Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (287)

Search Parameters:
Keywords = layer by layer (LBL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4141 KiB  
Article
Redox Potential of Hemoglobin Sub-Micron Particles and Impact of Layer-by-Layer Coating
by Miroslav Karabaliev, Boyana Paarvanova, Bilyana Tacheva, Gergana Savova, Yu Xiong, Saranya Chaiwaree, Yingmanee Tragoolpua, Hans Bäumler and Radostina Georgieva
Int. J. Mol. Sci. 2025, 26(15), 7341; https://doi.org/10.3390/ijms26157341 - 29 Jul 2025
Viewed by 110
Abstract
The search for artificial blood substitutes that are suitable for safe transfusion in clinical conditions and in extreme situations has gained increasing interest during recent years. Most of the problems related to donor blood could be overcome with hemoglobin sub-micron particles (HbMPs) that [...] Read more.
The search for artificial blood substitutes that are suitable for safe transfusion in clinical conditions and in extreme situations has gained increasing interest during recent years. Most of the problems related to donor blood could be overcome with hemoglobin sub-micron particles (HbMPs) that are able to bind and deliver oxygen. On the other hand, the length of the circulation time of HbMPs in the bloodstream strongly depends on their surface properties and can be improved with biopolymer coatings. The redox potential of HbMPs and HbMPs coated with biopolymers using the layer-by-layer technique (LbL-HbMPs) is related to the energy required for electron transfer upon transition from an oxidized to a reduced state. It can be used as a measure of the stability of Hb against oxidation, which is directly connected with its function as an oxygen carrier. The redox potential of Hb, HbMPs, and LbL-HbMPs was determined by a spectroelectrochemical method utilizing the shift of the Soret peak of Hb upon oxidation/reduction of the iron in the heme. The obtained results showed a slight shift in the redox potential of both particle types of about 17 mV towards more negative values compared to the free Hb in the solution. It was demonstrated that the free Hb and the cross-linked Hb in HbMPs and LbL-HbMPs undergo transitions from an oxidized to a reduced state and vice versa several times without Hb destruction. The LbL coating does not affect the redox properties of HbMPs. This ability, as well as the proximity of the obtained redox potentials of Hb, HbMPs, and LbL-HbMPs, indicates that the eventual oxidation of HbMPs in the bloodstream is reversible; thus, HbMPs can be active as artificial oxygen carriers for a longer period of time. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Viewed by 262
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2849 KiB  
Article
Improving the Corrosion Resistance of Titanium by PAA/Chitosan Bilayer Architecture Through the Layer-by-Layer Method
by Daniele Morais Dias, Murilo Oliveira Alves Ferreira, Ana Paula Ramos, Witor Wolf, Jéferson Aparecido Moreto and Rodrigo Galo
Polysaccharides 2025, 6(3), 57; https://doi.org/10.3390/polysaccharides6030057 - 1 Jul 2025
Viewed by 266
Abstract
To enhance interaction with the host tissue and protect the metal surface, various surface treatments can be applied to dental implants. This study aimed to produce layer-by-layer (LbL) films by alternated immersion of the titanium sample into polyacrylic acid (PAA) and chitosan solutions, [...] Read more.
To enhance interaction with the host tissue and protect the metal surface, various surface treatments can be applied to dental implants. This study aimed to produce layer-by-layer (LbL) films by alternated immersion of the titanium sample into polyacrylic acid (PAA) and chitosan solutions, obtaining a PAA/chitosan bilayer architecture, seeking to improve the corrosion resistance. For this purpose, 03 experimental groups (n = 05) were performed: Ti-Cp (as control), Ti-Cp+8 bilayers PAA/chitosan, and Ti-Cp+12 bilayers PAA/chitosan. The corrosion behavior was assessed by using open-circuit potential (OCP), potentiodynamic polarization curves (PPcs) and electrochemical impedance spectroscopy (EIS) techniques, conducted in 0.9 wt% NaCl solution at a controlled temperature of 25 ± 1 °C. The samples were characterized morphologically and structurally by atomic force microscope (AFM), scanning electron microscopy/energy-dispersive X-ray (SEM/EDX), and X-ray diffraction (XRD) techniques before and after the corrosion tests. The electrochemical results significantly highlight the beneficial influence of coatings based on PAA/chitosan in enhancing the corrosion resistance of titanium. These findings not only corroborate the feasibility of using alternative materials for the protection of titanium but also open new possibilities for the development of innovative coatings that can be applied within the biomedical sector, serving as mediators for medicinal purposes, particularly in osteoconductive interventions. Full article
Show Figures

