptoms in ‘Ca. P. solani’-infected plants. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

11 pages, 2565 KiB  
Article
V2 Protein Enhances the Replication of Genomic DNA of Mulberry Crinkle Leaf Virus
by Zhen-Ni Yin, Pei-Yu Han, Tao-Tao Han, Ying Huang, Jing-Jing Yang, Meng-Si Zhang, Miao Fang, Kui Zhong, Jian Zhang and Quan-You Lu
Int. J. Mol. Sci. 2024, 25(19), 10521; https://doi.org/10.3390/ijms251910521 - 29 Sep 2024
Cited by 1 | Viewed by 1381
Abstract
Mulberry crinkle leaf virus (MCLV), identified in mulberry plants (Morus alba L.), is a member of the genus Mulcrilevirus in the family Geminiviridae. The functions of the V2 protein encoded by MCLV remain unclear. Here, Agrobacterium-mediated infectious clones of a [...] Read more.
Mulberry crinkle leaf virus (MCLV), identified in mulberry plants (Morus alba L.), is a member of the genus Mulcrilevirus in the family Geminiviridae. The functions of the V2 protein encoded by MCLV remain unclear. Here, Agrobacterium-mediated infectious clones of a wild-type MCLV vII (MCLVWT) and two V2 mutant MCLV vIIs, including MCLVmV2 (with a mutation of the start codon of the V2 ORF) and MCLVdV2 (5′-end partial deletion of the V2 ORF sequence), were constructed to investigate the roles of V2 both in planta and at the cellular level. Although all three constructs (pCA-1.1MCLVWT, pCA-MCLVmV2, and pCA-MCLVdV2) were able to infect both natural host mulberry plants and experimental tomato plants systematically, the replication of the MCLVmV2 and MCLVdV2 genomes in these hosts was significantly reduced compared to that of MCLVWT. Similarly, the accumulation of MCLVmV2 and MCLVdV2 in protoplasts of Nicotiana benthamiana plants was significantly lower than that of MCLVWT either 24 h or 48 h post-transfection. A complementation experiment further confirmed that the decreased accumulation of MCLV in the protoplasts was due to the absence of V2 expression. These results revealed that MCLV-encoded V2 greatly enhances the level of MCLV DNA accumulation and is designated the replication enhancer protein of MCLV. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 7581 KiB  
Article
Biological and Molecular Characterization of the Cucumber Mosaic Virus Infecting Purple Coneflowers in China
by Bin Zhang, Liping Chen, Pingping Sun, Zhengnan Li and Lei Zhang
Agronomy 2024, 14(8), 1709; https://doi.org/10.3390/agronomy14081709 - 3 Aug 2024
Viewed by 1554
Abstract
Purple coneflower (Echinacea purpurea L.), which is a perennial herbaceous plant belonging to the Asteraceae family, is extensively cultivated because of its medicinal applications. However, in Hohhot, Inner Mongolia, China, purple coneflowers in the field exhibited symptoms such as mottle, mosaic, and [...] Read more.
Purple coneflower (Echinacea purpurea L.), which is a perennial herbaceous plant belonging to the Asteraceae family, is extensively cultivated because of its medicinal applications. However, in Hohhot, Inner Mongolia, China, purple coneflowers in the field exhibited symptoms such as mottle, mosaic, and crinkle. This study aimed to explore the biological and molecular characteristics of the cucumber mosaic virus (CMV) infecting the purple coneflowers in China. We observed isometric particles approximately 30 nm in diameter in the symptomatic leaf specimens. Infection with the CMV was confirmed via high-throughput sequencing and RT-PCR validation. Mechanical inoculation assays demonstrated that the CMV-SGJ isolate could infect both Nicotiana benthamiana and Nicotiana tabacum. Three viral genomic components were identified: RNA1 with 3321 nucleotides, RNA2 with 3048 nucleotides, and RNA3 with 2209 nucleotides. Phylogenetic analysis revealed that the CMV-SGJ isolate clustered into phylogenetic subgroup IA, exhibiting a nucleotide identity of 92.2–95% with subgroup IA CMV isolates in GenBank. This report is the first documentation of the complete genome of the CMV infecting purple flowers in China. Full article
Show Figures

