Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = lattice orientation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5216 KB  
Article
Structural Characterization of Single-Crystalline Cored Turbine Blade Airfoils
by Jacek Krawczyk and Kamil Gancarczyk
Crystals 2025, 15(9), 806; https://doi.org/10.3390/cryst15090806 - 13 Sep 2025
Viewed by 349
Abstract
Turbine blades are the most critical parts of aircraft engines. They are exposed to complex forces at the highest temperature and an aggressive environment. For this reason, the highest demands are placed on their structural quality. In single-crystalline nickel-based superalloy blades, the quality [...] Read more.
Turbine blades are the most critical parts of aircraft engines. They are exposed to complex forces at the highest temperature and an aggressive environment. For this reason, the highest demands are placed on their structural quality. In single-crystalline nickel-based superalloy blades, the quality of the dendritic structure, crystal orientation, and local lattice parameter homogeneity is important because such properties affect the strength properties of the casting. For this reason, the structural attributes mentioned above were studied for novel, model-cored blades made of Ni-based superalloy. The blades were studied using scanning electron microscopy, the dedicated original X-ray Ω-scan method, the Laue diffraction, and the X-ray diffraction topography. The differences in the dendrites’ morphology and their array, revealing changes in dendrites’ arm size and arrangement, and changes in dendrites’ symmetry, were observed. Misoriented areas were identified, forming subgrains separated by low-angle boundaries. The location of the subgrains concerning the blade geometry and reasons for their creation were analyzed. The relation between the observed local changes in the lattice parameter and the creation of structural defects was determined. Aspects influencing the formation of structural defects that may reduce the durability of castings in specific areas of the cored blade airfoils have been discussed. Full article
(This article belongs to the Special Issue Emerging Topics of High-Performance Alloys (2nd Edition))
Show Figures

Figure 1

24 pages, 12807 KB  
Article
Oriented-Attachment-Driven Heteroepitaxial Growth During Early Coalescence of Single-Crystal Diamond on Iridium: A Combined Multiscale Simulation and Experimental Validation
by Yang Wang, Junhao Chen, Zhe Li, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(9), 803; https://doi.org/10.3390/cryst15090803 - 12 Sep 2025
Viewed by 460
Abstract
The scalable synthesis of high-quality single-crystal diamond films remains pivotal for next-generation extreme-performance devices. Iridium substrates offer exceptional promise for heteroepitaxy, yet early-stage growth mechanisms limiting crystal quality are poorly understood. An integrated multiscale investigation combining first-principles DFT calculations, molecular dynamics simulations, and [...] Read more.
The scalable synthesis of high-quality single-crystal diamond films remains pivotal for next-generation extreme-performance devices. Iridium substrates offer exceptional promise for heteroepitaxy, yet early-stage growth mechanisms limiting crystal quality are poorly understood. An integrated multiscale investigation combining first-principles DFT calculations, molecular dynamics simulations, and experimental validation is presented to resolve the oriented attachment process governing diamond growth on Ir(100). Robust interfacial bonding at the interface and optimal carbon coverage are revealed to provide thermodynamic driving forces for primary nucleation. A critical angular tolerance enabling defect-free coalescence through crystallographic realignment is identified by molecular dynamics. Concurrent nucleation growth pathways are experimentally confirmed through SEM, AFM, and Raman spectroscopy, where nascent crystallites undergo spontaneous orientational registry to form continuous epitaxial domains. Grain boundary annihilation is observed upon lattice rotation aligning adjacent grains below the critical angle. Crucially, intrinsic atomic steps are generated on the resultant coalesced layer, eliminating conventional etching requirements for homoepitaxial thickening. This work advances fundamental understanding of single-crystal diamond growth mechanisms, facilitating enhanced quality control for semiconductor device manufacturing and quantum applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 1624 KB  
Article
Oxidation of Supported Nickel Nanoparticles: Effects of Lattice Strain and Vibrational Excitations of Active Sites
by Sergey Yu. Sarvadii, Andrey K. Gatin, Nadezhda V. Dokhlikova, Sergey A. Ozerin, Vasiliy A. Kharitonov, Dinara Tastaibek, Vladislav G. Slutskii and Maxim V. Grishin
Nanomaterials 2025, 15(18), 1390; https://doi.org/10.3390/nano15181390 - 10 Sep 2025
Viewed by 229
Abstract
This work investigated the oxidation in an atmosphere of N2O of different surface areas of single nickel nanoparticles deposited on highly oriented pyrolytic graphite (HOPG). Using scanning tunneling microscopy and spectroscopy, it was shown that oxide formation begins at the top [...] Read more.
This work investigated the oxidation in an atmosphere of N2O of different surface areas of single nickel nanoparticles deposited on highly oriented pyrolytic graphite (HOPG). Using scanning tunneling microscopy and spectroscopy, it was shown that oxide formation begins at the top of the nanoparticle, while the periphery is resistant to oxidation. The active site of oxygen incorporation is a vibrationally excited group of nickel atoms, and the gap between them is the place where an oxygen adatom penetrates. The characteristic time of vibrational relaxation of the active site is 10−9–10−7 s. The reason for the oxidation resistance is the deformation of the nanoparticle atomic lattice near the Ni-HOPG interface. A relative compression of the nanoparticle atomic lattice ξ = 0.4–0.8% was shown to be enough for such an effect to manifest. Such compression increases the activation energy for oxygen incorporation by 6–12 kJ/mol, resulting in inhibition of oxide growth at the periphery of the nanoparticle. In fact, in this work, oxygen adatoms served as probes, and their incorporation between nickel atoms allowed the measurement of the nanoparticle’s lattice parameters at different distances from the Ni–HOPG interface. The developed theoretical framework not only accounts for the observed oxidation behavior but also offers a potential pathway to estimate charge transfer and local work functions for deposited nickel catalysts. Full article
(This article belongs to the Special Issue Recent Advances in Surface and Interface Nanosystems)
Show Figures