Figure 1

18 pages, 4478 KiB  
Article
Design and Characterization of PAA/CHI/Triclosan Multilayer Films with Long-Term Antibacterial Activity
by Balzhan Savdenbekova, Aruzhan Sailau, Ayazhan Seidulayeva, Zhanar Bekissanova, Ardak Jumagaziyeva and Renata Nemkayeva
Polymers 2025, 17(13), 1789; https://doi.org/10.3390/polym17131789 - 27 Jun 2025
Viewed by 321
Abstract
The development of antibacterial coatings for biomedical applications is crucial to prevent implant-associated infections (IAIs). In this study, we designed and evaluated a multilayer coating based on chitosan (CHI), polyacrylic acid (PAA), and triclosan (TCS) using the layer-by-layer (LbL) self-assembly technique. The successful [...] Read more.
The development of antibacterial coatings for biomedical applications is crucial to prevent implant-associated infections (IAIs). In this study, we designed and evaluated a multilayer coating based on chitosan (CHI), polyacrylic acid (PAA), and triclosan (TCS) using the layer-by-layer (LbL) self-assembly technique. The successful incorporation of TCS was confirmed by Fourier-transform infrared (FTIR) spectroscopy. Surface roughness and topography were analyzed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Additionally, the pH-dependent behavior of PAA/CHI films was studied to assess its effect on TCS loading. According to disk diffusion assays, coatings assembled at pH 5 (PAA5/CHI5/TCS) exhibited the strongest antibacterial activity, with inhibition zones of 60.0 ± 0.0 mm for S. aureus and 33.67 ± 1.5 mm for E. coli. The long-term stability of the coatings was evaluated by measuring the antibacterial activity after 1, 10, 20, 30, and 40 days, with results confirming that antimicrobial properties and structural integrity were preserved over time. Furthermore, TCS release kinetics were assessed under physiological (pH 7.4) and acidic (pH 5.5) conditions, revealing enhanced release at pH 5.5. These findings highlight the potential of this multilayer system for biomedical applications requiring both stability and pH-responsive drug release. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Graphical abstract

19 pages, 4975 KiB  
Article
Bio-Based Flame Retardant Superhydrophobic Coatings by Phytic Acid/Polyethyleneimine Layer-by-Layer Assembly on Nylon/Cotton Blend Fabrics
by Yue Shen, Haiyan Zheng, Jiqiang Cao and Xinyun Guo
Coatings 2025, 15(6), 699; https://doi.org/10.3390/coatings15060699 - 10 Jun 2025
Viewed by 645
Abstract
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. [...] Read more.
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. Initially, the nylon/cotton blended fabric was pretreated with 3-glycidyloxypropyltrimethoxy silane (GPTMS). An intumescent flame retardant coating based on bio-derived phytic acid (PA) and polyethyleneimine (PEI) was constructed on NC fabrics via a layer-by-layer (LBL) self-assembly process. Subsequently, polydimethylsiloxane (PDMS) was grafted to reduce surface energy, imparting synergistic flame retardancy and superhydrophobicity. The treated fabric (C-3) showed excellent flame retardant and self-extinguishing behavior, with no afterflame or afterglow during vertical burning and a char length of only 35 mm. Thermogravimetric analysis revealed a residual char rate of 43.9%, far exceeding that of untreated fabric (8.6%). After PDMS modification, the fabric reached a water contact angle of 157.8°, indicating superior superhydrophobic and self-cleaning properties. Durability tests showed that the fabric maintained its flame retardancy (no afterflame or afterglow) and superhydrophobicity (WCA > 150°) after 360 cm of abrasion and five laundering cycles. This fluorine-free, nanoparticle-free, and environmentally friendly approach offers a promising route for developing multifunctional NC fabrics for applications in firefighting clothing and self-cleaning textiles. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

