A Critical Comparison Among High-Resolution Methods for Spatially Resolved Nano-Scale Residual Stress Analysis in Nanostructured Coatings
Abstract
1. Introduction
2. Results
2.1. X-Ray Diffraction
2.2. GPA Method
2.3. FIB-DIC Method
3. Discussion
3.1. Comparison Between These Two Techniques
3.2. Effect of Dislocation
4. Materials and Methods
4.1. Production of Multilayer Coatings
4.2. XRD Analysis
4.3. GPA Suitability
4.4. TEM Lamella Preparation
4.5. High-Resolution—Scanning Transmission Electron Microscopy (HR-STEM) and Geometric Phase Analysis (GPA)
- a
- Selection of two non-colinear reciprocal vectors g1 and g2 from the power spectrum.
- b
- Selection of the size of the Gaussian mask (resolution).
- c
- Selection of a reference image from which the positions of the mean g vectors were established and around which the masks were centered.
4.6. Focused Ion Beam—Digital Image Correlation (FIB-DIC) Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FIB | Focused Ion Beam |
DIC | Digital Image Correlation |
HRSTEM | High-Resolution Scanning Transmission Electron Microscopy |
GPA | Graphical Phase Analysis |
AOI | Area of Interest |
References
- Zhang, X.; Wu, Y.; Xu, B.; Wang, H. Residual stresses in coating-based systems, part I: Mechanisms and analytical modeling. Front. Mech. Eng. China 2007, 2, 1–12. [Google Scholar] [CrossRef]
- Harder, B.J.; Almer, J.D.; Weyant, C.M.; Lee, K.N.; Faber, K.T. Residual Stress Analysis of Multilayer Environmental Barrier Coatings. J. Am. Ceram. Soc. 2009, 92, 452–459. [Google Scholar] [CrossRef]
- Soroka, O.B. Evaluation of residual stresses in PVD-coatings. Part 1. Review. Strength Mater. 2010, 42, 287–296. [Google Scholar] [CrossRef]
- Huff, M. Review Paper: Residual Stresses in Deposited Thin-Film Material Layers for Micro- and Nano-Systems Manufacturing. Micromachines 2022, 13, 2084. [Google Scholar] [CrossRef] [PubMed]
- Engwall, A.M.; Rao, Z.; Chason, E. Origins of residual stress in thin films: Interaction between microstructure and growth kinetics. Mater. Des. 2016, 110, 616–623. [Google Scholar] [CrossRef]
- Abadias, G.; Chason, E.; Keckes, J.; Sebastiani, M.; Thompson, G.B.; Barthel, E.; Doll, G.L.; Murray, C.E.; Stoessel, C.H.; Martinu, L. Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. J. Vac. Sci. Technol. A Vac. Surf. Film. 2018, 36, 020801. [Google Scholar] [CrossRef]
- Sebastiani, M.; Rossi, E.; Zeeshan Mughal, M.; Benedetto, A.; Jacquet, P.; Salvati, E.; Korsunsky, A.M. Nano-Scale Residual Stress Profiling in Thin Multilayer Films with Non-Equibiaxial Stress State. Nanomaterials 2020, 10, 853. [Google Scholar] [CrossRef]
- Bemporad, E.; Brisotto, M.; Depero, L.E.; Gelfi, M.; Korsunsky, A.M.; Lunt AJ, G.; Sebastiani, M. A critical comparison between XRD and FIB residual stress measurement techniques in thin films. Thin Solid Film. 2014, 572, 224–231. [Google Scholar] [CrossRef]
- Korsunsky, A.M.; Sebastiani, M.; Bemporad, E. Residual stress evaluation at the micrometer scale: Analysis of thin coatings by FIB milling and digital image correlation. Surf. Coat. Technol. 2010, 205, 2393–2403. [Google Scholar] [CrossRef]
- Zhan, Y.; Liu, C.; Kong, X.; Lin, Z. Experiment and numerical simulation for laser ultrasonic measurement of residual stress. Ultrasonics 2017, 73, 271–276. [Google Scholar] [CrossRef]
- Hwang, Y.-I.; Kim, G.; Kim, Y.-I.; Park, J.-H.; Choi, M.Y.; Kim, K.-B. Experimental Measurement of Residual Stress Distribution in Rail Specimens Using Ultrasonic LCR Waves. Appl. Sci. 2021, 11, 9306. [Google Scholar] [CrossRef]