Figure 1

12 pages, 8317 KiB  
Article
Loquat (Eriobotrya japonica) Is a New Natural Host of Tomato Mosaic Virus and Citrus Exocortis Viroid
by Chengyong He, Lingli Wang, Yarui Li, Kangyu Zhou, Ke Zhao, Dong Chen, Jing Li, Haiyan Song and Meiyan Tu
Plants 2024, 13(14), 1965; https://doi.org/10.3390/plants13141965 - 18 Jul 2024
Viewed by 1767
Abstract
Loquat leaves exhibiting obvious yellowing, blistering, mosaic, leaf upward cupping, crinkle, and leaf narrowing were identified in Panzhihua City, Sichuan Province, China. High-throughput sequencing (HTS) with the ribo-depleted cDNA library was employed to identify the virome in the loquat samples; only tomato mosaic [...] Read more.
Loquat leaves exhibiting obvious yellowing, blistering, mosaic, leaf upward cupping, crinkle, and leaf narrowing were identified in Panzhihua City, Sichuan Province, China. High-throughput sequencing (HTS) with the ribo-depleted cDNA library was employed to identify the virome in the loquat samples; only tomato mosaic virus (ToMV) and citrus exocortis viroid (CEVd) were identified in the transcriptome data. The complete genome sequence of ToMV and CEVd were obtained from the loquat leaves. The full-length genome of the ToMV-loquat is 6376 nt and comprises four open reading frames (ORFs) encoding 183 kDa protein, RNA-dependent RNA polymerase (RdRp), movement protein (MP), and coat protein (CP), respectively. A pairwise identity analysis showed that the complete sequence of the ToMV-loquat had a nucleotide identity between 98.5 and 99.3% with other ToMV isolates. A phylogenetic analysis indicated that ToMV-loquat was more closely related to ToMV-IFA9 (GenBank No. ON156781). A CEVd sequence with 361 nt in length was amplified based on the HTS contigs, sequence alignment indicated CEVd-loquat had the highest identity with the strain of CEVd-Balad (GenBank No. PP869624), phylogenetic analysis showed that CEVd-loquat was more closely related to CEVd-lettuce (GenBank No. ON993891). This significant discovery marks the first documentation and characterization of ToMV and CEVd infecting loquat plants, shedding light on potential threats to loquat cultivation and providing insights for disease management strategies. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

11 pages, 549 KiB  
Article
Viruses of Apple Are Seedborne but Likely Not Vertically Transmitted
by Anna Wunsch, Bailey Hoff, Mario Miranda Sazo, Janet van Zoeren, Kurt H. Lamour, Oscar P. Hurtado-Gonzales and Marc Fuchs
Viruses 2024, 16(1), 95; https://doi.org/10.3390/v16010095 - 7 Jan 2024
Cited by 6 | Viewed by 2633
Abstract
Many viruses occur in apple (Malus domestica (Borkh.)), but no information is available on their seed transmissibility. Here, we report that six viruses infecting apple trees, namely, apple chlorotic leaf spot virus (ACLSV), apple green crinkle-associated virus (AGCaV), apple rubbery wood virus [...] Read more.
Many viruses occur in apple (Malus domestica (Borkh.)), but no information is available on their seed transmissibility. Here, we report that six viruses infecting apple trees, namely, apple chlorotic leaf spot virus (ACLSV), apple green crinkle-associated virus (AGCaV), apple rubbery wood virus 2 (ARWV2), apple stem grooving virus (ASGV), apple stem pitting virus (ASPV), and citrus concave gum-associated virus (CCGaV) occur in seeds extracted from apple fruits produced by infected maternal trees. Reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (RT-qPCR) assays revealed the presence of these six viruses in untreated apple seeds with incidence rates ranging from 20% to 96%. Furthermore, ASPV was detected by RT-PCR in the flesh and peel of fruits produced by infected maternal trees, as well as from seeds extracted from apple fruits sold for fresh consumption. Finally, a large-scale seedling grow-out experiment failed to detect ACLSV, ASGV, or ASPV in over 1000 progeny derived from sodium hypochlorite surface sterilized seeds extracted from fruits produced by infected maternal trees, suggesting no detectable transmission via embryonic tissue. This is the first report on the seedborne nature of apple-infecting viruses. Full article
(This article belongs to the Special Issue Emerging Fruit and Vegetable Viruses 2023)
Show Figures