21 pages, 7646 KiB  
Article
Encapsulation of Lactiplantibacillus plantarum Using Lactoferrin and Alginate: Layer-by-Layer Coating and Dual Coating Air Brush Approaches for Enhanced Stability
by Nora Idalia Diaz-Negrete, Gabriela Ramos Clamont Montfort, Cristina Cueto-Wong, Silvia Gabriela López-Fernández and Rene Renato Balandrán-Quintana
Dairy 2025, 6(3), 27; https://doi.org/10.3390/dairy6030027 - 31 May 2025
Viewed by 882
Abstract
This study evaluated two techniques for encapsulating Lactiplantibacillus plantarum using bovine lactoferrin and sodium alginate. The first method involved a layer-by-layer (LbL) coating of lactoferrin and alginate directly onto individual cells, using three layers of these electrolytes. The second method focused on encapsulating [...] Read more.
This study evaluated two techniques for encapsulating Lactiplantibacillus plantarum using bovine lactoferrin and sodium alginate. The first method involved a layer-by-layer (LbL) coating of lactoferrin and alginate directly onto individual cells, using three layers of these electrolytes. The second method focused on encapsulating the probiotics in calcium alginate miniaturized beads, followed by a lactoferrin coating (AAcL). Encapsulation efficiency was measured at 52.7% for the LbL method and 32.6% for AAcL. Encapsulation was confirmed through zeta potential changes and scanning electron microscopy (SEM) micrographs. After freeze drying, the LbL technique showed a 2.67 log CFU decrease in survival rates, whereas the AAcL method resulted in a 3.77 log CFU decline. Nonencapsulated probiotics experienced a reduction of 5.8 log CFU. In storage at −20 °C, the LbL method led to a 32% decrease in survival after 30 days and 41% after 90 days, while the AAcL method showed a decline of 15% after 30 days and 28% after 90 days. Both techniques preserved 75% of the initial L. plantarum population under simulated gastrointestinal conditions. Overall, these methods effectively protected the probiotic from environmental stress. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

13 pages, 1146 KiB  
Article
Interpolymer Complexation Between Cellulose Ethers, Poloxamers, and Polyacrylic Acid: Surface-Dependent Behavior
by Eldar Kopishev, Fatima Jafarova, Lyazat Tolymbekova, Gaini Seitenova and Ruslan Sаfarov
Polymers 2025, 17(10), 1414; https://doi.org/10.3390/polym17101414 - 21 May 2025
Viewed by 500
Abstract
This study examines the surface-dependent formation of interpolymer complexes (IPCs) by the layer-by-layer (LBL) deposition method. The materials used in this analysis are poly(acrylic acid) (PAA) combined with cellulose ethers, namely methyl cellulose (MC), hydroxypropyl cellulose (HPC), and hydroxyethyl cellulose (HEC), and poloxamers [...] Read more.
This study examines the surface-dependent formation of interpolymer complexes (IPCs) by the layer-by-layer (LBL) deposition method. The materials used in this analysis are poly(acrylic acid) (PAA) combined with cellulose ethers, namely methyl cellulose (MC), hydroxypropyl cellulose (HPC), and hydroxyethyl cellulose (HEC), and poloxamers PX188 and PX407. PMMA, PS, and glass surfaces have been used to study the influence of hydrophobicity and hydrophilicity on IPC growth and its properties. Through contact angle measurements, PMMA and PS were found to be hydrophobic and glass hydrophilic. It was revealed by gravimetric analysis that IPC films reveal the highest growth on PMMA substrates, followed by PS and glass. Both the molecular weight of HEC and the hydrophobicity of the surface considerably affected the growth. Hydrogen-bonded complexation was evident by means of FTIR spectroscopy, while changes in some characteristic absorption bands demonstrated the extent of interactions between polymers. Scanning electron microscopy showed that variations in the microstructure of surfaces occur; PAA-MC and poloxamer complex layers were well organized on hydrophobic substrates. Thus, the experimental results showed surface properties, especially hydrophobicity, to be important for IPC growth and structure. These findings contribute to the understanding of IPC behavior on different substrates, thus giving insights into applications in drug delivery, coatings, and functional films. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

35 pages, 30622 KiB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1074
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