- Tabatabaeian, A.; Ghasemi, A.R.; Shokrieh, M.M.; Marzbanrad, B.; Baraheni, M.; Fotouhi, M. Residual Stress in Engineering Materials: A Review. Adv. Eng. Mater. 2022, 24, 2100786. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, X.; Qi, H.; Huang, Y.; Qin, H. Quantitative and nondestructive determination of residual stress for SiO2 thin film by laser-generated surface acoustic wave technique. Meas. Sci. Technol. 2022, 33, 045601. [Google Scholar] [CrossRef]
- Sherman, B.; Liou, H.-C.; Balogun, O. Thin film interface stresses produced by high amplitude laser generated surface acoustic waves. J. Appl. Phys. 2015, 118, 135303. [Google Scholar] [CrossRef]
- Genzel, C.; Reimers, W. Depth-resolved X-ray residual stress analysis in PVD (Ti, Cr) N hard coatings. Int. J. Mater. Res. 2022, 94, 655–661. [Google Scholar] [CrossRef]
- Ma, C.-H.; Huang, J.-H.; Chen, H. Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Film. 2002, 418, 73–78. [Google Scholar] [CrossRef]
- Lutterotti, L.; Chateigner, D.; Ferrari, S.; Ricote, J. Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Film. 2004, 450, 34–41. [Google Scholar] [CrossRef]
- Lodh, A.; Thool, K.; Samajdar, I. X-ray Diffraction for the Determination of Residual Stress of Crystalline Material: An Overview. Trans. Indian Inst. Met. 2022, 75, 983–995. [Google Scholar] [CrossRef]
- Ye, C.; Jiang, P. Accurate residual stress measurement as a function of depth in environmental barrier coatings via a combination of X-ray diffraction and Raman spectroscopy. Ceram. Int. 2020, 46, 12613–12617. [Google Scholar] [CrossRef]
- Zhao, P.; Ouyang, X.; Yu, J.; Xu, H.; Wang, S.; Li, F. Measurement of Residual Stress in YBa2Cu3O7−x Thin Films by Raman Spectroscopy. J. Low Temp. Phys. 2021, 202, 382–396. [Google Scholar] [CrossRef]
- Lundh, J.S.; Coleman, K.; Song, Y.; Griffin, B.A.; Esteves, G.; Douglas, E.A.; Edstrand, A.; Badescu, S.C.; Moore, E.A.; Leach, J.H.; et al. Residual stress analysis of aluminum nitride piezoelectric micromachined ultrasonic transducers using Raman spectroscopy. J. Appl. Phys. 2021, 130, 044501. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, X.; Chen, W.; Tang, H.; Zhang, R.; Fan, X.; Zhang, G.; Fan, J. Residual Stress Characterization in Microelectronic Manufacturing: An Analysis Based on Raman Spectroscopy. Laser Photonics Rev. 2024, 18, 2301300. [Google Scholar] [CrossRef]
- Quillin, K.; Yeom, H.; Pu, X.; Frazer, D.; Sasidhar, K.N.; Sridharan, K. Effects of elevated temperature exposure on the residual stress state and microstructure of PVD Cr coatings on SiC investigated via in situ X-ray diffraction and transmission electron microscopy. Mater. Sci. Eng. A 2023, 879, 145273. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Houdellier, F. Mapping stress and strain in nanostructures by high-resolution transmission electron microscopy. Microelectron. Eng. 2007, 84, 460–463. [Google Scholar] [CrossRef]
- Zhu, Y.; Ophus, C.; Ciston, J.; Wang, H. Interface lattice displacement measurement to 1pm by geometric phase analysis on aberration-corrected HAADF STEM images. Acta Mater. 2013, 61, 5646–5663. [Google Scholar] [CrossRef]
- Treml, R.; Kozic, D.; Zechner, J.; Maeder, X.; Sartory, B.; Gänser, H.P.; Schöngrundner, R.; Michler, J.; Brunner, R.; Kiener, D. High resolution determination of local residual stress gradients in single- and multilayer thin film systems. Acta Mater. 2016, 103, 616–623. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Pua, C.; Yao, D.; He, W.; Yang, X.; Wang, X.; Liu, M.; Li, X. Atomic-Scale Strain Field Mapping Methods for HR-TEM and HR-STEM Images. Acta Mech. Solida Sin. 2025, 38. [Google Scholar] [CrossRef]
- Nervi, S.; Szabó, B.A. On the estimation of residual stresses by the crack compliance method. Comput. Methods Appl. Mech. Eng. 2007, 196, 3577–3584. [Google Scholar] [CrossRef]
- Guo, J.; Fu, H.; Pan, B.; Kang, R. Recent progress of residual stress measurement methods: A review. Chin. J. Aeronaut. 2021, 34, 54–78. [Google Scholar] [CrossRef]
- Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Mater. Des. 2012, 35, 572–588. [Google Scholar] [CrossRef]
- Bobzin, K.; Wietheger, W.; Knoch, M.A.; Schacht, A.; Reisgen, U.; Sharma, R.; Oster, L. Comparison of Residual Stress Measurements Conducted by X-ray Stress Analysis and Incremental Hole Drilling Method. J. Therm. Spray Technol. 2020, 29, 1218–1228. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, J.; Chen, L.; Dong, J. Residual stress measurement combining blind-hole drilling and digital image correlation approach. J. Constr. Steel Res. 2021, 176, 106346. [Google Scholar] [CrossRef]
- Schajer, G.S.; Whitehead, P.S. Hole Drilling and Ring Coring. In Practical Residual Stress Measurement Methods; Wiley: Hoboken, NJ, USA, 2013; pp. 29–64. [Google Scholar] [CrossRef]
- ASTM E837-20; Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Sebastiani, M.; Eberl, C.; Bemporad, E.; Pharr, G.M. Depth-resolved residual stress analysis of thin coatings by a new FIB–DIC method. Mater. Sci. Eng. A 2011, 528, 7901–7908. [Google Scholar] [CrossRef]
- Lunt, A.J.G.; Korsunsky, A.M. A review of micro-scale focused ion beam milling and digital image correlation analysis for residual stress evaluation and error estimation. Surf. Coat. Technol. 2015, 283, 373–388. [Google Scholar] [CrossRef]
- Chen, T.Y.-F.; Chou, Y.-C.; Wang, Z.-Y.; Lin, W.-Y.; Lin, M.-T. Using Digital Image Correlation on SEM Images of Strain Field after Ion Beam Milling for the Residual Stress Measurement of Thin Films. Materials 2020, 13, 1291. [Google Scholar] [CrossRef]
- Sun, W.; Xia, Y.; Wu, H.; Chen, M.; Fan, G. Focused Ion Beam and Digital Image Correlation (FIB-DIC) Assisted Numerical Residual Stress Field Reconstruction in Laser-Welded Ti-6Al-4V. In Computational and Experimental Simulations in Engineering, Proceedings of the 30th International Conference on Computational & Experimental Engineering and Sciences (ICCES), Singapore, 3–6 August 2024; Springer: Cham, Switzerland, 2024; pp. 731–747. [Google Scholar] [CrossRef]
- Sebastiani, M.; Rossi, E.; Rashid, S. Nanomechanical testing methods to understand the effects of residual stress on coating’s performance. In Nanomechanics for Coatings and Engineering Surfaces; Elsevier: Amsterdam, The Netherlands, 2025; pp. 271–300. [Google Scholar] [CrossRef]
- Rashid, S.; Sebastiani, M.; Mughal, M.; Daniel, R.; Bemporad, E. Influence of the Silver Content on Mechanical Properties of Ti-Cu-Ag Thin Films. Nanomaterials 2021, 11, 435. [Google Scholar] [CrossRef] [PubMed]
- Bignoli, F.; Rashid, S.; Rossi, E.; Jaddi, S.; Djemia, P.; Terraneo, G.; Bassi, A.L.; Idrissi, H.; Pardoen, T.; Sebastiani, M.; et al. Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition. Mater. Des. 2022, 221, 110972. [Google Scholar] [CrossRef]
- Hÿtch, M.J. Geometric Phase Analysis of High Resolution Electron Microscope Images. Scanning Microsc. 1997, 11, 53–66. Available online: https://www.ecmjournal.org/smi/pdf/smi97-05.pdf (accessed on 26 November 2024).