Figure 1

23 pages, 5879 KB  
Article
CAD Analysis of 3D Printed Parts for Material Extrusion—Pre-Processing Optimization Method
by Andrei Mario Ivan, Cozmin Adrian Cristoiu and Lidia Florentina Parpala
Technologies 2025, 13(9), 398; https://doi.org/10.3390/technologies13090398 - 3 Sep 2025
Viewed by 765
Abstract
Free form fabrication (FFF), also known as fused deposition modeling (FDM), is a widespread and accessible method for prototyping. Parts a with lattice structure having functional roles as mechanism elements is becoming more common. In the research field, the mechanical characteristics as well [...] Read more.
Free form fabrication (FFF), also known as fused deposition modeling (FDM), is a widespread and accessible method for prototyping. Parts a with lattice structure having functional roles as mechanism elements is becoming more common. In the research field, the mechanical characteristics as well as optimization methods for manufacturing these parts are major points of interest. One of the major aspects of FFF is part orientation during print, as it has influence over a wide range of variables, from tensile strength to surface quality and material consumption. For parts with a lattice structure, the printing orientation is important not only as a factor that influences the characteristics of the part itself, but also as a factor that determines the support requirements. However, due to the complex lattice structure, removing supports from these parts can be a challenging task. This study focuses on analyzing the reliability of available CAD optimization methods for FFF pre-processing. The analysis is performed using the Design for Additive Manufacturing module included in the Siemens NX software, version NX2406. The efficiency of CAD optimization was observed by taking into account the material consumption, printing times, surface quality, and support requirements. The study methods were based on the comparative analysis approach. The case studies used for the comparative analysis consider two-part inner structures: the solid structure approach with a rectilinear infill and the lattice structure approach. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

