Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,712)

Search Parameters:
Keywords = layered materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 (registering DOI) - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

10 pages, 1346 KiB  
Article
Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications
by Shiyi He, Silong Zhang, Liang Chen, Yang Li, Fangbao Wang, Nan Zhang, Naizhe Zhao and Xiaoping Ouyang
Materials 2025, 18(15), 3691; https://doi.org/10.3390/ma18153691 (registering DOI) - 6 Aug 2025
Abstract
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low [...] Read more.
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low luminous intensity and significant self-absorption. Therefore, an enhanced method was proposed to tune the wavelength of materials via coating perovskite quantum dot (QD) films. Three-layer samples based on GZO were primarily investigated and characterized. Radioluminescence (RL) spectra from each face of the samples, as well as their decay times, were obtained. Lower temperatures further enhanced the luminous intensity of the samples. Its overall luminous intensity increased by 2.7 times at 60 K compared to room temperature. The changes in the RL processes caused by perovskite QD and low temperatures were discussed using the light tuning and transporting model. In addition, an experiment under a pico-second electron beam was conducted to verify their pulse response and decay time. Accordingly, the samples were successfully applied in beam state monitoring of nanosecond pulsed proton beams, which indicates that GZO wafer coating with perovskite QD films has broad application prospects in pulsed radiation detection. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

24 pages, 9695 KiB  
Article
Dynamic Response and Stress Evolution of RPC Slabs Protected by a Three-Layered Energy-Dissipating System Based on the SPH-FEM Coupled Method
by Dongmin Deng, Hanqing Zhong, Shuisheng Chen and Zhixiang Yu
Buildings 2025, 15(15), 2769; https://doi.org/10.3390/buildings15152769 - 6 Aug 2025
Abstract
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the [...] Read more.
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the sand cushion to enhance the composite system’s safety. A three-dimensional Smoothed Particle Hydrodynamics–Finite Element Method (SPH-FEM) coupled numerical model is developed in LS-DYNA (Livermore Software Technology Corporation, Livermore, CA, USA, version R13.1.1), with its validity rigorously verified. The dynamic response of rockfall impacts on the shed slab with composite cushions of various thicknesses is analyzed by varying the thickness of sand and EPS materials. To optimize the cushion design, a specific energy dissipation ratio (SEDR), defined as the energy dissipation rate per unit mass (η/M), is introduced as a key performance metric. Furthermore, the complicated interactional mechanism between the rockfall and the optimum-thickness composite system is rationally interpreted, and the energy dissipation mechanism of the composite cushion is revealed. Using logistic regression, the ultimate stress state of the reactive powder concrete (RPC) slab is methodically analyzed, accounting for the speed and mass of the rockfall. The results are indicative of the fact that the composite cushion not only has less dead weight but also exhibits superior impact resistance compared to the 90 cm sand cushions; the impact resistance performance index SEDR of the three-layered absorbing system reaches 2.5, showing a remarkable 55% enhancement compared to the sand cushion (SEDR = 1.61). Additionally, both the sand cushion and the RC protective slab effectively dissipate most of the impact energy, while the EPS material experiences relatively little internal energy build-up in comparison. This feature overcomes the traditional vulnerability of EPS subjected to impact loads. One of the highlights of the present investigation is the development of an identification model specifically designed to accurately assess the stress state of RPC slabs under various rockfall impact conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 9049 KiB  
Article
Study on the Wear Performance of 20CrMnTi Gear Steel with Different Penetration Gradient Positions
by Yingtao Zhang, Shaokui Wei, Wuxin Yang, Jiajian Guan and Gong Li
Materials 2025, 18(15), 3685; https://doi.org/10.3390/ma18153685 - 6 Aug 2025
Abstract
This study investigates the wear performance of 20CrMnTi steel, a commonly used material for spiral bevel gears, after heat treatment, with a focus on the microstructural evolution and wear behavior in both the surface and gradient direction of the carburized layer. The results [...] Read more.
This study investigates the wear performance of 20CrMnTi steel, a commonly used material for spiral bevel gears, after heat treatment, with a focus on the microstructural evolution and wear behavior in both the surface and gradient direction of the carburized layer. The results show that the microstructure composition in the gradient direction of the carburized layer gradually transitions from martensite and residual austenite to a martensite–bainite mixed structure, and eventually transforms to fully bainitic in the matrix. With the extension of carburizing time, both the effective carburized layer depth and the hardened layer depth significantly increase. Wear track morphology analysis reveals that the wear track depth gradually becomes shallower and narrower, and the wear rate increases significantly with increasing load. However, the friction coefficient shows little sensitivity to changes in carburizing time and load. Further investigations show that as the carburized layer depth increases, the carbon concentration and hardness of the samples gradually decrease, resulting in an increase in the average wear rate and a progressive worsening of wear severity. After the wear tests, different depths of plowing grooves, spalling, and fish-scale-like features were observed in the wear regions. Additionally, with the increase in load and carburized layer depth, both the width and depth of the wear tracks significantly increased. The research results provide a theoretical basis for optimizing the surface carburizing process of 20CrMnTi steel and improving its wear resistance. Full article
Show Figures