17 pages, 7837 KiB  
Article
Advanced Phosphorus–Protein Hybrid Coatings for Fire Safety of Cotton Fabrics, Developed Through the Layer-by-Layer Assembly Technique
by Xuqi Yang, Xiaolu Li, Wenwen Guo, Abbas Mohammadi, Marjan Enetezar Shabestari, Rui Li, Shuyi Zhang and Ehsan Naderi Kalali
Polymers 2025, 17(7), 945; https://doi.org/10.3390/polym17070945 - 31 Mar 2025
Viewed by 532
Abstract
An advanced, eco-friendly, and fully bio-based flame retardant (FR) system has been created and applied to the cellulose structure of the cotton fabric through a layer-by-layer coating method. This study examines the flame-retardant mechanism of protein-based and phosphorus-containing coatings to improve fire resistance. [...] Read more.
An advanced, eco-friendly, and fully bio-based flame retardant (FR) system has been created and applied to the cellulose structure of the cotton fabric through a layer-by-layer coating method. This study examines the flame-retardant mechanism of protein-based and phosphorus-containing coatings to improve fire resistance. During combustion, the phosphate groups (−PO₄2−) in phosphorus containing flame retardant layers interact with the amino groups (–NH2) of protein, forming ester bonds, which results in the generation of a crosslinked network between the amino groups and the phosphate groups. This structure greatly enhances the thermal stability of the residual char, hence improving fire resistance. Cone calorimeter and flammability tests show significant improvements in fire safety, including lower peak heat release rates, reduced smoke production, and higher char residue, all contributing to better flame-retardant performance. pHRR, THR, and TSP of the flame-retarded cotton fabric demonstrated 25, 54, and 72% reduction, respectively. These findings suggest that LbL-assembled protein–phosphorus-based coatings provide a promising, sustainable solution for creating efficient flame-retardant materials. Full article
Show Figures

Graphical abstract

13 pages, 2686 KiB  
Article
Development of Layer-by-Layer Magnetic Nanoparticles for Application to Radiotherapy of Pancreatic Cancer
by Nobuyoshi Fukumitsu, Yoshitaka Matsumoto, Lili Chen, Yu Sugawara, Nanami Fujisawa, Eri Niiyama, Sosuke Ouchi, Emiho Oe, Takashi Saito and Mitsuhiro Ebara
Molecules 2025, 30(6), 1382; https://doi.org/10.3390/molecules30061382 - 20 Mar 2025
Viewed by 754
Abstract
Pancreatic cancer is among the deadliest malignancies, with few treatment options for locally advanced, unresectable cases. Conventional therapies, such as chemoradiotherapy and hyperthermia, show promise but face challenges in improving outcomes. This study introduces a novel drug delivery system using gemcitabine (GEM)-loaded layer-by-layer [...] Read more.
Pancreatic cancer is among the deadliest malignancies, with few treatment options for locally advanced, unresectable cases. Conventional therapies, such as chemoradiotherapy and hyperthermia, show promise but face challenges in improving outcomes. This study introduces a novel drug delivery system using gemcitabine (GEM)-loaded layer-by-layer magnetic nanoparticles (LBL MNPs) combined with alternating magnetic field (AMF) application and X-ray irradiation to enhance therapeutic efficacy. LBL MNPs were synthesized using optimized layering techniques to achieve superior drug loading and controlled release. Human pancreatic cancer cells (PANC-1) were treated with LBL MNPs alone, with AMF-induced hyperthermia, and in combination with X-rays. The results demonstrate that the 7-layer LBL MNPs exhibited optimal cytotoxicity, significantly reducing cell viability at concentrations of 30 µg/mL and higher. Combining 7-layer LBL MNPs with AMF increased cell death in a time- and concentration-dependent manner, achieving up to 98% inhibition of cell proliferation. The addition of X-rays to the regimen demonstrated a strong synergistic effect, resulting in a 13-fold increase in cell death compared to controls. These findings highlight the potential of this integrated approach to improve outcomes in patients with pancreatic cancer. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