21 pages, 5648 KB  
Article
Investigation of Phase Segregation in Highly Doped InP by Selective Electrochemical Etching
by Yana Suchikova, Sergii Kovachov, Ihor Bohdanov, Anatoli I. Popov, Zhakyp T. Karipbayev, Artem L. Kozlovskiy and Marina Konuhova
Technologies 2025, 13(9), 395; https://doi.org/10.3390/technologies13090395 - 1 Sep 2025
Viewed by 1060
Abstract
We demonstrate that selective electrochemical etching is a reliable method for detecting and observing the uneven concentration distribution of impurities in indium phosphide crystals, which accompanies the growth of highly doped crystals using the Czochralski method. Even though selective electrochemical etching, as a [...] Read more.
We demonstrate that selective electrochemical etching is a reliable method for detecting and observing the uneven concentration distribution of impurities in indium phosphide crystals, which accompanies the growth of highly doped crystals using the Czochralski method. Even though selective electrochemical etching, as a method of detecting defects in the crystal lattice, has been discussed many times in the literature, it has not yet been described for indium phosphide. In this work, we investigated etching in compositions of various selective electrolytes for InP of n- and p-type conductivity with different surface orientations. We present in detail the features of detecting the striped inhomogeneity of impurity distribution. The mechanisms and peculiarities of the formation of oxide crystallites on the surface of InP during electrochemical processing are presented, including structures like flower-like and parquet crystallites. The formation of porous surfaces, terraces, tracks, and crystallites is explained from the perspective of the defect-dislocation mechanism. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

15 pages, 7305 KB  
Article
Electrochemical Anodization-Induced {001} Facet Exposure in A-TiO2 for Improved DSSC Efficiency
by Jolly Mathew, Shyju Thankaraj Salammal, Anandhi Sivaramalingam and Paulraj Manidurai
J. Compos. Sci. 2025, 9(9), 462; https://doi.org/10.3390/jcs9090462 - 1 Sep 2025
Viewed by 418
Abstract
We developed dye-sensitized solar cells based on anatase–titanium dioxide (A-TiO2) nanotubes (TiNTs) and nanocubes (TiNcs) with {001} crystal facets generated using simple and facile electrochemical anodization. We also demonstrated a simple way of developing one-dimensional, two-dimensional, and three-dimensional self-assembled TiO2 [...] Read more.
We developed dye-sensitized solar cells based on anatase–titanium dioxide (A-TiO2) nanotubes (TiNTs) and nanocubes (TiNcs) with {001} crystal facets generated using simple and facile electrochemical anodization. We also demonstrated a simple way of developing one-dimensional, two-dimensional, and three-dimensional self-assembled TiO2 nanostructures via electrochemical anodization, using them as an electron-transporting layer in DSSCs. TiNTs maintain tubular arrays for a limited time before becoming nanocrystals with {001} facets. Using FESEM and TEM, we observed that the TiO2 nanobundles were transformed into nanocubes with {001} facets and lower fluorine concentrations. Optimizing the reaction approach resulted in better-ordered, crystalline anatase TiNTs/Ncs being formed on the Ti metal foil. The anatase phase of as-grown TiO2 was confirmed by XRD, with (101) being the predominant intensity and preferred orientation. The nanostructured TiO2 had lattice values of a = 3.77–3.82 and c = 9.42–9.58. The structure and morphology of these as-grown materials were studied to understand the growth process. The photoconversion efficiency and impedance spectra were explored to analyze the performance of the designed DSSCs, employing N719 dye as a sensitizer and the I/I3− redox pair as electrolytes, sandwiched with a Pt counter-electrode. As a result, we found that self-assembled TiNTs/Ncs presented a more effective photoanode in DSSCs than standard TiO2 (P25). TiNcs (0.5 and 0.25 NH4F) and P25 achieved the highest power conversion efficiencies of 3.47, 3.41, and 3.25%, respectively. TiNcs photoanodes have lower charge recombination capability and longer electron lifetimes, leading to higher voltage, photocurrent, and photovoltaic performance. These findings show that electrochemical anodization is an effective method for preparing TiNTs/Ncs and developing low-cost, highly efficient DSSCs by fine-tuning photoanode structures and components. Full article
Show Figures