Figure 1

14 pages, 5990 KiB  
Article
Distinctive Features of the Buffer Capacity of Polyelectrolyte Microcapsules Formed on MnCO3 Core
by Aleksandr L. Kim, Alexey V. Dubrovskii and Sergey A. Tikhonenko
Polymers 2025, 17(15), 2149; https://doi.org/10.3390/polym17152149 - 6 Aug 2025
Abstract
The development of layer-by-layer polyelectrolyte microcapsules (PMCs) with defined buffer capacity (BC) is a key task for creating stable systems in biomedicine and materials science. Manganese carbonate (MnCO3), which shares properties with CaCO3 and the ability to form hollow structures, [...] Read more.
The development of layer-by-layer polyelectrolyte microcapsules (PMCs) with defined buffer capacity (BC) is a key task for creating stable systems in biomedicine and materials science. Manganese carbonate (MnCO3), which shares properties with CaCO3 and the ability to form hollow structures, represents a promising alternative. However, its interaction with polyelectrolytes and its influence on BC remain insufficiently studied. This research focuses on determining the BC of PMCs templated on MnCO3 cores under varying ionic strength (0.22–3 M NaCl) and temperature (60–90 °C), as well as comparing the results with PMCs templated on CaCO3 and PS cores. It was found that MnCO3-based PMCs (PMCMn) exhibit hybrid behavior between CaCO3- and PS-based PMCs: the BC dynamics of PMCMn and CaCO3-based PMCs (PMCCa) in water are identical. At different ionic strength at pH < 5, the BC of PMCMn and PS-based PMCs (PMCPS) remains unchanged, while at pH > 8.5, the BC of PMCMn increases only at 3 M NaCl. The BC of PMCMn remains stable under heating, whereas the BC of PMCCa and PMCPS decreases. These results confirm that the choice of core material dictates PMC functionality, paving the way for adaptive systems in biosensing and controlled drug delivery. Full article
(This article belongs to the Special Issue Stimuli-Responsive Polymers: Advances and Prospects)
Show Figures

Graphical abstract

16 pages, 2029 KiB  
Article
Multi-Objective Optimization of Biodegradable and Recyclable Composite PLA/PHA Parts
by Burak Kisin, Mehmet Kivanc Turan and Fatih Karpat
Polymers 2025, 17(15), 2147; https://doi.org/10.3390/polym17152147 - 6 Aug 2025
Abstract
Additive manufacturing (AM) techniques, especially fused deposition modeling (FDM), offer significant advantages in terms of cost, material efficiency, and design flexibility. In this study, the mechanical performance of biodegradable PLA/PHA composite samples produced via FDM was optimized by evaluating the influence of key [...] Read more.
Additive manufacturing (AM) techniques, especially fused deposition modeling (FDM), offer significant advantages in terms of cost, material efficiency, and design flexibility. In this study, the mechanical performance of biodegradable PLA/PHA composite samples produced via FDM was optimized by evaluating the influence of key printing parameters—layer height, printing orientation, and printing speed—on both the tensile and compressive strength. A full factorial design (3 × 3 × 3) was employed, and all of the samples were triplicated to ensure the consistency of the results. Grey relational analysis (GRA) was used as a multi-objective optimization method to determine the optimal parameter combinations. An analysis of variance (ANOVA) was also conducted to assess the statistical significance of each parameter. The ANOVA results revealed that printing orientation is the most significant parameter for both tensile and compression strength. The optimal parameter combination for maximizing mechanical properties was a layer height of 0.1 mm, an X printing orientation, and a printing speed of 50 mm/s. This study demonstrates the effectiveness of GRA in optimizing the mechanical properties of biodegradable composites and provides practical guidelines to produce environmentally sustainable polymer parts. Full article
(This article belongs to the Special Issue Sustainable Bio-Based and Circular Polymers and Composites)
Show Figures

