Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = laser photoacoustic spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3346 KB  
Article
Theoretical Analysis of MIR-Based Differential Photoacoustic Spectroscopy for Noninvasive Glucose Sensing
by Tasnim Ahmed, Khan Mahmud, Md Rejvi Kaysir, Shazzad Rassel and Dayan Ban
Chemosensors 2026, 14(1), 26; https://doi.org/10.3390/chemosensors14010026 - 16 Jan 2026
Viewed by 129
Abstract
Diabetes is a developing global health concern that cannot be cured, necessitating frequent blood glucose monitoring and dietary management. Photoacoustic Spectroscopy (PAS) in the mid-infrared (MIR) region has recently emerged as a viable noninvasive blood glucose monitoring technique. However, MIR-PAS confronts significant challenges: [...] Read more.
Diabetes is a developing global health concern that cannot be cured, necessitating frequent blood glucose monitoring and dietary management. Photoacoustic Spectroscopy (PAS) in the mid-infrared (MIR) region has recently emerged as a viable noninvasive blood glucose monitoring technique. However, MIR-PAS confronts significant challenges: (i) Water absorption, which reduces light penetration, and (ii) interference from other blood components. This paper systematically analyzes the background of photoacoustic signal generation and proposes a differential PAS (DPAS) in the MIR region for removing the background signals arising from water and other interfering components of blood, which improves the overall detection sensitivity. A detailed mathematical model with an explanation for choosing two suitable MIR quantum cascade lasers for this differential scheme is presented here. For single-wavelength PAS (SPAS), a detection sensitivity of 1.537 µPa mg−1 dL was obtained from the proposed model. Alternatively, 2.333 µPa mg−1 dL detection sensitivity was found by implementing the DPAS scheme, which is about 1.5 times higher than SPAS. Moreover, DPAS facilitates an additional parameter, a differential phase shift between two laser responses, that has an effective correlation with the glucose concentration variation. Thus, MIR-based DPAS could be an effective way of monitoring blood glucose levels noninvasively in the near future. Full article
(This article belongs to the Section Optical Chemical Sensors)
Show Figures

Figure 1

18 pages, 18184 KB  
Article
Photoacoustic Gas Sensing Using a Novel Fluidic Microphone Based on Thermal MEMS
by Akash Gupta, Anant Bhardwaj, Achim Bittner and Alfons Dehé
Sensors 2025, 25(24), 7411; https://doi.org/10.3390/s25247411 - 5 Dec 2025
Viewed by 1892
Abstract
Photoacoustic spectroscopy (PAS) is a powerful technique for selective gas detection; however, its performance in non-resonant configurations is fundamentally constrained by the poor low-frequency response of conventional acoustic detectors. Commercial MEMS microphones, although compact and cost effective, exhibit limited infrasound sensitivity, which restricts [...] Read more.
Photoacoustic spectroscopy (PAS) is a powerful technique for selective gas detection; however, its performance in non-resonant configurations is fundamentally constrained by the poor low-frequency response of conventional acoustic detectors. Commercial MEMS microphones, although compact and cost effective, exhibit limited infrasound sensitivity, which restricts the development of truly miniaturised and broadband PAS systems. To address this limitation, we present a novel MEMS fluidic microphone (f-mic) that operates on a thermal sensing principle and is explicitly optimised for the infrasound regime. The sensor demonstrates a constant sensitivity of 32 μV/Pa for frequencies below 20 Hz. A detailed analytical model incorporating frequency-dependent effects is developed to identify and investigate the critical design parameters that influence system performance. The overall system exhibits a band-pass frequency response, enabling broadband operation. Based on these insights, a miniaturised photoacoustic cell is fabricated, ensuring efficient optical coupling and f-mic integration. Experimental validation using a CO2-targeted laser system demonstrates a linear response up to 5000 ppm, a sensitivity of 6 nV/ppm, and a theoretical detection limit of 300 ppb over 100 s, resulting in an NNEA of 6×106 W cm−1 Hz−0.5. These results establish the f-mic as a robust, scalable solution for non-resonant PAS, effectively overcoming a significant bottleneck in compact gas sensing technologies. Full article
Show Figures

Figure 1

13 pages, 5916 KB  
Article
Breath Isoprene Sensor Based on Quartz-Enhanced Photoacoustic Spectroscopy
by Fadia Abou Naoum, Diba Ayache, Tarek Seoudi, Daniel Andres Diaz-Thomas, Alexei Baranov, Fanny Pages, Julien Charensol, Eric Rosenkrantz, Meryem Aouadi, Michael Bahriz, Fares Gouzi and Aurore Vicet
Sensors 2025, 25(21), 6732; https://doi.org/10.3390/s25216732 - 3 Nov 2025
Viewed by 736
Abstract
Isoprene, the most abundant endogenous hydrocarbon in human breath, is a promising biomarker for metabolic and cardiovascular diseases. In this paper, we present the detection of isoprene in exhaled breath using the off-beam Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) method. The sensor employs a homemade [...] Read more.
Isoprene, the most abundant endogenous hydrocarbon in human breath, is a promising biomarker for metabolic and cardiovascular diseases. In this paper, we present the detection of isoprene in exhaled breath using the off-beam Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) method. The sensor employs a homemade quantum cascade laser emitting at 11.03 μm. We use numerical simulations to evaluate the impact of interfering gases (CO2 and H2O) and optimize the laser modulation parameters. The limit of detection reached for 1 s acquisition time is close to 220 parts per billion in volume (ppbv) with a normalized noise equivalent absorption (NNEA) of 1.1×108cm1·W·Hz1/2. Breath measurements conducted on healthy volunteers reveal a significant increase in isoprene concentration from resting levels (~250–350 ppbv) to elevated levels (~450–650 ppbv) after moderate physical exercise. Full article
Show Figures

Figure 1

22 pages, 5264 KB  
Article
Development of Compact Electronics for QEPAS Sensors
by Vincenzina Zecchino, Luigi Lombardi, Cristoforo Marzocca, Pietro Patimisco, Angelo Sampaolo and Vincenzo Luigi Spagnolo
Sensors 2025, 25(21), 6718; https://doi.org/10.3390/s25216718 - 3 Nov 2025
Cited by 1 | Viewed by 585
Abstract
Remarkable advances in Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) made it one of the most effective gas-sensing techniques in terms of sensitivity and selectivity. Consequently, its range of possible applications is continuously expanding, but in some cases is still limited by the cost and/or size [...] Read more.
Remarkable advances in Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) made it one of the most effective gas-sensing techniques in terms of sensitivity and selectivity. Consequently, its range of possible applications is continuously expanding, but in some cases is still limited by the cost and/or size of the equipment needed to im-plement a complete QEPAS sensor. In particular, bulky and expensive lab instruments are often used to realize the electronic building blocks required by this technique, which prevents, for instance, integration of the system on board a drone. This work addresses this issue by presenting the development of compact electronic modules for a QEPAS sensor. A very low-noise, fully differential preamplifier for the quartz tuning fork, with digital output and programmable gain, has been designed and realized. A compact FPGA board hosts both an accurate function generation module, which synthesizes the signals needed to modulate the laser source, and an innovative lock-in amplifier based on the CORDIC algorithm. QEPAS sensors based on the designed electronics have been used for the detection of H2O and CO2 in ambient air, proving the full functionality of all the blocks. These results highlight the potential of compact electronics to promote portable and cost-effective QEPAS applications. Full article
(This article belongs to the Special Issue Laser Spectroscopy Sensing for Gas Detection)
Show Figures

Figure 1

9 pages, 1140 KB  
Article
Photoacoustic Spectroscopy-Based Detection for Identifying the Occurrence and Location of Laser-Induced Damage Using a Laser Doppler Vibrometer
by Katsuhiro Mikami, Ryoichi Akiyoshi and Yasuhiro Miyasaka
Sensors 2025, 25(21), 6643; https://doi.org/10.3390/s25216643 - 30 Oct 2025
Viewed by 836
Abstract
We present a photoacoustic spectroscopy (PAS)-based method using a laser Doppler vibrometer (LDV) for real-time detection of laser-induced damage (LID) in optical components. By measuring audible frequency surface vibrations, the method enables remote, non-contact, and sensitive detection. Experiments with various dielectric optics (slide [...] Read more.
We present a photoacoustic spectroscopy (PAS)-based method using a laser Doppler vibrometer (LDV) for real-time detection of laser-induced damage (LID) in optical components. By measuring audible frequency surface vibrations, the method enables remote, non-contact, and sensitive detection. Experiments with various dielectric optics (slide glass and single-layer coatings) and pulse durations (7 ns and 360 ps) of an Nd:YAG laser (wavelength of 1064 nm) showed detection accuracy comparable to microscopy. Vibration spectra correlated with natural modes calculated by finite element modeling, and vibrations according to the detecting location were observed. The method remained effective under typical mounting conditions, demonstrating its practical applicability. This PAS-LDV approach offers a promising tool for in situ monitoring of LID in high-power laser systems. Full article
(This article belongs to the Special Issue Laser and Spectroscopy for Sensing Applications)
Show Figures

Figure 1

12 pages, 3116 KB  
Article
Dual-Component Beat-Frequency Quartz-Enhanced Photoacoustic Spectroscopy Gas Detection System
by Hangyu Xu, Yiwen Feng, Zihao Chen, Zhenzhao Zhuang, Jinbao Xia, Yiyang Zhao and Sasa Zhang
Photonics 2025, 12(8), 747; https://doi.org/10.3390/photonics12080747 - 24 Jul 2025
Viewed by 1628
Abstract
This study designed and validated a dual-component beat-frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) gas detection system utilizing time-division multiplexing (TDM). By applying TDM to drive distributed feedback lasers, the system achieved the simultaneous detection of acetylene and methane. Its key innovation lies in exploiting [...] Read more.
This study designed and validated a dual-component beat-frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) gas detection system utilizing time-division multiplexing (TDM). By applying TDM to drive distributed feedback lasers, the system achieved the simultaneous detection of acetylene and methane. Its key innovation lies in exploiting the transient response of the quartz tuning fork (QTF) to acquire gas concentrations while concurrently capturing the QTF resonant frequency and quality factor in real-time. Owing to the short beat period and rapid system response, this approach significantly reduces time-delay constraints in time-division measurements, eliminating the need for periodic calibration inherent in conventional methods and preventing detection interruptions. The experimental results demonstrate minimum detection limits of 5.69 ppm for methane and 0.60 ppm for acetylene. Both gases exhibited excellent linear responses over the concentration range of 200 ppm to 4000 ppm, with the R2 value for methane being 0.996 and for acetylene being 0.997. The system presents a viable solution for the real-time, calibration-free monitoring of dissolved gases in transformer oil. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

23 pages, 4894 KB  
Article
Evaluating Copper-Induced Oxidative Stress in Germinating Wheat Seeds Using Laser Photoacoustic Spectroscopy and EPR Techniques
by Mioara Petrus, Cristina Popa, Ana-Maria Bratu, Alexandra Camelia Joita and Vasile Bercu
Toxics 2025, 13(7), 604; https://doi.org/10.3390/toxics13070604 - 18 Jul 2025
Viewed by 1357
Abstract
Copper is an essential micronutrient for plants, but excessive levels can induce toxicity and impair physiological functions. This study evaluates the toxic effects of copper sulfate (CuSO4) on the germination of common wheat (Triticum aestivum), with emphasis on the [...] Read more.
Copper is an essential micronutrient for plants, but excessive levels can induce toxicity and impair physiological functions. This study evaluates the toxic effects of copper sulfate (CuSO4) on the germination of common wheat (Triticum aestivum), with emphasis on the gas emission dynamics and oxidative stress biomarkers. Seeds were germinated in agar and exposed to CuSO4 at concentrations of 1 µM, 100 µM, 1 mM, and 10 mM; distilled water served as the control. Ethylene and ammonia emissions were quantified using CO2 laser photoacoustic spectroscopy, while electron paramagnetic resonance (EPR) spectroscopy was employed to detect free radicals and Cu2+ complexes. Exposure to Cu concentrations ≥ 1 mM significantly inhibited germination and biomass accumulation. Enhanced ethylene and ammonia emissions, particularly at 10 mM, indicated stress-related metabolic responses. The EPR spectra confirmed the presence of semiquinone radicals and Cu2+ complexes under higher Cu levels. These results demonstrate that photoacoustic and EPR techniques are effective tools for the early detection of metal-induced phytotoxicity and offer a non-invasive approach to environmental toxicity screening and plant stress assessment. Full article
Show Figures

Graphical abstract

10 pages, 1296 KB  
Article
High-Sensitivity Dynamic Detection of Dissolved Acetylene in Transformer Oil Based on High-Power Quartz-Enhanced Photoacoustic Spectroscopy Sensing System
by Yuxiang Wu, Tiehua Ma, Chenhua Liu, Yashan Fan, Shuai Shi, Songjie Guo, Yu Wang, Xiangjun Xu, Guqing Guo, Xuanbing Qiu, Zhijin Shang and Chuanliang Li
Photonics 2025, 12(7), 713; https://doi.org/10.3390/photonics12070713 - 16 Jul 2025
Cited by 2 | Viewed by 1019
Abstract
To enable the highly sensitive detection of acetylene (C2H2) dissolved in transformer oil, a high-power quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system is proposed. A standard 32.7 kHz quartz tuning fork (QTF) was employed as an acoustic transducer, coupled with [...] Read more.
To enable the highly sensitive detection of acetylene (C2H2) dissolved in transformer oil, a high-power quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system is proposed. A standard 32.7 kHz quartz tuning fork (QTF) was employed as an acoustic transducer, coupled with an optimized acoustic resonator to enhance the acoustic signal. The laser power was boosted to 150 mW using a C-band erbium-doped fiber amplifier (EDFA), achieving a detection limit of 469 ppb for C2H2 with an integration time of 1 s. The headspace degassing method was utilized to extract dissolved gases from the transformer oil, and the equilibrium process for the release of dissolved C2H2 was successfully monitored using the developed high-power QEPAS system. This approach provides reliable technical support for the real-time monitoring of the operational safety of power transformers. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

15 pages, 3527 KB  
Article
Photoacoustic Spectroscopy Combined with a Multipass Circular Cell to Detect Low Concentrations of Ammonia
by Oscar E. Bonilla-Manrique, Alejandro Pérez Gonzalez-Banfi, Jorge Viñuela Pérez and Gabriele Dessena
Appl. Sci. 2025, 15(12), 6727; https://doi.org/10.3390/app15126727 - 16 Jun 2025
Cited by 3 | Viewed by 1761
Abstract
Photoacoustic spectroscopy (PAS) has become a valuable technique for trace gas detection due to its high sensitivity and potential for miniaturization. This study presents the development and evaluation of a near-infrared PAS system using a 1532 nm semiconductor laser and a multipass cell [...] Read more.
Photoacoustic spectroscopy (PAS) has become a valuable technique for trace gas detection due to its high sensitivity and potential for miniaturization. This study presents the development and evaluation of a near-infrared PAS system using a 1532 nm semiconductor laser and a multipass cell (MPC) designed to enhance the optical path and thereby improve the detection of ammonia (NH3). The minimum detection limit was determined to be 770 ppb, with a normalized noise equivalent absorption (NNEA) coefficient of 1.07 × 10−8 W cm−1 Hz−1/2. While competitive with similar PAS systems, these results indicate that mid-infrared technologies still offer superior detection thresholds. The findings suggest that while this near-infrared setup may not yet match the sensitivity of systems using quantum cascade lasers or QEPAS, it offers notable advantages in terms of simplicity, cost, and potential for field deployment. The system’s configuration makes it a viable and efficient tool for industrial gas monitoring and real-time environmental applications, with future improvements likely to come from transitioning to the mid-infrared region and advancing laser stabilization and miniaturization techniques. Full article
(This article belongs to the Special Issue Recent Advances in Optical Sensors)
Show Figures

Figure 1

16 pages, 8177 KB  
Article
Study and Characterization of Silicon Nitride Optical Waveguide Coupling with a Quartz Tuning Fork for the Development of Integrated Sensing Platforms
by Luigi Melchiorre, Ajmal Thottoli, Artem S. Vorobev, Giansergio Menduni, Angelo Sampaolo, Giovanni Magno, Liam O’Faolain and Vincenzo Spagnolo
Sensors 2025, 25(12), 3663; https://doi.org/10.3390/s25123663 - 11 Jun 2025
Cited by 5 | Viewed by 2631
Abstract
This work demonstrates an ultra-compact optical gas-sensing system, consisting of a pigtailed laser diode emitting at 1392.5 nm for water vapor (H2O) detection, a silicon nitride (Si3N4) optical waveguide to guide the laser light, and a custom-designed, [...] Read more.
This work demonstrates an ultra-compact optical gas-sensing system, consisting of a pigtailed laser diode emitting at 1392.5 nm for water vapor (H2O) detection, a silicon nitride (Si3N4) optical waveguide to guide the laser light, and a custom-designed, low-frequency, and T-shaped Quartz Tuning Fork (QTF) as the sensitive element. The system employs both Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) and Light-Induced Thermoelastic Spectroscopy (LITES) techniques for trace gas sensing. A 3.8 mm-wide, S-shaped waveguide path was designed to prevent scattered laser light from directly illuminating the QTF. Both QEPAS and LITES demonstrated comparably low signal-to-noise ratios (SNRs), ranging from 1.6 to 3.2 for a 1.6% indoor H2O concentration, primarily owing to the reduced optical power (~300 μW) delivered to the QTF excitation point. These results demonstrate the feasibility of integrating photonic devices and piezoelectric components into portable gas-sensing systems for challenging environments. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

21 pages, 2012 KB  
Article
A Synergistic Approach Using Photoacoustic Spectroscopy and AI-Based Image Analysis for Post-Harvest Quality Assessment of Conference Pears
by Mioara Petrus, Cristina Popa, Ana Maria Bratu, Vasile Bercu, Leonard Gebac, Delia-Mihaela Mihai, Ana-Cornelia Butcaru, Florin Stanica and Ruxandra Gogot
Molecules 2025, 30(11), 2431; https://doi.org/10.3390/molecules30112431 - 1 Jun 2025
Cited by 1 | Viewed by 1150
Abstract
This study presents a non-invasive approach to monitoring post-harvest fruit quality by applying CO2 laser photoacoustic spectroscopy (CO2LPAS) to study the respiration of “Conference” pears from local and commercially stored (supermarket) sources. Concentrations of ethylene (C2H4), [...] Read more.
This study presents a non-invasive approach to monitoring post-harvest fruit quality by applying CO2 laser photoacoustic spectroscopy (CO2LPAS) to study the respiration of “Conference” pears from local and commercially stored (supermarket) sources. Concentrations of ethylene (C2H4), ethanol (C2H6O), and ammonia (NH3) were continuously monitored under shelf-life conditions. Our results reveal that ethylene emission peaks earlier in supermarket pears, likely due to post-harvest treatments, while ethanol accumulates over time, indicating fermentation-related deterioration. Significantly, ammonia levels increased during the late stages of senescence, suggesting its potential role as a novel biomarker for fruit degradation. The application of CO2LPAS enabled highly sensitive, real-time detection of trace gases without damaging the fruit, offering a powerful alternative to traditional monitoring methods. Additionally, artificial intelligence (AI) models, particularly convolutional neural networks (CNNs), were explored to enhance data interpretation, enabling early detection of ripening and spoilage patterns through volatile compound profiling. This study advances our understanding of post-harvest physiological processes and proposes new strategies for improving storage and distribution practices for climacteric fruits. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3rd Edition)
Show Figures

Graphical abstract

13 pages, 4663 KB  
Article
Greenhouse Gases Detection Exploiting a Multi-Wavelength Interband Cascade Laser Source in a Quartz-Enhanced Photoacoustic Sensor
by Raffaele De Palo, Nicoletta Ardito, Andrea Zifarelli, Angelo Sampaolo, Marilena Giglio, Pietro Patimisco, Ezio Ranieri, Robert Weih, Josephine Nauschütz, Oliver König and Vincenzo Spagnolo
Sensors 2025, 25(8), 2442; https://doi.org/10.3390/s25082442 - 12 Apr 2025
Cited by 3 | Viewed by 1638
Abstract
This study presents the performance of a multi-gas sensor for greenhouse detection based on quartz-enhanced photoacoustic spectroscopy (QEPAS). The QEPAS sensor exploits an innovative, compact three-wavelength laser module as excitation source. The module integrates three interband cascade laser chips with a beam combining [...] Read more.
This study presents the performance of a multi-gas sensor for greenhouse detection based on quartz-enhanced photoacoustic spectroscopy (QEPAS). The QEPAS sensor exploits an innovative, compact three-wavelength laser module as excitation source. The module integrates three interband cascade laser chips with a beam combining system, all enclosed in a compact metallic package with sizes of 40 × 52 × 17 mm to generate a single output beam. The multi-gas QEPAS sensor was tested in a laboratory environment for the sequential detection of two greenhouse gases, methane (CH4) and carbon dioxide (CO2), and a precursor greenhouse gas, carbon monoxide (CO). At an integration time of 100 ms, minimum detection limits of 21 ppb, 363 ppb, and 156 ppb, were estimated for CH4, CO2, and CO detection, respectively, all well below their natural abundance in air. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Laser Spectroscopy and Sensing)
Show Figures

Figure 1

10 pages, 3418 KB  
Article
Off-Beam Acoustic Micro-Resonator for QEPAS Sensor with a Custom Quartz Tuning Fork
by Yong Wang, Gang Wang, Jiapeng Wang, Chaofan Feng, Qingyuan Tian, Yifan Chen, Ruyue Cui, Hongpeng Wu and Lei Dong
Atmosphere 2025, 16(3), 352; https://doi.org/10.3390/atmos16030352 - 20 Mar 2025
Cited by 4 | Viewed by 1133
Abstract
Quartz-enhanced photoacoustic spectroscopy (QEPAS) has shown great promise for monitoring greenhouse gases and pollutants with a high measurement accuracy and limit of detection. A QEPAS sensor, which can achieve high photoacoustic signal gain without requiring the laser beam to pass through the two [...] Read more.
Quartz-enhanced photoacoustic spectroscopy (QEPAS) has shown great promise for monitoring greenhouse gases and pollutants with a high measurement accuracy and limit of detection. A QEPAS sensor, which can achieve high photoacoustic signal gain without requiring the laser beam to pass through the two prongs of a quartz tuning fork (QTF), is reported. A custom QTF with a resonant frequency of 7.2 kHz and a quality factor of 8406 was employed as a sound detection element, and the parameters of the acoustic micro-resonator (AmR) in the off-beam QEPAS spectrophone were optimized. A signal-to-noise ratio (SNR) gain of 16 was achieved based on the optimal AmR dimensions compared to the bare custom QTF. Water vapor (H2O) was detected utilizing the QEPAS sensor equipped with the off-beam spectrophone, achieving a minimum detection limit (MDL) of 4 ppm with a normalized noise equivalent absorption coefficient (NNEA) of 5.7 × 10−8 cm−1·W·Hz−1/2 at an integration time of 300 ms. Full article
(This article belongs to the Special Issue New Insights into Photoacoustic Spectroscopy and Its Applications)
Show Figures

Figure 1

18 pages, 13729 KB  
Article
Design of NO2 Photoacoustic Detection System Based on Finite Element Simulation
by Long Wu, Tao Chen, Biao Xiang and Likun Xing
Appl. Sci. 2024, 14(23), 11343; https://doi.org/10.3390/app142311343 - 5 Dec 2024
Viewed by 1234
Abstract
Based on photoacoustic spectroscopy and finite element simulation technology, a simulation model of sound field excitation in a cylindrical resonant photoacoustic cell was established. The finite element simulation method was used to analyze the acoustic mode and sound pressure distribution of the cavity [...] Read more.
Based on photoacoustic spectroscopy and finite element simulation technology, a simulation model of sound field excitation in a cylindrical resonant photoacoustic cell was established. The finite element simulation method was used to analyze the acoustic mode and sound pressure distribution of the cavity structure of the photoacoustic cell. The effects of the geometric parameters of the resonator and the buffer cavity on the performance of the photoacoustic cell were compared. The frequency response characteristics of the photoacoustic cell and the effects of the air intake and the air outlet were studied. Based on the simulation results, a cylindrical resonant photoacoustic cell was designed, and a photoacoustic sensor for NO2 detection was built. NO2 with a volume fraction of 10−5 was taken as the sample gas through frequency scanning to obtain the frequency response curve of the system. The resonant frequency is 1730 Hz, and the cell constant is about 542.3 (Pa*cm)/W. The quality factor is 10.05. By linear fitting the calibration curve of the sensor, the fitting slope is 0.012 µV/ppb, and R2 is 0.998. Atmospheric NO2 detection was carried out for two consecutive weeks, whose findings are in good agreement with the data released by a Huainan environmental monitoring site. The experimental results show that the system can detect NO2 in the atmosphere with high sensitivity. Full article
Show Figures

Figure 1

16 pages, 9690 KB  
Article
Multiwavelength Photoacoustic Doppler Flowmetry of Living Microalgae Cells
by Tayyab Farooq, Xiuru Wu, Sheng Yan and Hui Fang
Biosensors 2024, 14(8), 397; https://doi.org/10.3390/bios14080397 - 16 Aug 2024
Cited by 1 | Viewed by 2101
Abstract
Photoacoustics can provide a direct measurement of light absorption by microalgae depending on the photosynthesis pigment within them. In this study, we have performed photoacoustic flowmetry on living microalgae cells to measure their flow characteristics, which include flow speed, flow angle, flow direction, [...] Read more.
Photoacoustics can provide a direct measurement of light absorption by microalgae depending on the photosynthesis pigment within them. In this study, we have performed photoacoustic flowmetry on living microalgae cells to measure their flow characteristics, which include flow speed, flow angle, flow direction, and, more importantly, the photoacoustic absorption spectrum, all by observing the photoacoustic Doppler power spectra during their flowing state. A supercontinuum pulsed laser with a high repetition frequency is used as the light source: through intensity modulation at a specified frequency, it can provide wavelength-selectable excitation of a photoacoustic signal centered around this frequency. Our approach can be useful to simultaneously measure the flow characteristics of microalgae and easily discriminate their different species with high accuracy in both static and dynamic states, thus facilitating the study of their cultivation and their role in our ecosystem. Full article
(This article belongs to the Special Issue Waveguide Biosensors)
Show Figures

Figure 1

Back to TopTop