Figure 1

22 pages, 6408 KB  
Article
Design and Characterization of Negative-Stiffness Lattice Structures for Diabetic Midsoles
by Gianpaolo Savio and Francesca Uccheddu
Appl. Sci. 2025, 15(17), 9544; https://doi.org/10.3390/app15179544 - 30 Aug 2025
Viewed by 393
Abstract
Diabetes mellitus often leads to peripheral neuropathy that compromises protective sensation in the feet and raises ulcer risk through mechanical overload. While prior research has introduced cellular-metamaterial-based shoe midsoles for dynamic plantar pressure redistribution, this study advances the field by delivering a complete, [...] Read more.
Diabetes mellitus often leads to peripheral neuropathy that compromises protective sensation in the feet and raises ulcer risk through mechanical overload. While prior research has introduced cellular-metamaterial-based shoe midsoles for dynamic plantar pressure redistribution, this study advances the field by delivering a complete, application-oriented workflow for physical prototyping and mechanical validation of such structures. Our pipeline integrates analytical synthesis of curved-beam unit cells, process calibration, and fabrication via thermoplastic polyurethane (TPU) fused-filament fabrication, producing customized, test-ready lattices suitable for future gait-simulation studies and in vivo assessment. Printed TPU tests showed a Young’s modulus of 44.5 MPa, ultimate tensile strength of 4.9 MPa, and strain at break ≈ 20% (Shore 84.5 A/37.2 D). The cellular unit’s compressive response was quantified by theoretical force-threshold estimates and controlled compression tests, enabling data-driven selection of unit cell geometry and arrangement for effective offloading. The response is rate-dependent: higher loading speed increases peak force and hysteresis, indicating that loading rate should be treated as a design parameter to tune dynamic behavior for the target application. Although the analytical model overestimates forces by roughly 50% on average relative to experiments, it accurately captures the influence of key geometric parameters on peak force. Accordingly, experimental data can identify cell strategic geometric parameters (i.e., Q), while the achievable maximum force can be predicted from the model by applying an appropriate correction factor. By connecting modeling, calibration, and experimental validation in one coherent path, the proposed workflow enables manufacturable lattices with controllable activation thresholds for plantar pressure redistribution and provides a practical bridge from concept to application. Full article
Show Figures

Figure 1

15 pages, 5119 KB  
Article
The Effect of Substrate Bias Voltage on the Mechanical and Tribological Properties of (TiAlZrTaNb)Nx High-Entropy Nitride Coatings
by Juan Pablo González, Ingrid González, Oscar Piamba, Jhon Olaya, Leonardo Velasco and Gilberto Bejarano
J. Manuf. Mater. Process. 2025, 9(9), 287; https://doi.org/10.3390/jmmp9090287 - 22 Aug 2025
Viewed by 541
Abstract
We investigate TiAlZrTaNb nitride coatings deposited on Haynes 282 nickel superalloy substrates via high-power impulse magnetron sputtering (HiPIMS) under varying substrate bias voltages (0 V to −75 V). The influence of substrate bias on the microstructure, morphology, hardness, and wear resistance was systematically [...] Read more.
We investigate TiAlZrTaNb nitride coatings deposited on Haynes 282 nickel superalloy substrates via high-power impulse magnetron sputtering (HiPIMS) under varying substrate bias voltages (0 V to −75 V). The influence of substrate bias on the microstructure, morphology, hardness, and wear resistance was systematically analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and ball-on-disk tribometry. The coatings exhibited a near equiatomic chemical composition with a face-centered cubic (FCC) crystal structure preferentially oriented along the (200) and (111) planes. Increasing the bias voltage reduced the grain size (3.65 nm to 2.84 nm) and lattice parameter (0.442 nm to 0.440 nm); meanwhile, the hardness (>45 GPa) and wear resistance were improved. The interplay between the deposition parameters and coating-substrate interactions are discussed in order to optimize HiPIMS-derived coatings for industrial applications. Full article
Show Figures

Figure 1

12 pages, 2391 KB  
Article
Structural and Electrically Conductive Properties of Plasma-Enhanced Chemical-Vapor-Deposited High-Resistivity Zn-Doped β-Ga2O3 Thin Films
by Leonid A. Mochalov, Sergey V. Telegin, Aleksei V. Almaev, Ekaterina A. Slapovskaya and Pavel A. Yunin
Micromachines 2025, 16(8), 954; https://doi.org/10.3390/mi16080954 - 19 Aug 2025
Viewed by 926
Abstract
A method was developed for plasma-enhanced chemical vapor deposition of β-Ga2O3:Zn thin films with the possibility of pre-purifying precursors. The structural and electrically conductive properties of β-Ga2O3:Zn thin films were studied. Increasing the temperature of [...] Read more.
A method was developed for plasma-enhanced chemical vapor deposition of β-Ga2O3:Zn thin films with the possibility of pre-purifying precursors. The structural and electrically conductive properties of β-Ga2O3:Zn thin films were studied. Increasing the temperature of the Zn source (TZn) to 220 °C led to the formation of Ga2O3 films with a Zn concentration of 4 at.%, at TZn = 230 °C [Zn] = 6 at.% and at 235 °C. [Zn] = 8 at.% At TZn = 23 °C, the films corresponded to the β-Ga2O3 phase and were single-crystalline with a surface orientation of (–201). As TZn increased, the polycrystalline structure of β-Ga2O3 films with a predominant orientation of (111) was formed. The introduction of Zn led to the formation of a more developed microrelief of the surface. Raman spectroscopy showed that a small concentration of impurity atoms tended to replace gallium atoms in the oxide lattice, which was also confirmed by the Hall measurements. The concentration of charge carriers upon the introduction of Zn, which is a deep acceptor, decreased by 2–3 orders of magnitude, which mainly determined the decrease in the films’ resistivity. The resulting thin films were promising for the development of high-resistivity areas of β-Ga2O3-based devices. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits, 2nd Edition)
Show Figures

Figure 1

24 pages, 6501 KB  
Article
Exploring Lattice Rotations Induced by Kinematic Constraints in Deep Drawing from Crystal Plasticity Approach
by Yu-Xuan Jiang, Shih-Heng Tung and Jui-Chao Kuo
Metals 2025, 15(8), 883; https://doi.org/10.3390/met15080883 - 7 Aug 2025
Viewed by 389
Abstract
The anisotropic nature of cup ears formed during the deep drawing of sheet metals is governed by the distribution of crystallographic orientation in interaction between earing. In this study, we examined the orientation development of a cube-oriented aluminum single crystal to couple the [...] Read more.
The anisotropic nature of cup ears formed during the deep drawing of sheet metals is governed by the distribution of crystallographic orientation in interaction between earing. In this study, we examined the orientation development of a cube-oriented aluminum single crystal to couple the deep drawing kinematics with the formation of anisotropic orientations. A quarter model of a circular deep-drawn blank was simulated in the finite element software using a user-defined material subroutine. A cube-oriented aluminum single crystal was designed to serve as a reference and trace the orientation evolution in the deep drawing process. After the deep drawing, the bottom, wall, and flange of the drawn cup were investigated at azimuthal angles (α ) of 0° and 45° with respect to the radial direction (RD) in terms of the orientation. Our findings show that the change in the lattice orientation could be attributed to the rotation induced by drawing and bending processes under kinematic constraints. Thus, the initial cube orientation developed into different orientations during the deep drawing. The type-A slip system mainly contributed to the radial strain at α = 0°, and type-B and C slip systems accounted for the longitudinal and circumferential strains at α = 45°. Full article
Show Figures