17 pages, 7556 KiB  
Article
Layer-by-Layer Self-Assembly Marine Antifouling Coating of Phenol Absorbed by Polyvinylpyrrolidone Anchored on Stainless Steel Surfaces
by Zaixiang Zheng, Shutong Wu, Haobo Shu, Qingzhen Han and Pan Cao
J. Mar. Sci. Eng. 2025, 13(3), 568; https://doi.org/10.3390/jmse13030568 - 14 Mar 2025
Viewed by 656
Abstract
Marine biofouling is a major problem that contributes to the failure of man-made marine structures. Conventional marine antifouling coatings that release heavy metal ions for antimicrobial purposes are no longer in line with today’s environmental issues. In this paper, a layer-by-layer (LBL) self-assembled [...] Read more.
Marine biofouling is a major problem that contributes to the failure of man-made marine structures. Conventional marine antifouling coatings that release heavy metal ions for antimicrobial purposes are no longer in line with today’s environmental issues. In this paper, a layer-by-layer (LBL) self-assembled marine antifouling coating based on an addition reaction between polyvinylpyrrolidone (PVP) and phenols to anchor pyrogallic (PG) with an antimicrobial effect on stainless steel surfaces is presented. For this purpose, three phenolics were selected, and their antifouling effects were compared. Field emission scanning electron microscopy, contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy analysis (FTIR) were used to thoroughly characterize the LBLPGs, and the results showed superior homogeneity of the coatings with no significant delamination. Simulated marine antifouling and friction tests showed that the coating inhibited Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Phaeodactylum tricornutum (P. tricornutum) by more than 90% and reduced the friction coefficient of the stainless steel surface from 0.38 to 0.24, demonstrating superior antifouling and friction resistance effects. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 109001 KiB  
Article
Construction and Regulation of Polymer@Silica Microspheres with Double-Shell Hollow Structures
by Mingxiu Jiang, Yuanyuan Yang, Jiawei Feng, Zhaopan Wang and Wei Deng
Molecules 2025, 30(4), 954; https://doi.org/10.3390/molecules30040954 - 18 Feb 2025
Cited by 1 | Viewed by 747
Abstract
Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core–shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres [...] Read more.
Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core–shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres with a 304 nm hollow structure after alkali treatment, which are used to construct hollow polymer@silica microspheres by coating the inorganic layer using the layer-by-layer (LBL) and sol–gel methods, respectively. The inorganic shell thickness of hollow polymer@silica microspheres can be adjusted from 15 nm to 33 nm by the self-assembled layers in the LBL method and from 15 nm to 63 nm by the dosage of precursor in the sol–gel method. Compared to the LBL method, the hollow polymer@silica microspheres prepared via the sol–gel method have a uniform and dense inorganic shell, thus ensuring the complete spherical morphology of the microspheres after calcination, even if the inorganic shell thickness is only 15 nm. Moreover, the hollow polymer@silica microspheres prepared via the sol–gel method exhibit improved compression resistance and good opacity, remaining intact at 16,000 psi and providing the corresponding coating with transmittance lower than 35.1%. This work highlights the morphology regulation of microspheres prepared by different methods and provides useful insights for the design of composites microspheres with controllable structures. Full article
Show Figures

Figure 1

22 pages, 3684 KiB  
Review
Multilayered Polyelectrolyte Structures Deposited on Corona-Charged Substrate Blends as Potential Drug Delivery Systems
by Asya Viraneva, Maria Marudova, Aleksandar Grigorov, Sofia Milenkova and Temenuzhka Yovcheva
Coatings 2025, 15(2), 240; https://doi.org/10.3390/coatings15020240 - 18 Feb 2025
Viewed by 677
Abstract
Polyelectrolyte multilayers (PEMs) deposited on non-porous and porous blend substrates were studied. Films, prepared from two biodegradable polymers poly (D-lactic acid) (PDLA) and poly(ε-caprolactone) (PCL) and their blends were used as substrates in the present paper. All films were initially charged in a [...] Read more.
Polyelectrolyte multilayers (PEMs) deposited on non-porous and porous blend substrates were studied. Films, prepared from two biodegradable polymers poly (D-lactic acid) (PDLA) and poly(ε-caprolactone) (PCL) and their blends were used as substrates in the present paper. All films were initially charged in a corona discharge (positive or negative corona). After charging, the initial surface potential of the samples V0 was measured and the normalized surface potential was calculated. The dependencies on time of the normalized surface potential for electrets, possessing either positive or negative charges, were studied. It was found that the steady-state values of the normalized surface potential for the porous substrates were higher than those of the non-porous ones, independently of material type and corona polarity. It was also shown that the values of the normalized surface potential for the PCL electrets were the highest and decreased when the content of PDLA increased. Scanning electron microscopy (SEM) was utilized for the determination of the substrates’ surface morphology. With the largest pore size, PCL substrates allowed for a greater capture of charges on their surface and facilitated the retention of said charges for prolonged periods of time. Differential scanning calorimetry (DSC) measurements were performed to determine the degree of crystallinity, which was very high for PCL substrates, when compared to the other investigated substrates. The wettability of the investigated substrates was measured using the static water contact angle method. The obtained results demonstrated that the created blends were more hydrophilic than the pure films. The two chosen polyelectrolytes were layered onto the surface of the substrates with the use of the layer-by-layer (LbL) technique and benzydamine hydrochloride was loaded in the multilayers as a model drug. Its loading efficiency and release profile were carried out spectrophotometrically. It was determined that for non-porous substrates, independently of the corona polarity, the best fitting model was Korsmeyer-Peppas, while for the porous substrates the best fitting model was Weibull. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