Figure 1

19 pages, 2626 KiB  
Article
Process–Structure–Property Correlations in Twin-Screw Extrusion of Graphitic Negative Electrode Pastes for Lithium Ion Batteries Focusing on Kneading Concentrations
by Kristina Borzutzki, Markus Börner, Olga Fromm, Uta Rodehorst and Martin Winter
Batteries 2025, 11(8), 299; https://doi.org/10.3390/batteries11080299 - 5 Aug 2025
Abstract
A continuous mixing process with a twin-screw extruder was investigated for graphite-based negative electrode pastes for high-power applications. In the extrusion-based mixing process, the first kneading concentration is one of the key processing parameters for systematic optimization of relevant electrode paste properties like [...] Read more.
A continuous mixing process with a twin-screw extruder was investigated for graphite-based negative electrode pastes for high-power applications. In the extrusion-based mixing process, the first kneading concentration is one of the key processing parameters for systematic optimization of relevant electrode paste properties like viscosity and particle size distribution. For different active materials at a constant electrode paste composition, a clear correlation of increasing kneading concentration with decreasing viscosity can be observed up to a certain reversal point, initiating a change in the trend and the rheological behavior, thus indicating a process limit. The fundamental effects causing this change and the associated impact on materials and battery performance were evaluated by applying further analytical methods and electrochemical characterization. It is revealed that the change in viscosity is associated with enhanced de-agglomeration of the carbon black additive and with partial particle grinding of the active material and thus a partial change in the interlayer distance of graphene layers and, correspondingly, the electrochemical behavior of the active material. Beyond this, correlations between processing parameters and product properties are presented. Furthermore, indicators are suggested with which monitoring of the machine parameters enables the detection of changes in the electrode paste characteristics. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

22 pages, 2192 KiB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

17 pages, 5353 KiB  
Article
Evaluation of Hardfacing Layers Applied by FCAW-S on S355MC Steel and Their Influence on Its Mechanical Properties
by Fineas Morariu, Timotei Morariu, Alexandru Bârsan, Sever-Gabriel Racz and Dan Dobrotă
Materials 2025, 18(15), 3664; https://doi.org/10.3390/ma18153664 - 4 Aug 2025
Abstract
Enhancing the wear resistance of structural steels used in demanding industrial applications is critical for extending components’ lifespan and ensuring mechanical reliability. In this study, we investigated the influence of flux-cored arc welding (FCAW) hardfacing on the tensile behavior of S355MC steel. Protective [...] Read more.
Enhancing the wear resistance of structural steels used in demanding industrial applications is critical for extending components’ lifespan and ensuring mechanical reliability. In this study, we investigated the influence of flux-cored arc welding (FCAW) hardfacing on the tensile behavior of S355MC steel. Protective Fe-Cr-C alloy layers were deposited in one and two successive passes using automated FCAW, followed by tensile testing of specimens oriented at varying angles relative to the weld bead direction. The methodology integrated 3D scanning and digital image correlation to accurately capture geometric and deformation parameters. The experimental results revealed a consistent reduction in tensile strength and ductility in all the welded configurations compared to the base material. The application of the second weld layer further intensified this effect, while specimen orientation influenced the degree of mechanical degradation. Microstructural analysis confirmed carbide refinement and good adhesion, but also identified welding-induced defects and residual stresses as factors that contributed to performance loss. The findings highlight a clear trade-off between improved surface wear resistance and compromised structural properties, underscoring the importance of process optimization. Strategic selection of welding parameters and bead orientation is essential to balance functional durability with mechanical integrity in industrial applications. Full article
(This article belongs to the Special Issue Advances in Welding of Alloy and Composites (2nd Edition))
Show Figures