Graphical abstract

7 pages, 208 KB  
Proceeding Paper
Post-Quantum Crystal-Kyber Group-Oriented Encryption Scheme for Cloud Security in Personal Health Records
by Zhen-Yu Wu and Chia-Hui Liu
Eng. Proc. 2025, 103(1), 6; https://doi.org/10.3390/engproc2025103006 - 6 Aug 2025
Viewed by 565
Abstract
As medical technology develops and digital demands grow, personal health records (PHRs) are becoming more patient-centered than before based on cloud-based health information exchanges. While enhancing data accessibility and sharing, these systems present privacy and security issues, including data breaches and unauthorized access. [...] Read more.
As medical technology develops and digital demands grow, personal health records (PHRs) are becoming more patient-centered than before based on cloud-based health information exchanges. While enhancing data accessibility and sharing, these systems present privacy and security issues, including data breaches and unauthorized access. We developed a post-quantum, group-oriented encryption scheme using the Crystal-Kyber Key encapsulation mechanism (KEM). Leveraging lattice-based post-quantum cryptography, this scheme ensures quantum resilience and chosen ciphertext attack security for layered cloud PHR environments. It supports four encryption modes: individual, group, subgroup-specific, and authorized subgroup decryption, meeting diverse data access needs. With efficient key management requiring only one private key per user, the developed scheme strengthens the privacy and security of PHRs in a future-proof, flexible, and scalable manner. Full article
(This article belongs to the Proceedings of The 8th Eurasian Conference on Educational Innovation 2025)
17 pages, 4153 KB  
Article
Spherical Indentation Behavior of DD6 Single-Crystal Nickel-Based Superalloy via Crystal Plasticity Finite Element Simulation
by Xin Hao, Peng Zhang, Hao Xing, Mengchun You, Erqiang Liu, Xuegang Xing, Gesheng Xiao and Yongxi Tian
Materials 2025, 18(15), 3662; https://doi.org/10.3390/ma18153662 - 4 Aug 2025
Viewed by 428
Abstract
Nickel-based superalloys are widely utilized in critical hot-end components, such as aeroengine turbine blades, owing to their exceptional high-temperature strength, creep resistance, and oxidation resistance. During service, these components are frequently subjected to complex localized loading, leading to non-uniform plastic deformation and microstructure [...] Read more.
Nickel-based superalloys are widely utilized in critical hot-end components, such as aeroengine turbine blades, owing to their exceptional high-temperature strength, creep resistance, and oxidation resistance. During service, these components are frequently subjected to complex localized loading, leading to non-uniform plastic deformation and microstructure evolution within the material. Combining nanoindentation experiments with the crystal plasticity finite element method (CPFEM), this study systematically investigates the effects of loading rate and crystal orientation on the elastoplastic deformation of DD6 alloy under spherical indenter loading. The results indicate that the maximum indentation depth increases and hardness decreases with prolonged loading time, exhibiting a significant strain rate strengthening effect. The CPFEM model incorporating dislocation density effectively simulates the nonlinear characteristics of the nanoindentation process and elucidates the evolution of dislocation density and slip system strength with indentation depth. At low loading rates, both dislocation density and slip system strength increase with loading time. Significant differences in mechanical behavior are observed across different crystal orientations, which correspond to the extent of lattice rotation during texture evolution. For the [111] orientation, crystal rotation is concentrated and highly regular, while the [001] orientation shows uniform texture evolution. This demonstrates that anisotropy governs the deformation mechanism through differential slip system activation and texture evolution. Full article
(This article belongs to the Special Issue Nanoindentation in Materials: Fundamentals and Applications)
Show Figures

Figure 1

13 pages, 4956 KB  
Article
The Influence of Crystal Anisotropy in Femtosecond Laser Processing of Single-Crystal Diamond
by Guolong Wang, Ji Wang, Kaijie Cheng, Kun Yang, Bojie Xu, Wenbo Wang and Wenwu Zhang
Nanomaterials 2025, 15(15), 1160; https://doi.org/10.3390/nano15151160 - 28 Jul 2025
Viewed by 641
Abstract
The single-crystal diamond (SCD), owing to its extreme physical and chemical properties, serves as an ideal substrate for quantum sensing and high-frequency devices. However, crystal anisotropy imposes significant challenges on fabricating high-quality micro-nano structures, directly impacting device performance. This work investigates the effects [...] Read more.
The single-crystal diamond (SCD), owing to its extreme physical and chemical properties, serves as an ideal substrate for quantum sensing and high-frequency devices. However, crystal anisotropy imposes significant challenges on fabricating high-quality micro-nano structures, directly impacting device performance. This work investigates the effects of femtosecond laser processing on the SCD under two distinct crystallographic orientations via single-pulse ablation. The results reveal that ablation craters along the <100> orientation exhibit an elliptical shape with the major axis parallel to the laser polarization, whereas those along the <110> orientation form near-circular craters with the major axis at a 45° angle to the polarization. The single-pulse ablation threshold of the SCD along <110> is 9.56 J/cm2, representing a 7.8% decrease compared to 10.32 J/cm2 for <100>. The graphitization threshold shows a more pronounced reduction, dropping from 4.79 J/cm2 to 3.31 J/cm2 (31% decrease), accompanied by enhanced sp2 carbon order evidenced by the significantly intensified G-band in the Raman spectra. In addition, a phase transition layer of amorphous carbon at the nanoscale in the surface layer (thickness of ~40 nm) and a narrow lattice spacing of 0.36 nm are observed under TEM, corresponding to the interlayer (002) plane of graphite. These observations are attributed to the orientation-dependent energy deposition efficiency. Based on these findings, an optimized crystallographic orientation selection strategy for femtosecond laser processing is proposed to improve the quality of functional micro-nano structures in the SCD. Full article
(This article belongs to the Special Issue Trends and Prospects in Laser Nanofabrication)
Show Figures