44 pages, 11801 KiB  
Review
Layer-by-Layer Nanoarchitectonics: A Method for Everything in Layered Structures
by Katsuhiko Ariga
Materials 2025, 18(3), 654; https://doi.org/10.3390/ma18030654 - 1 Feb 2025
Cited by 9 | Viewed by 1575
Abstract
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related [...] Read more.
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related research efforts, research into creating functional materials through the formation of thin layers on surfaces, molecular membranes, and multilayer structures of these materials have a lot of implications. Layered structures are especially important as a key part of nanoarchitectonics. The diversity of the components and materials used in layer-by-layer (LbL) assemblies is a notable feature. Examples of LbL assemblies introduced in this review article include quantum dots, nanoparticles, nanocrystals, nanowires, nanotubes, g-C3N4, graphene oxide, MXene, nanosheets, zeolites, nanoporous materials, sol–gel materials, layered double hydroxides, metal–organic frameworks, covalent organic frameworks, conducting polymers, dyes, DNAs, polysaccharides, nanocelluloses, peptides, proteins, lipid bilayers, photosystems, viruses, living cells, and tissues. These examples of LbL assembly show how useful and versatile it is. Finally, this review will consider future challenges in layer-by-layer nanoarchitectonics. Full article
Show Figures

Graphical abstract

25 pages, 5414 KiB  
Article
3D Porous Polycaprolactone with Chitosan-Graft-PCL Modified Surface for In Situ Tissue Engineering
by Johannes Pitts, Robert Hänsch, Yvonne Roger, Andrea Hoffmann and Henning Menzel
Polymers 2025, 17(3), 383; https://doi.org/10.3390/polym17030383 - 30 Jan 2025
Cited by 1 | Viewed by 1235
Abstract
Tissue engineering has emerged as a promising approach for improved regeneration of native tissue and could increase the quality of life of many patients. However, the treatment of injured tissue transitions is still in its early stages, relying primarily on a purely physical [...] Read more.
Tissue engineering has emerged as a promising approach for improved regeneration of native tissue and could increase the quality of life of many patients. However, the treatment of injured tissue transitions is still in its early stages, relying primarily on a purely physical approach in medical surgery. A biodegradable implant with a modified surface that is capable of biological active protein delivery via a nanoparticulate release system could advance the field of musculoskeletal disorder treatments enormously. In this study, interconnected 3D macroporous scaffolds based on Polycaprolactone (PCL) were fabricated in a successive process of blending, annealing and leaching. Blending with varying parts of Polyethylene oxide (PEO), NaCl and (powdered) sucrose and altering processing conditions yielded scaffolds with a huge variety of morphologies. The resulting unmodified hydrophobic scaffolds were modified using two graft polymers (CS-g-PCLx) with x = 29 and 56 (x = PCL units per chitosan unit). Due to the chitosan backbone hydrophilicity was increased and a platform for a versatile nanoparticulate release system was introduced. The graft polymers were synthesized via ring opening polymerization (ROP) of ε-Caprolactone using hydroxy groups of the chitosan backbone as initiators (grafting from). The suspected impact on biocompatibility of the modification was investigated by in vitro cell testing. In addition, the CS-g-PCL modification opened up the possibility of Layer by Layer (LbL) coating with alginate (ALG) and TGF-β3-loaded chitosan tripolyphosphate (CS-TGF-β3-TPP) nanoparticles. The subsequent release study showed promising amounts of growth factor released regarding successful in vitro cell differentiation and therefore could have a possible therapeutic impact. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop