Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = layered epitaxial growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3725 KiB  
Article
A Strain-Compensated InGaAs/InGaSb Type-II Superlattice Grown on InAs Substrates for Long-Wavelength Infrared Photodetectors
by Hao Zhou, Chang Liu and Yiqiao Chen
Nanomaterials 2025, 15(15), 1143; https://doi.org/10.3390/nano15151143 - 23 Jul 2025
Viewed by 368
Abstract
In this paper, the first demonstration of a highly strained In0.8Ga0.2As/In0.2Ga0.8Sb type-II superlattice structure grown on InAs substrates by molecular beam epitaxy (MBE) for long-wavelength infrared detection was reported. Novel methodologies were developed to optimize [...] Read more.
In this paper, the first demonstration of a highly strained In0.8Ga0.2As/In0.2Ga0.8Sb type-II superlattice structure grown on InAs substrates by molecular beam epitaxy (MBE) for long-wavelength infrared detection was reported. Novel methodologies were developed to optimize the As and Sb flux growth conditions. The quality of the epitaxial layer was characterized using multiple analytical techniques, including differential interference contrast microscopy, atomic force microscopy, high-resolution X-ray diffraction, and high-resolution transmission electron microscopy. The high-quality superlattice structure, with a total thickness of 1.5 μm, exhibited exceptional surface morphology with a root-mean-square roughness of 0.141 nm over a 5 × 5 μm2 area. Single-element devices with PIN architecture were fabricated and characterized. At 77 K, these devices demonstrated a 50% cutoff wavelength of approximately 12.1 μm. The long-wavelength infrared PIN devices exhibited promising performance metrics, including a dark current density of 7.96 × 10−2 A/cm2 at −50 mV bias and a high peak responsivity of 4.90 A/W under zero bias conditions, both measured at 77 K. Furthermore, the devices achieved a high peak quantum efficiency of 65% and a specific detectivity (D*) of 2.74 × 1010 cm·Hz1/2/W at the peak responsivity wavelength of 10.7 µm. These results demonstrate the viability of this material system for long-wavelength infrared detection applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 3258 KiB  
Article
Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
by Yang Wang, Junhao Chen, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(6), 580; https://doi.org/10.3390/cryst15060580 - 19 Jun 2025
Viewed by 319
Abstract
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the [...] Read more.
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the mechanisms of Volmer–Weber (VW, island growth mode) nucleation at low coverage and Stranski–Krastanov (SK, layer-plus-island growth) transitions driven by interface metallization, stress release, and energy reduction, which facilitates coherent monolayer formation by lowering the energy barrier by ~34%. Molecular dynamics simulations demonstrate that the strategic co-optimization of substrate temperature (Tsub) and deposition rate (Vdep) induces an abrupt cliff-like drop in mosaic spread. Experimental validations confirm that this T-V synergy achieves unprecedented interfacial coherence, whereby AFM roughness reaches 0.34 nm (RMS) and the XRC-FWHM of 0.13° approaches single-crystal benchmarks. Notably, our novel “accelerated heteroepitaxy” protocol reduces growth time without compromising quality, addressing the efficiency–quality paradox in industrial-scale diamond substrate fabrication. These findings establish universal thermal–kinetic design principles applicable to refractory metal/oxide heterostructures for next-generation quantum sensors and high-power electronic devices. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

14 pages, 3967 KiB  
Article
Influence of Homoepitaxial Layer Thickness on Flatness and Chemical Mechanical Planarization Induced Scratches of 4H-Silicon Carbide Epi-Wafers
by Chi-Hsiang Hsieh, Chiao-Yang Cheng, Yi-Kai Hsiao, Zi-Hao Wang, Chang-Ching Tu, Chao-Chang Arthur Chen, Po-Tsung Lee and Hao-Chung Kuo
Micromachines 2025, 16(6), 710; https://doi.org/10.3390/mi16060710 - 13 Jun 2025
Viewed by 536
Abstract
The integration of thick homoepitaxial layers on silicon carbide (SiC) substrates is critical for enabling high-voltage power devices, yet it remains challenged by substrate surface quality and wafer geometry evolution. This study investigates the relationship between substrate preparation—particularly chemical mechanical planarization (CMP)—and the [...] Read more.
The integration of thick homoepitaxial layers on silicon carbide (SiC) substrates is critical for enabling high-voltage power devices, yet it remains challenged by substrate surface quality and wafer geometry evolution. This study investigates the relationship between substrate preparation—particularly chemical mechanical planarization (CMP)—and the impact on wafer bow, total thickness variation (TTV), local thickness variation (LTV), and defect propagation during epitaxial growth. Seven 150 mm, 4° off-axis, prime-grade 4H-SiC substrates from a single ingot were processed under high-volume manufacturing (HVM) conditions and grown with epitaxial layers ranging from 12 μm to 100 μm. Metrology revealed a strong correlation between increasing epitaxial thickness and geometric deformation, especially beyond 31 μm. Despite initial surface scratches from CMP, hydrogen etching and buffer layer deposition significantly mitigated scratch propagation, as confirmed through defect mapping and SEM/FIB analysis. These findings provide a deeper understanding of the substrate-to-epitaxy integration process and offer pathways to improve manufacturability and yield in thick-epilayer SiC device fabrication. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

10 pages, 6353 KiB  
Article
Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on 3×3-Sn Reconstructed Si(111) Surface
by Zhujuan Li, Qichao Tian, Kaili Wang, Yuyang Mu, Zhenjie Fan, Xiaodong Qiu, Qinghao Meng, Can Wang and Yi Zhang
Appl. Sci. 2025, 15(11), 6150; https://doi.org/10.3390/app15116150 - 29 May 2025
Viewed by 488
Abstract
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth [...] Read more.
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth of SnSe2 films on a 3×3-Sn reconstructed Si(111) surface. The analysis of reflection high-energy electron diffraction reveals the in-plane lattice orientation as SnSe2[110]//3-Sn [112]//Si [110]. In addition, the flat morphology of SnSe2 film was identified by scanning tunneling microscopy (STM), implying the relatively strong adsorption effect of 3-Sn/Si(111) substrate to the SnSe2 adsorbates. Subsequently, the interfacial charge transfer was observed by X-ray photoemission spectroscopy. Afterwards, the direct characterization of electronic structures was obtained via angle-resolved photoemission spectroscopy. In addition to proving the presence of interfacial charge transfer again, a new relatively flat in-gap band was found in monolayer and few-layer SnSe2, which disappeared in multi-layer SnSe2. The interface strain-induced partial structural phase transition of thin SnSe2 films is presumed to be the reason. Our results provide important information on the characterization and effective modulation of electronic structures of SnSe2 grown on 3-Sn/Si(111), paving the way for the further study and application of SnSe2 in 2D electronic devices. Full article
Show Figures

Figure 1

12 pages, 1437 KiB  
Article
The Kinetic Control of Crystal Growth in Geological Reactions: An Example of Olivine–Ilmenite Assemblage
by Anastassia Y. Borisova, Kirill Lozovoy, Alessandro Pugliara, Teresa Hungria, Claudie Josse and Philippe de Parseval
Minerals 2025, 15(6), 569; https://doi.org/10.3390/min15060569 - 27 May 2025
Viewed by 499
Abstract
The main constituent of the planetary lithosphere is the dominant silicate mineral, olivine α-(Mg,Fe)2SiO4, which, along with associated minerals and the olivine-hosted inclusions, records the physical–chemical conditions during the crystal growth and transport to the planetary surface. However, there [...] Read more.
The main constituent of the planetary lithosphere is the dominant silicate mineral, olivine α-(Mg,Fe)2SiO4, which, along with associated minerals and the olivine-hosted inclusions, records the physical–chemical conditions during the crystal growth and transport to the planetary surface. However, there is a lack of physical–chemical information regarding the kinetic factors that regulate crystal growth during melt–rock, fluid–rock, and magma–rock interactions. Here, we conducted an experimental reaction between hydrated peridotite rock and basaltic melt and coupled this with a structural and elemental analysis of the quenched products by high-resolution transmission electron microscopy. The quenched products revealed crystallographically oriented oxide nanocrystals of ilmenite (Fe,Mg)(Ti,Si)O3 that grew over the newly formed olivine in the boundary layer melt of the reaction zone. We established that the growth mechanism is epitaxial and is common to both experimental and natural systems. The kinetic model developed for shallow (<1 GPa) crystal growth requires open system conditions and the presence of melt or fluid. It implies that the current geodynamic models that consider natural ilmenite–olivine assemblage as a proxy for deep to ultra-deep (>>1 GPa) conditions should be revised. The resulting kinetic model has a wide range of geological implications—from disequilibrium mineral growth and olivine-hosted inclusion production to mantle metasomatism—and helps to clarify how geological reactions proceed at depth. Full article
Show Figures

Figure 1

16 pages, 13448 KiB  
Article
Formation Mechanism of Plagioclase–Amphibole and Amphibole–Spinel Symplectites in the Bijigou Layered Intrusion: Insights from Mineralogical and Crystallographic Constraints
by Baoqun Sun, Xinyu Wei and Huan Dong
Minerals 2025, 15(5), 433; https://doi.org/10.3390/min15050433 - 22 Apr 2025
Viewed by 614
Abstract
The Bijigou layered intrusion is located in the northern margin of the Yangtze block. Based on cumulus mineral assemblages, the intrusion is divided into three major units from the base upwards: the lower zone (LZ), dominated by olivine gabbro; the middle zone (MZ), [...] Read more.
The Bijigou layered intrusion is located in the northern margin of the Yangtze block. Based on cumulus mineral assemblages, the intrusion is divided into three major units from the base upwards: the lower zone (LZ), dominated by olivine gabbro; the middle zone (MZ), composed of gabbro and Fe-Ti oxide ore layers; and the upper zone (UZ), characterized by (quartz) diorite. Previous studies reported various vermicular symplectite textures in layered intrusions, which are thought to be related to the magmatic evolution of the layered intrusions and the mineralization of vanadium–titanium magnetite. However, detailed studies on the specific reaction mechanism of those symplectites are lacking. In this study, the characteristics, mineral compositions, and crystal orientation relationships of minerals in symplectites from Fe-Ti oxide Fe-Ti oxide-rich gabbro are in the Bijigou layered intrusion investigated by an Electron Probe Microanalyzer (EPMA) and Electron Backscattered Diffraction (EBSD) to reveal the formation process of symplectites in gabbros. In the Fe-Ti oxide-rich gabbro, abundant amphibole + spinel (Amp1 + Spl) symplectite and amphibole + plagioclase (Pl2 + Amp2) symplectite are developed between the primocryst plagioclase (Pl1) and Fe-Ti oxide; Pl2 had significantly higher An contents (An92–97) relative to Pl1. The Mg # for Amp1 and Amp2 was 0.78–1 and 0.6–0.84, respectively. Amphibole geothermometer calculations show Amp1 and Amp2 at 934–953 °C and 834–914 °C, suggesting that these symplectites crystallized at a late stage of magmatic evolution. The crystallographic orientation relationship between Amp1 and Spl varies in different areas, and Spl has a particular orientation relationship with the external Ilm. Pl2 and Amp2 inherit the crystallographic orientation of Amp1 and Pl1, respectively. We speculate that in the Bijigou layered intrusions, Amp1 + Spl and Pl2 + Amp2 were formed in two stages: Amp1 + Spl symplectite due to Ilm epitaxial growth as a result of supersaturation and rapid nucleation; and Pl2 + Amp2 symplectite due to dissolution–precipitation. Full article
Show Figures

Figure 1

11 pages, 4665 KiB  
Article
High-Quality GaP(111) Grown by Gas-Source MBE for Photonic Crystals and Advanced Nonlinear Optical Applications
by Karine Hestroffer, Kelley Rivoire, Jelena Vučković and Fariba Hatami
Nanomaterials 2025, 15(8), 619; https://doi.org/10.3390/nano15080619 - 18 Apr 2025
Viewed by 601
Abstract
The precise fabrication of semiconductor-based photonic crystals with tailored optical properties is critical for advancing photonic devices. GaP(111) is a material of particular interest due to its high refractive index, wide optical bandgap, and pronounced optical anisotropy, offering unique opportunities for photonic applications. [...] Read more.
The precise fabrication of semiconductor-based photonic crystals with tailored optical properties is critical for advancing photonic devices. GaP(111) is a material of particular interest due to its high refractive index, wide optical bandgap, and pronounced optical anisotropy, offering unique opportunities for photonic applications. Its near-lattice matching with silicon substrates further facilitates integration with existing silicon-based technologies. In this study, we present the growth of high-quality GaP(111) thin films using gas-source molecular-beam epitaxy (GSMBE), achieving atomically smooth terraces for the homo-epitaxy of GaP(111). We demonstrate the fabrication of photonic crystal cavities from GaP(111), employing AlGaP(111) as a sacrificial layer, and achieve a quality factor of 1200 for the cavity mode with resonance around 1500 nm. This work highlights the potential of GaP(111) for advanced photonic architectures, particularly in applications requiring strong light confinement and nonlinear optical processes, such as second-harmonic and sum-frequency generation. Full article
Show Figures

Figure 1

13 pages, 4511 KiB  
Article
Crystallographic Engineering of CrN Buffer Layers for GaN Thin Film Epitaxy
by Kyu-Yeon Shim, Seongho Kang, Min-Joo Ahn, Yukyeong Cha, Eojin-Gyere Ham, Dohoon Kim and Dongjin Byun
Materials 2025, 18(8), 1817; https://doi.org/10.3390/ma18081817 - 16 Apr 2025
Viewed by 575
Abstract
Gallium nitride (GaN) is commonly used in various semiconductor systems owing to its high mobility and thermal stability; however, the production of GaN thin films using the currently employed methods requires improvement. To facilitate the growth of high-quality GaN epitaxial thin films, this [...] Read more.
Gallium nitride (GaN) is commonly used in various semiconductor systems owing to its high mobility and thermal stability; however, the production of GaN thin films using the currently employed methods requires improvement. To facilitate the growth of high-quality GaN epitaxial thin films, this study explored the crystallographic structures, properties, and influences of chromium nitride (CrN) buffer layers sputtered under various conditions. The crystallographic orientation of CrN played a crucial role in determining the GaN film quality. For example, even when the crystallinity of the CrN (111) plane was relatively low, a single-phase CrN (111) buffer layer could provide a more favorable template for GaN epitaxy compared to cases where both the CrN (111) and Cr2N (110) phases coexisted. The significance of a low-temperature (LT) GaN nucleation layer deposited onto the CrN buffer layers was assessed using atomic force microscopy and contact angle measurements. The X-ray phi scan results confirmed the six-fold symmetry of the grown GaN, further emphasizing the contribution of an LT-GaN nucleation layer. These findings offer insights into the underlying mechanisms governing GaN thin film growth and provide guidance for the optimization of the buffer layer conditions to achieve high-quality GaN epitaxial films. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

17 pages, 5590 KiB  
Article
A Critical Comparison Among High-Resolution Methods for Spatially Resolved Nano-Scale Residual Stress Analysis in Nanostructured Coatings
by Saqib Rashid, Edoardo Rossi, Spyros Diplas, Patricia Almeida Carvalho, Damian Pucicki, Rafal Kuna and Marco Sebastiani
Int. J. Mol. Sci. 2025, 26(7), 3296; https://doi.org/10.3390/ijms26073296 - 2 Apr 2025
Cited by 2 | Viewed by 798
Abstract
Residual stresses in multilayer thin coatings represent a complex multiscale phenomenon arising from the intricate interplay of multiple factors, including the number and thickness of layers, material properties of the layers and substrate, coefficient of thermal expansion (CTE) mismatch, deposition technique and growth [...] Read more.
Residual stresses in multilayer thin coatings represent a complex multiscale phenomenon arising from the intricate interplay of multiple factors, including the number and thickness of layers, material properties of the layers and substrate, coefficient of thermal expansion (CTE) mismatch, deposition technique and growth mechanism, as well as process parameters and environmental conditions. A multiscale approach to residual stress measurement is essential for a comprehensive understanding of stress distribution in such systems. To investigate this, two AlGaN/GaN multilayer coatings with distinct layer architectures were deposited on sapphire substrates using metalorganic vapor phase epitaxy (MOVPE). High-resolution X-ray diffraction (HRXRD) was employed to confirm their epitaxial growth and structural characteristics. Focused ion beam (FIB) cross-sectioning and transmission electron microscopy (TEM) lamella preparation were performed to analyze the coating structure and determine layer thickness. Residual stresses within the multilayer coatings were evaluated using two complementary techniques: High-Resolution Scanning Transmission Electron Microscopy—Graphical Phase Analysis (HRSTEM-GPA) and Focused Ion Beam—Digital Image Correlation (FIB-DIC). HRSTEM-GPA enables atomic-resolution strain mapping, making it particularly suited for investigating interface-related stresses, while FIB-DIC facilitates microscale stress evaluation. The residual strain values obtained using the FIB-DIC and HRSTEM-GPA methods were −3.2 × 10⁻3 and −4.55 × 10⁻3, respectively. This study confirms that residual stress measurements at different spatial resolutions are both reliable and comparable at the required coating depths and locations, provided that a critical assessment of the characteristic scale of each method is performed. Full article
(This article belongs to the Special Issue Nanomaterials in Novel Thin Films and Coatings)
Show Figures

Graphical abstract

13 pages, 3847 KiB  
Article
Hybrid Growth of Clad Crystalline Sapphire Fibers for Ultra-High-Temperature (>1500 °C) Fiber Optic Sensors
by Mohammad Ahsanul Kabir, Kai-Cheng Wu, Kai-Ting Chou, Fang Luo and Shizhuo Yin
Photonics 2025, 12(4), 299; https://doi.org/10.3390/photonics12040299 - 25 Mar 2025
Viewed by 539
Abstract
Ultra-high-temperature (>1500 °C) sensors play vital roles in ensuring operational excellence in variety of energy-related applications, such as power plant boilers and gas turbine engines. Crystalline sapphire fibers have enormous potential to replace conventional expensive precious metal (e.g., Pt/Rh)-based high-temperature (>1500 °C) sensors [...] Read more.
Ultra-high-temperature (>1500 °C) sensors play vital roles in ensuring operational excellence in variety of energy-related applications, such as power plant boilers and gas turbine engines. Crystalline sapphire fibers have enormous potential to replace conventional expensive precious metal (e.g., Pt/Rh)-based high-temperature (>1500 °C) sensors by offering higher environmental robustness and distributed sensing capabilities. However, a lack of proper cladding substantially compromises the performance of the sensor. To overcome this fundamental limitation, we develop a hybrid growing method to fabricate low-loss clad crystalline sapphire fibers. We grow a higher-refractive-index doped crystalline sapphire fiber core using the laser-heated pedestal growth (LHPG) method and lower-refractive-index undoped crystalline sapphire fiber cladding using the liquid-phase epitaxy (LPE) method. Furthermore, due to the existence of this cladding layer, a single mode of operation can be achieved at a core diameter size of 30 μm. The experimental results confirm that the grown clad crystalline sapphire fiber can survive in extremely high-temperature (>1500 °C) harsh environments due to the matched coefficient of thermal expansion (CTE) between the fiber core and the cladding. The numerical results also indicate a temperature sensing accuracy of 3.5 °C. This opens the door for developing point and distributed fiber sensor networks capable of enduring extremely harsh environments at extremely high temperatures. Full article
Show Figures

Figure 1

15 pages, 8753 KiB  
Article
Dielectric Passivation Treatment of InGaN MESA on Si Substrates for Red Micro-LED Application
by Hongyu Qin, Shuhan Zhang, Qian Fan, Xianfeng Ni, Li Tao and Xing Gu
Crystals 2025, 15(3), 267; https://doi.org/10.3390/cryst15030267 - 13 Mar 2025
Viewed by 1140
Abstract
The emergence of GaN-based micro-LEDs has revolutionized display technologies due to their superior brightness, energy efficiency, and thermal stability compared to traditional counterparts. However, the development of red-emitting micro-LEDs on silicon substrates (GaN-on-Si) faces significant challenges, among them including hydrogen-induced deactivation of p-GaN [...] Read more.
The emergence of GaN-based micro-LEDs has revolutionized display technologies due to their superior brightness, energy efficiency, and thermal stability compared to traditional counterparts. However, the development of red-emitting micro-LEDs on silicon substrates (GaN-on-Si) faces significant challenges, among them including hydrogen-induced deactivation of p-GaN caused by hydrogen species generated from SiH4 decomposition during SiO2 passivation layer growth, which degrades device performance. This study systematically investigates the use of high-density metal-oxide dielectric passivation layers deposited by atomic layer deposition (ALD), specifically Al2O3 and HfO2, to mitigate these effects and enhance device reliability. The passivation layers effectively suppress hydrogen diffusion and preserve p-GaN activation, ensuring improved ohmic contact formation and reduced forward voltage, which is measured by the probe station. The properties of the epitaxial layer and the cross-section morphology of the dielectric layer were characterized by photoluminescence (PL) and scanning electron microscopy (SEM), respectively. Experimental results reveal that Al2O3 exhibits superior thermal stability and lower current leakage under high-temperature annealing, while HfO2 achieves higher light-output power (LOP) and efficiency under increased current densities. Electroluminescence (EL) measurements confirm that the passivation strategy maintains the intrinsic optical properties of the epitaxial wafer with minimal impact on Wp and FWHM across varying process conditions. The findings demonstrate the efficacy of metal-oxide dielectric passivation in addressing critical challenges in InGaN red micro-LED on silicon substrate fabrication, contributing to accelerating scalable and efficient next-generation display technologies. Full article
Show Figures

Figure 1

12 pages, 3358 KiB  
Article
Water-Soluble Sacrificial Layer of Sr3Al2O6 for the Synthesis of Free-Standing Doped Ceria and Strontium Titanate
by Simone Sanna, Olga Krymskaya and Antonello Tebano
Appl. Sci. 2025, 15(4), 2192; https://doi.org/10.3390/app15042192 - 19 Feb 2025
Viewed by 2977
Abstract
Epitaxial layers of water-soluble Sr3Al2O6 were fabricated as sacrificial layers on SrTiO3 (100) single-crystal substrates using the Pulsed Laser Deposition technique. This approach envisages the possibility of developing a new generation of micro-Solid Oxide Fuel Cells and [...] Read more.
Epitaxial layers of water-soluble Sr3Al2O6 were fabricated as sacrificial layers on SrTiO3 (100) single-crystal substrates using the Pulsed Laser Deposition technique. This approach envisages the possibility of developing a new generation of micro-Solid Oxide Fuel Cells and micro-Solid Oxide Electrochemical Cells for portable energy conversion and storage devices. The sacrificial layer technique offers a pathway to engineering free-standing membranes of electrolytes, cathodes, and anodes with total thicknesses on the order of a few nanometers. Furthermore, the ability to etch the SAO sacrificial layer and transfer ultra-thin oxide films from single-crystal substrates to silicon-based circuits opens possibilities for creating a novel class of mixed electronic and ionic devices with unexplored potential. In this work, we report the growth mechanism and structural characterization of the SAO sacrificial layer. Epitaxial samarium-doped ceria films, grown on SrTiO3 substrates using Sr3Al2O6 as a buffer layer, were successfully transferred onto silicon wafers. This demonstration highlights the potential of the sacrificial layer method for integrating high-quality oxide thin films into advanced device architectures, bridging the gap between oxide materials and silicon-based technologies. Full article
(This article belongs to the Special Issue Advanced Materials for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

25 pages, 16286 KiB  
Article
Mechanism and Structural Defects of Zinc Film Deposited on a Copper Substrate: A Study via Molecular Dynamics Simulations
by Xin He, Xiangge Qin and Lan Zhan
Coatings 2025, 15(2), 174; https://doi.org/10.3390/coatings15020174 - 4 Feb 2025
Cited by 1 | Viewed by 929 | Correction
Abstract
Epitaxial growth can be used to guide the controllable growth of one metal on the surface of another substrate by matching the interface lattice, thus improving the dendrite tendency of metal growth. The atomic arrangement of the Cu (111) crystal plane of the [...] Read more.
Epitaxial growth can be used to guide the controllable growth of one metal on the surface of another substrate by matching the interface lattice, thus improving the dendrite tendency of metal growth. The atomic arrangement of the Cu (111) crystal plane of the FCC structure is similar to that of the Zn (0002) crystal plane of the HCP structure, which is theoretically expected to promote the heterogeneous epitaxial nucleation growth of metal zinc under low strain. In this paper, the molecular dynamics method is used to simulate the atomic process of zinc film growth on the Cu (111) surface. It is found that the behavior of zinc-adsorbed atoms on the substrate surface conforms to the epitaxial growth mode. The close-packed structure grown along the (0002) direction of the layered clusters is tiled on the Cu (111) surface, forming a highly ordered low-lattice-mismatch interface. When a large area of layered zinc clusters cover the substrate, the growth mode will change from heteroepitaxial growth to homoepitaxial growth of Zn atoms on the zinc film, forming a lamellar distribution composed of FCC and HCP structure grains. Polycrystalline zinc film with a planar structure with a (0002) surface preferred a crystal plane. The increase in incident energy is helpful in improving the quality of zinc films, while the deposition rate, corresponding to the deposition temperature and electrolyte ion concentration, has no significant effect on the surface morphology and crystal structure of single metal films. In summary, the atomic arrangement of the Cu (111) surface has a strong guiding effect on the atomic ordered arrangement in the zinc film crystal, which is suitable for the epitaxial deposition of the substrate to induce the ordered growth of the Zn (0002) crystal plane. Full article
Show Figures

Figure 1

14 pages, 5103 KiB  
Article
Study of Low-Temperature (Al)GaN on N-Polar GaN Films Grown by MOCVD on Vicinal SiC Substrates
by Yong Yang, Xianfeng Ni, Qian Fan and Xing Gu
Materials 2025, 18(3), 638; https://doi.org/10.3390/ma18030638 - 31 Jan 2025
Cited by 1 | Viewed by 1395
Abstract
N-polar GaN HEMTs feature a natural back-barrier and enable the formation of low-resistance Ohmic contacts, with the potential to suppress short-channel effects and current collapse effects at sub-100 nm gate lengths, rendering them particularly promising for high-frequency communication applications. In this study, N-polar [...] Read more.
N-polar GaN HEMTs feature a natural back-barrier and enable the formation of low-resistance Ohmic contacts, with the potential to suppress short-channel effects and current collapse effects at sub-100 nm gate lengths, rendering them particularly promising for high-frequency communication applications. In this study, N-polar GaN films were grown on C-face SiC substrates with a 4° misorientation angle via MOCVD. By employing a two-step growth process involving LT-GaN or LT-AlGaN, the surface roughness of N-polar GaN films was reduced to varying degrees, accompanied by an improvement in crystalline quality. The growth processes, including surface morphology at each growth stage, such as the AlN nucleation layer, LT-GaN, LT-AlGaN, and the initial 90 nm HT-GaN, were investigated. The results revealed that a high V/III ratio and low-temperature growth conditions for the low-temperature layers, along with the introduction of a minor amount of Al, influenced adatom migration behavior and facilitated the suppression of step bunching. Suppressing step bunching during the initial growth stages was demonstrated to be critical for improving the surface quality and crystalline quality of N-polar GaN films. An N-polar GaN HEMT epitaxial structure was successfully achieved using the optimized surface morphology with a dedicated Fe-doped buffer process. Full article
Show Figures

Figure 1

16 pages, 2798 KiB  
Article
Structural and Transport Properties of Thin InAs Layers Grown on InxAl1−xAs Metamorphic Buffers
by Giulio Senesi, Katarzyna Skibinska, Alessandro Paghi, Gaurav Shukla, Francesco Giazotto, Fabio Beltram, Stefan Heun and Lucia Sorba
Nanomaterials 2025, 15(3), 173; https://doi.org/10.3390/nano15030173 - 23 Jan 2025
Cited by 1 | Viewed by 1214
Abstract
Indium Arsenide is a III–V semiconductor with low electron effective mass, a small band gap, strong spin–orbit coupling, and a large g-factor. These properties and its surface Fermi level pinned in the conduction band make InAs a good candidate for developing superconducting solid-state [...] Read more.
Indium Arsenide is a III–V semiconductor with low electron effective mass, a small band gap, strong spin–orbit coupling, and a large g-factor. These properties and its surface Fermi level pinned in the conduction band make InAs a good candidate for developing superconducting solid-state quantum devices. Here, we report the epitaxial growth of very thin InAs layers with thicknesses ranging from 12.5 nm to 500 nm grown by Molecular Beam Epitaxy on InxAl1−xAs metamorphic buffers. Differently than InAs substrates, these buffers have the advantage of being insulating at cryogenic temperatures, which allows for multiple device operations on the same wafer and thus making the approach scalable. The structural properties of the InAs layers were investigated by high-resolution X-ray diffraction, demonstrating the high crystal quality of the InAs layers. Furthermore, their transport properties, such as total and sheet carrier concentration, sheet resistance, and carrier mobility, were measured in the van der Pauw configuration at room temperature. A simple conduction model was employed to quantify the surface, bulk, and interface contributions to the overall carrier concentration and mobility. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

Back to TopTop