Figure 1

19 pages, 5463 KB  
Article
Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea
by Pedro Gerardo Trejo-Flores, Yazmin Sánchez-Roque, Heber Vilchis-Bravo, Yolanda del Carmen Pérez-Luna, Paulina Elizabeth Velázquez-Jiménez, Francisco Ramírez-González, Karen Magaly Soto Martínez, Pascual López de Paz, Sergio Saldaña-Trinidad and Roberto Berrones-Hernández
Nanomaterials 2025, 15(14), 1126; https://doi.org/10.3390/nano15141126 - 20 Jul 2025
Viewed by 796
Abstract
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides [...] Read more.
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides an efficient, eco-friendly, and reproducible route to obtain ZnO nanoparticles, while minimizing environmental impact compared to conventional chemical approaches. The extracts were prepared following a standardized protocol, and their phytochemical profiles, including total phenolics, flavonoids, and antioxidant capacity, were quantified via UV-Vis spectroscopy to confirm their reducing potential. ZnO nanoparticles were synthesized using zinc acetate dihydrate as a precursor, with variations in pH and precursor concentration in both aqueous and ethanolic media. UV-Vis spectroscopy confirmed nanoparticle formation, while X-ray diffraction (XRD) revealed a hexagonal wurtzite structure with preferential (101) orientation and lattice parameters a = b = 3.244 Å, c = 5.197 Å. Scanning electron microscopy (SEM) showed agglomerated morphologies, and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of phytochemicals such as quercetin, kaempferol, saponins, and terpenes, along with Zn–O bonding, indicating surface functionalization. Zeta potential measurements showed improved dispersion under alkaline conditions, particularly with ethanolic extracts. This study presents a sustainable synthesis strategy with tunable parameters, highlighting the critical influence of precursor concentration and solvent environment on ZnO nanoparticle formation. Notably, aqueous extracts promote ZnO synthesis at low precursor concentrations, while alkaline conditions are essential when using ethanolic extracts. Compared to other green synthesis methods, this strategy offers control and reproducibility and employs a non-toxic, underexplored plant source rich in phytochemicals, potentially enhancing the crystallinity, surface functionality, and application potential of the resulting ZnO nanoparticles. These materials show promise for applications in photocatalysis, in antimicrobial coatings, in UV-blocking formulations, and as functional additives in optoelectronic and environmental remediation technologies. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Graphical abstract

15 pages, 4749 KB  
Article
Selective Laser Melting of a Ti-6Al-4V Lattice-Structure Gear: Design, Topology Optimization, and Experimental Validation
by Riad Ramadani, Snehashis Pal, Aleš Belšak and Jožef Predan
Appl. Sci. 2025, 15(14), 7949; https://doi.org/10.3390/app15147949 - 17 Jul 2025
Viewed by 617
Abstract
The manufacture of lightweight components is one of the most important requirements in the automotive and aerospace industries. Gears, on the other hand, are among the heaviest parts in terms of their total weight. Accordingly, a spur gear was considered, the body of [...] Read more.
The manufacture of lightweight components is one of the most important requirements in the automotive and aerospace industries. Gears, on the other hand, are among the heaviest parts in terms of their total weight. Accordingly, a spur gear was considered, the body of which was configured as a lattice structure to make it lightweight. In addition, the structure was optimized by topology optimization using ProTOP software. Subsequently, the gear was manufactured by a selective laser melting process by using a strong and lightweight material, namely Ti-6Al-4V. This study defeated the problems of manufacturing orientation, surface roughness, support structure, and bending due to the high thermal gradient in the selective laser melting process. To experimentally investigate the benefits of such a lightweight gear body structure, a new test rig with a closed loop was developed. This rig enabled measurements of strains in the gear ring, hub, and tooth root. The experimental results confirmed that a specifically designed and selectively laser-melted, lightweight cellular lattice structure in the gear body can significantly influence strain. This is especially significant with respect to strain levels and their time-dependent variations in the hub section of the gear body. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

Back to TopTop