Figure 1

14 pages, 2297 KiB  
Review
Urdbean Leaf Crinkle Virus: A Mystery Waiting to Be Solved
by Naimuddin Kamaal, Mohammad Akram, Aditya Pratap, Deepender Kumar and Ramakrishnan M. Nair
Viruses 2023, 15(10), 2120; https://doi.org/10.3390/v15102120 - 19 Oct 2023
Cited by 4 | Viewed by 2672
Abstract
Urdbean leaf crinkle disease (ULCD) affects mainly the urdbean or blackgram (Vigna mungo (L.) Hepper) causing distinct symptoms that often result in serious yield losses. It has been known to occur for more than five decades and is considered to be of [...] Read more.
Urdbean leaf crinkle disease (ULCD) affects mainly the urdbean or blackgram (Vigna mungo (L.) Hepper) causing distinct symptoms that often result in serious yield losses. It has been known to occur for more than five decades and is considered to be of viral etiology. The identity of the causal agent, often referred to as the urdbean leaf crinkle virus, is not unequivocally proved. There are few attempts to characterize the causal agent of ULCD; however, there is no unanimity in the results. Recent attempts to characterize the causal agent of ULCD using next-generation sequencing of the virome of ULCD-affected urdbean plants indicated the involvement of cowpea mild mottle virus; however, without conforming through Koch’s postulates, the etiology of ULCD remains inconclusive. Claims of different insect vectors involved in the transmission of ULCD make this disease even more mysterious. The information available so far indicates that either two different viruses are causing ULCD or a mixture of viruses is involved. The identity of the virus/es causing ULCD still remains to be unambiguously ascertained. In this review, we attempt to analyze information on the various aspects of ULCD. Full article
(This article belongs to the Special Issue Plant Virus Epidemiology and Control 2023)
Show Figures

Figure 1

16 pages, 3182 KiB  
Article
The Identification of Viral Pathogens in a Physostegia virginiana Plant Using High-Throughput RNA Sequencing
by Jinxi Dong, Yuanling Chen, Yi Xie, Mengji Cao, Shuai Fu and Jianxiang Wu
Viruses 2023, 15(9), 1972; https://doi.org/10.3390/v15091972 - 21 Sep 2023
Cited by 4 | Viewed by 2107
Abstract
Physostegia virginiana is an important ornamental and cut-flower plant in China. Its commonly used method of clonal propagation leads to virus accumulation in this plant. However, which viruses can infect the Physostegia virginiana plant remains to be illuminated. In this work, five viral [...] Read more.
Physostegia virginiana is an important ornamental and cut-flower plant in China. Its commonly used method of clonal propagation leads to virus accumulation in this plant. However, which viruses can infect the Physostegia virginiana plant remains to be illuminated. In this work, five viral pathogens in a Physostegia virginiana plant with virus-like symptoms of yellow, shriveled, and curled leaves were identified using RNA-seq, bioinformatics, and molecular biological techniques. These techniques allowed us to identify five viruses comprising one known alfalfa mosaic virus (AMV) and four novel viruses. The novel viruses include a virus belonging to the genus Fabavirus, temporarily named Physostegia virginiana crinkle-associated virus 1 (PVCaV1); two viruses belonging to the genus Caulimovirus, temporarily named Physostegia virginiana caulimovirus 1 and 2 (PVCV1 and PVCV2); and a virus belonging to the genus Fijivirus, temporarily named Physostegia virginiana fijivirus (PVFV). The genome sequences of PVCaV1, PVCV1, and PVCV2, and the partial genome sequence of PVFV were identified. Genome organizations and genetic evolutionary relationships of all four novel viruses were analyzed. PVCaV1 has a relatively close evolutionary relationship with five analyzed fabiviruses. PVCV1 and PVCV2 have separately a closest evolutionary relationship with lamium leaf distortion-associated virus (LLDAV) and figwort mosaic virus (FMV), and PVFV has a close evolutionary relationship with the five analyzed fijiviruses. Additionally, PVCaV1 can infect Nicotiana benthamiana plants via friction inoculation. The findings enrich our understanding of Physostegia virginiana viruses and contribute to the prevention and control of Physostegia virginiana viral diseases. Full article
(This article belongs to the Special Issue Emerging Fruit and Vegetable Viruses 2023)
Show Figures

Figure 1

15 pages, 3539 KiB  
Article
High-Throughput Sequencing Identified Distinct Bipartite and Monopartite Begomovirus Variants Associated with DNA-Satellites from Tomato and Muskmelon Plants in Saudi Arabia
by Khalid A. AlHudaib, Mostafa I. Almaghasla, Sherif M. El-Ganainy, Muhammad Arshad, Nizar Drou and Muhammad N. Sattar
Plants 2023, 12(1), 6; https://doi.org/10.3390/plants12010006 - 20 Dec 2022
Cited by 8 | Viewed by 4607
Abstract
The studies on the prevalence and genetic diversity of begomoviruses in Saudi Arabia are minimal. In this study, field-grown symptomatic tomato and muskmelon plants were collected, and initially, begomovirus infection was confirmed by the core coat protein sequences. Four tomato and two muskmelon [...] Read more.
The studies on the prevalence and genetic diversity of begomoviruses in Saudi Arabia are minimal. In this study, field-grown symptomatic tomato and muskmelon plants were collected, and initially, begomovirus infection was confirmed by the core coat protein sequences. Four tomato and two muskmelon plants with viral infections were further evaluated for Illumina MiSeq sequencing, and twelve sequences (2.7–2.8 kb) equivalent to the full-length DNA-A or DNA-B components of begomoviruses were obtained along with eight sequences (~1.3–1.4 kb) equivalent to the begomovirus-associated DNA-satellite components. Four begomovirus sequences obtained from tomato plants were variants of tomato yellow leaf curl virus (TYLCV) with nt sequence identities of 95.3–100%. Additionally, two tomato plants showed a mixed infection of TYLCV and cotton leaf curl Gezira virus (CLCuGeV), okra yellow crinkle Cameroon alphasatellite (OYCrCMA), and okra leaf curl Oman betasatellite (OLCuOMB). Meanwhile, from muskmelon plants, two sequences were closely related (99–99.6%) to the tomato leaf curl Palampur virus (ToLCPalV) DNA-A, whereas two other sequences showed 97.9–100% sequence identities to DNA-B of ToLCPalV, respectively. Complete genome sequences of CLCuGeV and associated DNA-satellites were also obtained from these muskmelon plants. The nt sequence identities of the CLCuGeV, OYCrCMA, and OLCuOMB isolates obtained were 98.3–100%, 99.5–100%, and 95.6–99.7% with their respective available variants. The recombination was only detected in TYLCV and OLCuOMB isolates. To our knowledge, this is the first identification of a mixed infection of bipartite and monopartite begomoviruses associated with DNA-satellites from tomato and muskmelon in Saudi Arabia. The begomovirus variants reported in this study were clustered with Iranian isolates of respective begomovirus components in the phylogenetic dendrogram. Thus, the Iranian agroecological route can be a possible introduction of these begomoviruses and/or their associated DNA-satellites into Saudi Arabia. Full article
Show Figures

Figure 1

15 pages, 4581 KiB  
Article
Beyond Destabilizing Activity of SAP11-like Effector of Candidatus Phytoplasma mali Strain PM19
by Kajohn Boonrod, Alisa Strohmayer, Timothy Schwarz, Mario Braun, Tristan Tropf and Gabi Krczal
Microorganisms 2022, 10(7), 1406; https://doi.org/10.3390/microorganisms10071406 - 12 Jul 2022
Cited by 5 | Viewed by 2163
Abstract
It was shown that the SAP11 effector of different Candidatus Phytoplasma can destabilize some TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), resulting in plant phenotypes such as witches’ broom and crinkled leaves. Some SAP11 exclusively localize in the nucleus, while the others localize in the [...] Read more.
It was shown that the SAP11 effector of different Candidatus Phytoplasma can destabilize some TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), resulting in plant phenotypes such as witches’ broom and crinkled leaves. Some SAP11 exclusively localize in the nucleus, while the others localize in the cytoplasm and the nucleus. The SAP11-like effector of Candidatus Phytoplasma mali strain PM19 (SAP11PM19) localizes in both compartments of plant cells. We show here that SAP11PM19 can destabilize TCPs in both the nucleus and the cytoplasm. However, expression of SAP11PM19 exclusively in the nucleus resulted in the disappearance of leaf phenotypes while still showing the witches’ broom phenotype. Moreover, we show that SAP11PM19 can not only destabilize TCPs but also relocalizes these proteins in the nucleus. Interestingly, three different transgenic Nicotiana species expressing SAP11PM19 show all the same witches’ broom phenotype but different leaf phenotypes. A possible mechanism of SAP11-TCP interaction is discussed. Full article
(This article belongs to the Special Issue Molecular Interactions between Plant Pathogens and Crops)
Show Figures

Figure 1

13 pages, 1781 KiB  
Article
Persistent, and Asymptomatic Viral Infections and Whitefly-Transmitted Viruses Impacting Cantaloupe and Watermelon in Georgia, USA
by Ismaila Adeyemi Adeleke, Saritha Raman Kavalappara, Cecilia McGregor, Rajagopalbabu Srinivasan and Sudeep Bag
Viruses 2022, 14(6), 1310; https://doi.org/10.3390/v14061310 - 15 Jun 2022
Cited by 12 | Viewed by 3863
Abstract
Cucurbits in Southeastern USA have experienced a drastic decline in production over the years due to the effect of economically important viruses, mainly those transmitted by the sweet potato whitefly (Bemisia tabaci Gennadius). In cucurbits, these viruses can be found as a [...] Read more.
Cucurbits in Southeastern USA have experienced a drastic decline in production over the years due to the effect of economically important viruses, mainly those transmitted by the sweet potato whitefly (Bemisia tabaci Gennadius). In cucurbits, these viruses can be found as a single or mixed infection, thereby causing significant yield loss. During the spring of 2021, surveys were conducted to evaluate the incidence and distribution of viruses infecting cantaloupe (n = 80) and watermelon (n = 245) in Georgia. Symptomatic foliar tissues were collected from six counties and sRNA libraries were constructed from seven symptomatic samples. High throughput sequencing (HTS) analysis revealed the presence of three different new RNA viruses in Georgia: cucumis melo endornavirus (CmEV), cucumis melo amalgavirus (CmAV1), and cucumis melo cryptic virus (CmCV). Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the presence of CmEV and CmAV1 in 25% and 43% of the total samples tested, respectively. CmCV was not detected using RT-PCR. Watermelon crinkle leaf-associated virus 1 (WCLaV-1), recently reported in GA, was detected in 28% of the samples tested. Furthermore, RT-PCR and PCR analysis of 43 symptomatic leaf tissues collected from the fall-grown watermelon in 2019 revealed the presence of cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and cucurbit leaf crumple virus (CuLCrV) at 73%, 2%, and 81%, respectively. This finding broadens our knowledge of the prevalence of viruses in melons in the fall and spring, as well as the geographical expansion of the WCLaV-1 in GA, USA. Full article
(This article belongs to the Special Issue Emerging Fruit and Vegetable Viruses)
Show Figures

Figure 1

15 pages, 3990 KiB  
Article
The PagKNAT2/6b-PagBOP1/2a Regulatory Module Controls Leaf Morphogenesis in Populus
by Yanqiu Zhao, Yifan Zhang, Weilin Zhang, Yangxin Shi, Cheng Jiang, Xueqin Song, Gerald A. Tuskan, Wei Zeng, Jin Zhang and Mengzhu Lu
Int. J. Mol. Sci. 2022, 23(10), 5581; https://doi.org/10.3390/ijms23105581 - 17 May 2022
Cited by 7 | Viewed by 2544
Abstract
Leaf morphogenesis requires precise regulation of gene expression to achieve organ separation and flat-leaf form. The poplar KNOTTED-like homeobox gene PagKNAT2/6b could change plant architecture, especially leaf shape, in response to drought stress. However, its regulatory mechanism in leaf development remains unclear. In [...] Read more.
Leaf morphogenesis requires precise regulation of gene expression to achieve organ separation and flat-leaf form. The poplar KNOTTED-like homeobox gene PagKNAT2/6b could change plant architecture, especially leaf shape, in response to drought stress. However, its regulatory mechanism in leaf development remains unclear. In this work, gene expression analyses of PagKNAT2/6b suggested that PagKNAT2/6b was highly expressed during leaf development. Moreover, the leaf shape changes along the adaxial-abaxial, medial-lateral, and proximal-distal axes caused by the mis-expression of PagKNAT2/6b demonstrated that its overexpression (PagKNAT2/6b OE) and SRDX dominant repression (PagKNAT2/6b SRDX) poplars had an impact on the leaf axial development. The crinkle leaf of PagKNAT2/6b OE was consistent with the differential expression gene PagBOP1/2a (BLADE-ON-PETIOLE), which was the critical gene for regulating leaf development. Further study showed that PagBOP1/2a was directly activated by PagKNAT2/6b through a novel cis-acting element “CTCTT”. Together, the PagKNAT2/6b-PagBOP1/2a module regulates poplar leaf morphology by affecting axial development, which provides insights aimed at leaf shape modification for further improving the drought tolerance of woody plants. Full article
Show Figures

Figure 1

17 pages, 4550 KiB  
Article
The Effect of the Anticipated Nuclear Localization Sequence of ‘Candidatus Phytoplasma mali’ SAP11-like Protein on Localization of the Protein and Destabilization of TCP Transcription Factor
by Alisa Strohmayer, Timothy Schwarz, Mario Braun, Gabi Krczal and Kajohn Boonrod
Microorganisms 2021, 9(8), 1756; https://doi.org/10.3390/microorganisms9081756 - 17 Aug 2021
Cited by 10 | Viewed by 2891
Abstract
SAP11 is an effector protein that has been identified in various phytoplasma species. It localizes in the plant nucleus and can bind and destabilize TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors. Although SAP11 of different phytoplasma species share similar activities, their protein sequences [...] Read more.
SAP11 is an effector protein that has been identified in various phytoplasma species. It localizes in the plant nucleus and can bind and destabilize TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors. Although SAP11 of different phytoplasma species share similar activities, their protein sequences differ greatly. Here, we demonstrate that the SAP11-like protein of ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) strain PM19 localizes into the plant nucleus without requiring the anticipated nuclear localization sequence (NLS). We show that the protein induces crinkled leaves and siliques, and witches’ broom symptoms, in transgenic Arabidopsis thaliana (A. thaliana) plants and binds to six members of class I and all members of class II TCP transcription factors of A. thaliana in yeast two-hybrid assays. We also identified a 17 amino acid stretch previously predicted to be a nuclear localization sequence that is important for the binding of some of the TCPs, which results in a crinkled leaf and silique phenotype in transgenic A. thaliana. Moreover, we provide evidence that the SAP11-like protein has a destabilizing effect on some TCPs in vivo. Full article
(This article belongs to the Special Issue Genetic, Metabolic and Microbial Activity in Plants)
Show Figures

Figure 1

15 pages, 5078 KiB  
Article
Metagenomic Analysis of Marigold: Mixed Infection Including Two New Viruses
by Hang Yin, Zheng Dong, Xulong Wang, Shuhao Lu, Fei Xia, Annihaer Abuduwaili, Yang Bi and Yongqiang Li
Viruses 2021, 13(7), 1254; https://doi.org/10.3390/v13071254 - 28 Jun 2021
Cited by 6 | Viewed by 3983
Abstract
Marigold plants with symptoms of mosaic, crinkle, leaf curl and necrosis were observed and small RNA and ribo-depleted total RNA deep sequencing were conducted to identify the associated viruses. Broad bean wilt virus 2, cucumber mosaic virus, turnip mosaic virus, a new potyvirus [...] Read more.
Marigold plants with symptoms of mosaic, crinkle, leaf curl and necrosis were observed and small RNA and ribo-depleted total RNA deep sequencing were conducted to identify the associated viruses. Broad bean wilt virus 2, cucumber mosaic virus, turnip mosaic virus, a new potyvirus tentatively named marigold mosaic virus (MMV) and a new partitivirus named as marigold cryptic virus (MCV) were finally identified. Complete genome sequence analysis showed MMV was 9811 nt in length, encoding a large polyprotein with highest aa sequence identity (57%) with the putative potyvirus polygonatumkingianum virus 1. Phylogenetic analysis with the definite potyviruses based on the polyprotein sequence showed MMV clustered closest to plum pox virus. The complete genome of MCV comprised of dsRNA1 (1583 bp) and dsRNA2 (1459 bp), encoding the RNA-dependent RNA polymerase (RdRp), and coat protein (CP), respectively. MCV RdRp shared the highest (75.7%) aa sequence identity with the unclassified partitivirus ambrosia cryptic virus 2, and 59.0%, 57.1%, 56.1%, 54.5% and 33.7% with the corresponding region of the definite delta-partitiviruses, pepper cryptic virus 2, beet cryptic virus 3, beet cryptic virus 2, pepper cryptic virus 1 and fig cryptic virus, respectively. Phylogenetic analysis based on the RdRp aa sequence showed MCV clustered into the delta-partitivirus group. These findings enriched our knowledge of viruses infecting marigold, but the association of the observed symptom and the identified viruses and the biological characterization of the new viruses should be further investigated. Full article
(This article belongs to the Special Issue Genomics in Plant Viral Research)
Show Figures

Figure 1

Back to TopTop