- Hÿtch, M.J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146. [Google Scholar] [CrossRef]
- Galindo, P.L.; Kret, S.; Sanchez, A.M.; Laval, J.Y.; Yáñez, A.; Pizarro, J.; Guerrero, E.; Ben, T.; Molina, S.I. The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 2007, 107, 1186–1193. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Putaux, J.-L.; Pénisson, J.-M. Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 2003, 423, 270–273. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Putaux, J.-L.; Thibault, J. Stress and strain around grain-boundary dislocations measured by high-resolution electron microscopy. Philos. Mag. 2006, 86, 4641–4656. [Google Scholar] [CrossRef]
- Korsunsky, A.M.; Sebastiani, M.; Bemporad, E. Focused ion beam ring drilling for residual stress evaluation. Mater. Lett. 2009, 63, 1961–1963. [Google Scholar] [CrossRef]
- Lunt, A.J.G.; Baimpas, N.; Salvati, E.; Dolbnya, I.P.; Sui, T.; Ying, S.; Zhang, H.; Kleppe, A.K.; Dluhoš, J.; Korsunsky, A.M. A state-of-the-art review of micron-scale spatially resolved residual stress analysis by FIB-DIC ring-core milling and other techniques. J. Strain Anal. Eng. Des. 2015, 50, 426–444. [Google Scholar] [CrossRef]
- Lord, J.; Cox, D.; Ratzke, A.; Sebastiani, M.; Korsunsky, A.; Salvati, E.; Mughal, M.Z.; Bemporad, E. A Good Practice Guide for Measuring Residual Stresses Using FIB-DIC; National Physical Laboratory: Teddington, UK, 2018. [Google Scholar]
- Gorantla, S.; Gan, J.; Løvvik, O.M.; Diplas, S.; Bergum, K.; Svensson, B.; Monakhov, E.; Nguyen, P.; Gunnaes, A. Atomic scale study of Cu2O/ZnO heterojunction interfaces by TEM, STEM and DFT. Mater. Sci. 2016, 1, 676–677. [Google Scholar] [CrossRef]
- Gunnæs, A.E.; Gorantla, S.; Løvvik, O.M.; Gan, J.; Carvalho, P.A.; Svensson, B.G.; Monakhov, E.V.; Bergum, K.; Jensen, I.T.; Diplas, S. Epitaxial Strain-Induced Growth of CuO at Cu2O/ZnO Interfaces. J. Phys. Chem. C 2016, 120, 23552–23558. [Google Scholar] [CrossRef]
- Zeng, Z.-Y.; Nguyen, T.A.K.; Dang, N.M.; Wu, X.-W.; Chen, T.Y.-F.; Lin, M.-T. FIB-DIC ring-core measurement of the residual stress on HiPIMS W/Cu and Cr/Cu multilayer thin films. Surf. Coat. Technol. 2024, 483, 130768. [Google Scholar] [CrossRef]
- Sebastiani, M.; Eberl, C.; Bemporad, E.; Korsunsky, A.M.; Nix, W.D.; Carassiti, F. Focused ion beam four-slot milling for Poisson’s ratio and residual stress evaluation at the micron scale. Surf. Coat. Technol. 2014, 251, 151–161. [Google Scholar] [CrossRef]
- Salvati, E.; Romano-Brandt, L.; Mughal, M.Z.; Sebastiani, M.; Korsunsky, A.M. Generalised residual stress depth profiling at the nanoscale using focused ion beam milling. J. Mech. Phys. Solids 2019, 125, 488–501. [Google Scholar] [CrossRef]
- Yin, J.; Zhou, B.; Li, L.; Liu, Y.; Guo, W.; Talwar, D.N.; He, K.; Ferguson, I.T.; Wan, L.; Feng, Z.C. Optical and structural properties of AlN thin films deposited on different faces of sapphire substrates. Semicond. Sci. Technol. 2021, 36, 045012. [Google Scholar] [CrossRef]
- Miyoshi, M.; Ishikawa, H.; Egawa, T.; Asai, K.; Mouri, M.; Shibata, T.; Tanaka, M.; Oda, O. High-electron-mobility AlGaN∕AlN∕GaN heterostructures grown on 100-mm-diam epitaxial AlN/sapphire templates by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2004, 85, 1710–1712. [Google Scholar] [CrossRef]
- Bartoli, F.; Aubert, T.; Moutaouekkil, M.; Streque, J.; Pigeat, P.; Zhgoon, S.; Talbi, A.; Hage-Ali, S.; M’Jahed, H.; Elmazria, O. AlN/GaN/Sapphire heterostructure for high-temperature packageless acoustic wave devices. Sens. Actuators A Phys. 2018, 283, 9–16. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, H.M.; Gaevski, M.E.; Chen, C.Q.; Fareed, Q.; Yang, J.W.; Simin, G.; Khan, M.A. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl. Phys. Lett. 2002, 80, 3542–3544. [Google Scholar] [CrossRef]
- Ali, R.; Sebastiani, M.; Bemporad, E. Influence of Ti–TiN multilayer PVD-coatings design on residual stresses and adhesion. Mater. Des. 2015, 75, 47–56. [Google Scholar] [CrossRef]
- Renzelli, M.; Mughal, M.Z.; Sebastiani, M.; Bemporad, E. Design, fabrication and characterization of multilayer Cr-CrN thin coatings with tailored residual stress profiles. Mater. Des. 2016, 112, 162–171. [Google Scholar] [CrossRef]
- Guillon, R.; Stéphan, C.; Balcaen, Y.; Josse, C.; Fori, B.; Dalverny, O.; Alexis, J. An Estimation of Local Residual Stresses in Amorphous and Crystallized Trivalent Chromium Coatings. Coatings 2023, 13, 124. [Google Scholar] [CrossRef]
- Feng, Y.; Saravade, V.; Chung, T.-F.; Dong, Y.; Zhou, H.; Kucukgok, B.; Ferguson, I.T.; Lu, N. Strain-stress study of AlxGa1−xN/AlN heterostructures on c-plane sapphire and related optical properties. Sci. Rep. 2019, 9, 10172. [Google Scholar] [CrossRef]
- Mudie, S.; Pavlov, K.; Morgan, M.; Tabuchi, M.; Takeda, Y.; Hester, J. High-Resolution X-Ray Diffractometry Investigation of Interface Layers in GaN/AlN Structures Grown on Sapphire Substrates. Surf. Rev. Lett. 2003, 10, 513–517. [Google Scholar] [CrossRef]
- Hÿtch, M.; Houdellier, F.; Hüe, F.; Snoeck, E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 2008, 453, 1086–1089. [Google Scholar] [CrossRef]
- Cooper, D.; Denneulin, T.; Bernier, N.; Béché, A.; Rouvière, J.-L. Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope. Micron 2016, 80, 145–165. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Xie, H. Recent progress in residual stress measurement techniques. Acta Mech. Solida Sin. 2013, 26, 570–583. [Google Scholar] [CrossRef]
- Korsunsky, A.M.; Salvati, E.; Lunt, A.G.; Sui, T.; Mughal, M.Z.; Daniel, R.; Keckes, J.; Bemporad, E.; Sebastiani, M. Nanoscale residual stress depth profiling by Focused Ion Beam milling and eigenstrain analysis. Mater. Des. 2018, 145, 55–64. [Google Scholar] [CrossRef]
- MATLAB Central. Digital Image Correlation and Tracking. Available online: https://www.mathworks.com/matlabcentral/fileexchange/50994-digital-image-correlation-and-tracking (accessed on 25 September 2024).
Sample A | Sample B | ||||||
---|---|---|---|---|---|---|---|
Material | Thickness | Relaxation | Material | Thickness | Relaxation | ||
Super-lattice | GaN | 52.0 nm | GaN | 54.5 nm | |||
Al0.48Ga0.52N | 22.0 nm | 0% to GaN buffer | Al0.22Ga0.78N | 14.5 nm | 0% to GaN buffer | ||
Buffer | GaN | 1.7 µm | 100% to sapphire | GaN | 1.7 µm | 100% to sapphire |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, S.; Rossi, E.; Diplas, S.; Carvalho, P.A.; Pucicki, D.; Kuna, R.; Sebastiani, M. A Critical Comparison Among High-Resolution Methods for Spatially Resolved Nano-Scale Residual Stress Analysis in Nanostructured Coatings. Int. J. Mol. Sci. 2025, 26, 3296. https://doi.org/10.3390/ijms26073296
Rashid S, Rossi E, Diplas S, Carvalho PA, Pucicki D, Kuna R, Sebastiani M. A Critical Comparison Among High-Resolution Methods for Spatially Resolved Nano-Scale Residual Stress Analysis in Nanostructured Coatings. International Journal of Molecular Sciences. 2025; 26(7):3296. https://doi.org/10.3390/ijms26073296
Chicago/Turabian StyleRashid, Saqib, Edoardo Rossi, Spyros Diplas, Patricia Almeida Carvalho, Damian Pucicki, Rafal Kuna, and Marco Sebastiani. 2025. "A Critical Comparison Among High-Resolution Methods for Spatially Resolved Nano-Scale Residual Stress Analysis in Nanostructured Coatings" International Journal of Molecular Sciences 26, no. 7: 3296. https://doi.org/10.3390/ijms26073296
APA StyleRashid, S., Rossi, E., Diplas, S., Carvalho, P. A., Pucicki, D., Kuna, R., & Sebastiani, M. (2025). A Critical Comparison Among High-Resolution Methods for Spatially Resolved Nano-Scale Residual Stress Analysis in Nanostructured Coatings. International Journal of Molecular Sciences, 26(7), 3296. https://doi.org/10.3390/ijms26073296