Figure 1

16 pages, 3189 KiB  
Article
Improved Block Element Method for Simulating Rock Failure
by Yan Han, Qingwen Ren, Lei Shen and Yajuan Yin
Appl. Sci. 2025, 15(15), 8636; https://doi.org/10.3390/app15158636 (registering DOI) - 4 Aug 2025
Abstract
As a discontinuous deformation method, the block element method (BEM) characterizes a material’s elastoplastic behavior through the constitutive relation of thin-layer elements between adjacent blocks. To realistically simulate rock damage paths, this work improves the traditional BEM by using random Voronoi polygonal grids [...] Read more.
As a discontinuous deformation method, the block element method (BEM) characterizes a material’s elastoplastic behavior through the constitutive relation of thin-layer elements between adjacent blocks. To realistically simulate rock damage paths, this work improves the traditional BEM by using random Voronoi polygonal grids for discrete modeling. This approach mitigates the distortion of damage paths caused by regular grids through the randomness of the Voronoi grids. As the innovation of this work, the iterative algorithm is combined with polygonal geometric features so that the area–perimeter fractal dimension can be introduced to optimize random Voronoi grids. The iterative control index can effectively improve the geometric characteristics of the grid while maintaining the necessary randomness. On this basis, a constitutive relation model that considers both normal and tangential damage is proposed. The entire process from damage initiation to macroscopic fracture failure in rocks is described using two independent damage surfaces and a damage relationship based on geometric mapping relationships. The analysis results are in good agreement with existing experimental data. Furthermore, the sensitivity method is used to analyze the influence of key mechanical parameters in the constitutive model. Full article
Show Figures

Figure 1

13 pages, 4335 KiB  
Article
Mg-Doped O3-Na[Ni0.6Fe0.25Mn0.15]O2 Cathode for Long-Cycle-Life Na-Ion Batteries
by Zebin Song, Hao Zhou, Yin Zhang, Haining Ji, Liping Wang, Xiaobin Niu and Jian Gao
Inorganics 2025, 13(8), 261; https://doi.org/10.3390/inorganics13080261 - 4 Aug 2025
Abstract
The O3-type layered oxide materials have the advantage of high specific capacity, which makes them more competitive in the practical application of cathode materials for sodium-ion batteries (SIBs). However, the existing reported O3-type layered oxide materials still have a complex irreversible phase transition [...] Read more.
The O3-type layered oxide materials have the advantage of high specific capacity, which makes them more competitive in the practical application of cathode materials for sodium-ion batteries (SIBs). However, the existing reported O3-type layered oxide materials still have a complex irreversible phase transition phenomenon, and the cycle life of batteries needs, with these materials, to be further improved to meet the requirements. Herein, we performed structural characterization and electrochemical performance tests on O3-NaNi0.6−xFe0.25Mn0.15MgxO2 (x = 0, 0.025, 0.05, and 0.075, denoted as NFM, NFM-2.5Mg, NFM-5.0Mg, and NFM-7.5Mg). The optimized NFM-2.5Mg has the largest sodium layer spacing, which can effectively enhance the transmission rate of sodium ions. Therefore, the reversible specific capacity can reach approximately 148.1 mAh g−1 at 0.2C, and it can even achieve a capacity retention of 85.4% after 100 cycles at 1C, demonstrating excellent cycle stability. Moreover, at a low temperature of 0 °C, it also can keep capacity retention of 86.6% after 150 cycles at 1C. This study provides a view on the cycling performance improvement of sodium-ion layered oxide cathodes with a high theoretical specific capacity. Full article
Show Figures

Graphical abstract

23 pages, 15881 KiB  
Article
Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution
by Xin Zheng, Ke Zheng, Jie Gao, Yan Wang, Pengtao An, Yongqiang Ma, Hongjun Hei, Shuaiwu Qu and Shengwang Yu
Materials 2025, 18(15), 3659; https://doi.org/10.3390/ma18153659 - 4 Aug 2025
Viewed by 17
Abstract
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of [...] Read more.
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of chemomechanical abrasive polishing (CMAP) with a slurry containing high-concentration H2O2 and varying mass percentages of SiO2 powder and diamond particles on surface morphology, surface roughness, material removal rate (MRR), and microstrain of PCD disks. The contributions of mechanical action, chemical action, and bubble cavitation to the CMAP process are analyzed. Scanning electron microscopy (SEM) observations indicate that large grains present in PCD are effectively eliminated after CMAP, leading to a notable reduction in surface roughness. The optimal results are obtained with 60 wt% SiO2 powder and 40 wt% diamond particles, achieving a maximum MRR of 1039.78 μm/(MPa·h) (15.5% improvement compared to the mechanical method) and a minimum surface roughness (Sa) of 3.59 μm. Additionally, the microstrain on the PCD disk shows a slight reduction following the CMAP process. The material removal mechanism is primarily attributed to mechanical action (70.8%), with bubble cavitation and chemical action (27.5%) and action of SiO2 (1.7%) playing secondary roles. The incorporation of SiO2 leads to the formation of a lubricating layer, significantly reducing surface damage and decreasing the surface roughness Sa to 1.39 µm. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

23 pages, 2295 KiB  
Review
Advances in Interfacial Engineering and Structural Optimization for Diamond Schottky Barrier Diodes
by Shihao Lu, Xufang Zhang, Shichao Wang, Mingkun Li, Shuopei Jiao, Yuesong Liang, Wei Wang and Jing Zhang
Materials 2025, 18(15), 3657; https://doi.org/10.3390/ma18153657 - 4 Aug 2025
Viewed by 52
Abstract
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant [...] Read more.
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant attention due to their simple architecture and superior rectifying characteristics. This review systematically summarizes recent advances in diamond SBDs, focusing on both metal–semiconductor (MS) and metal–interlayer–semiconductor (MIS) configurations. For MS structures, we critically analyze the roles of single-layer metals (including noble metals, transition metals, and other metals) and multilayer metals in modulating Schottky barrier height (SBH) and enhancing thermal stability. However, the presence of interface-related issues such as high densities of surface states and Fermi level pinning often leads to poor control of the SBH, limiting device performance and reliability. To address these challenges and achieve high-quality metal/diamond interfaces, researchers have proposed various interface engineering strategies. In particular, the introduction of interfacial layers in MIS structures has emerged as a promising approach. For MIS architectures, functional interlayers—including high-k materials (Al2O3, HfO2, SnO2) and low-work-function materials (LaB6, CeB6)—are evaluated for their efficacy in interface passivation, barrier modulation, and electric field control. Terminal engineering strategies, such as field-plate designs and surface termination treatments, are also highlighted for their role in improving breakdown voltage. Furthermore, we emphasize the limitations in current parameter extraction from current–voltage (I–V) properties and call for a unified new method to accurately determine SBH. This comprehensive analysis provides critical insights into interface engineering strategies and evaluation protocols for high-performance diamond SBDs, paving the way for their reliable deployment in extreme conditions. Full article
Show Figures

Graphical abstract

22 pages, 6962 KiB  
Article
Suppression of Delamination in CFRP Laminates with Ply Discontinuity Using Polyamide Mesh
by M. J. Mohammad Fikry, Keisuke Iizuka, Hayato Nakatani, Satoru Yoneyama, Vladimir Vinogradov, Jun Koyanagi and Shinji Ogihara
J. Compos. Sci. 2025, 9(8), 414; https://doi.org/10.3390/jcs9080414 - 4 Aug 2025
Viewed by 109
Abstract
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in improving interlaminar toughness and suppressing delamination in CFRP laminates with such features. Two PA mesh configurations were evaluated: a fully embedded continuous layer and a 20 mm cut mesh strip placed between continuous and discontinuous plies near critical regions. Fracture toughness tests showed that PA mesh insertion improved interlaminar toughness approximately 2.4-fold compared to neat CFRP, primarily due to a mechanical interlocking mechanism that disrupts crack propagation and enhances energy dissipation. Uniaxial tensile tests with digital image correlation revealed that while initial matrix cracking occurred at similar stress levels, the stress at which complete delamination occurred was approximately 60% higher in specimens with a 20 mm mesh and up to 92% higher in specimens with fully embedded mesh. The fully embedded mesh provided consistent delamination resistance across the laminate, while the 20 mm insert localized strain redistribution and preserved global mechanical performance. These findings demonstrate that PA mesh is an effective interleaving material for enhancing damage tolerance in CFRP laminates with internal discontinuities. Full article
Show Figures

Figure 1

Back to TopTop