Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,637)

Search Parameters:
Keywords = laser modulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3958 KB  
Article
Thermal Runaway Suppression Mechanism of Thermosensitive Microcapsules for Lithium-Ion Batteries
by Zujin Bai, Pei Zhang, Furu Kang, Zeyang Song and Yang Xiao
Polymers 2025, 17(17), 2374; https://doi.org/10.3390/polym17172374 - 31 Aug 2025
Abstract
Lithium-ion batteries (LIBs) have garnered extensive application across various domains. However, frequent safety incidents associated with these LIBs have emerged as a significant impediment to their further advancement. Consequently, there is an urgent necessity to develop a novel fire extinguishing agent that possesses [...] Read more.
Lithium-ion batteries (LIBs) have garnered extensive application across various domains. However, frequent safety incidents associated with these LIBs have emerged as a significant impediment to their further advancement. Consequently, there is an urgent necessity to develop a novel fire extinguishing agent that possesses both rapid fire suppression and efficient cooling capabilities, thereby effectively mitigating the occurrence and propagation of fires in LIBs. This study pioneers the development of an adaptive thermosensitive microcapsule (TM) fire extinguishing agent synthesized via in situ polymerization. The TM encapsulates a ternary composite core—perfluorohexanone (C6F12O), heptafluorocyclopentane (C5H3F7), and 2-bromo-3,3,3-trifluoropropene (2-BTP)—within a melamine–urea–formaldehyde (MUF) resin shell. The TM was prepared via in situ polymerization, combined with FE-SEM, FTIR, TG–DSC, and laser particle size analysis to verify that the TM had a uniform particle size and complete coating structure. The results demonstrate that the TM can effectively suppress the thermal runaway (TR) of LIBs through the synergistic effects of physical cooling, chemical suppression, and gas isolation. Specifically, the peak TR temperature of a single-cell LIB is reduced by 14.0 °C, and the heating rate is decreased by 0.17 °C/s. Additionally, TM successfully blocked the propagation of TR thereby preventing its spread in the dual-LIB module test. Limitations of single-component agents are overcome by this innovative system by leveraging the ternary core’s complementary functionalities, enabling autonomous TR suppression without external systems. Furthermore, the TM design integrates precise thermal responsiveness, environmental friendliness, and cost-effectiveness, offering a transformative safety solution for next-generation LIBs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 6754 KB  
Article
Simulation of Heterodyne Signal for Science Interferometers of Space-Borne Gravitational Wave Detector and Evaluation of Phase Measurement Noise
by Tao Yu, Ke Xue, Hongyu Long, Zhi Wang and Yunqing Liu
Photonics 2025, 12(9), 879; https://doi.org/10.3390/photonics12090879 (registering DOI) - 30 Aug 2025
Abstract
Interferometric signals in space-borne Gravitational Wave Detectors are measured by digital phasemeters. The phasemeter processes signals generated by multiple interferometers, with its primary function being micro-radian level phase measurements. The Science Interferometer is responsible for inter-spacecraft measurements, including relative ranging, absolute ranging, laser [...] Read more.
Interferometric signals in space-borne Gravitational Wave Detectors are measured by digital phasemeters. The phasemeter processes signals generated by multiple interferometers, with its primary function being micro-radian level phase measurements. The Science Interferometer is responsible for inter-spacecraft measurements, including relative ranging, absolute ranging, laser communication, and clock noise transfer. Since the scientific interferometer incorporates multiple functions and various signals are simultaneously coupled into the heterodyne signal, establishing a suitable evaluation environment is a crucial foundation for achieving micro-radian level phase measurement during ground testing and verification. This paper evaluates the phase measurement noise of the science interferometer by simulating the heterodyne signal and establishing a test environment. The experimental results show that when the simulated heterodyne signal contains the main beat-note, upper and lower sideband beat-notes, and PRN modulation simultaneously, the phase measurement noise of the main beat-note, upper and lower sideband beat-notes all reach 2π μrad/Hz1/2@(0.1 mHz–1 Hz), meeting the requirements of the space gravitational wave detection mission. An experimental verification platform and performance reference benchmark have been established for subsequent research on the impact of specific noise on phase measurement performance and noise suppression methods. Full article
(This article belongs to the Special Issue Optical Measurement Systems, 2nd Edition)
Show Figures

Figure 1

26 pages, 2929 KB  
Article
A Unified Framework for Enhanced 3D Spatial Localization of Weeds via Keypoint Detection and Depth Estimation
by Shuxin Xie, Tianrui Quan, Junjie Luo, Xuesong Ren and Yubin Miao
Agriculture 2025, 15(17), 1854; https://doi.org/10.3390/agriculture15171854 - 30 Aug 2025
Viewed by 106
Abstract
In this study, a lightweight deep neural network framework WeedLoc3D based on multi-task learning is proposed to meet the demand of accurate three-dimensional positioning of weed targets in automatic laser weeding. Based on a single RGB image, it both locates the 2D keypoints [...] Read more.
In this study, a lightweight deep neural network framework WeedLoc3D based on multi-task learning is proposed to meet the demand of accurate three-dimensional positioning of weed targets in automatic laser weeding. Based on a single RGB image, it both locates the 2D keypoints (growth points) of weeds and estimates the depth with high accuracy. This is a breakthrough from the traditional thinking. To improve the model performance, we introduce several innovative structural modules, including Gated Feature Fusion (GFF) for adaptive feature integration, Hybrid Domain Block (HDB) for dealing with high-frequency details, and Cross-Branch Attention (CBA) for promoting synergy among tasks. Experimental validation on field data sets confirms the effectiveness of our method. It significantly reduces the positioning error of 3D keypoints and achieves stable performance in diverse detection and estimation tasks. The demonstrated high accuracy and robustness highlight its potential for practical application. Full article
Show Figures

Graphical abstract

21 pages, 22656 KB  
Article
Development of a Laser Cladding Technology for Repairing First-Stage High-Pressure Turbine Blades in Gas Turbine Engines
by Stepan Tukov, Rudolf Korsmik, Grigoriy Zadykyan, Dmitrii Mukin, Ruslan Mendagaliev and Nikita Roschin
Metals 2025, 15(9), 957; https://doi.org/10.3390/met15090957 - 28 Aug 2025
Viewed by 195
Abstract
A gas turbine engine is a technological system consisting of a compressor, a combustion chamber, and other modules. All these components are subjected to dynamic and cyclic loads, which lead to fatigue cracks and mechanical damage. The aim of this work is to [...] Read more.
A gas turbine engine is a technological system consisting of a compressor, a combustion chamber, and other modules. All these components are subjected to dynamic and cyclic loads, which lead to fatigue cracks and mechanical damage. The aim of this work is to repair the worn surfaces of a series of DR-59L high-pressure turbine blades by laser powder cladding. A number of technological parameters of laser cladding were tested to obtain a defect-free structure on the witness sample. The metal powder of the cobalt alloy Stellite 21 was used as a filler material. By modeling the process of restoring rotor blades, the operating mode of laser powder cladding was determined. No defects were detected during capillary control of the restored surfaces of the rotor blades. The results of the uniaxial tension test of the restored rotor blades showed increased tensile strength and elongation. With the use of laser powder cladding technology, it was possible to restore the worn surfaces of a series of rotor blades of the DR-59L high-pressure turbine, thereby increasing the life cycle of power plant products. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

18 pages, 39111 KB  
Article
Impact of Beam Shape and Frequency on Weld Seam Geometry and Penetration Depth Using a Coherent Beam Combining Laser
by Karthik Ravi Krishna Murthy, Reza Sanei, Abhay Sharma, Simon Olschok and Uwe Reisgen
Appl. Sci. 2025, 15(17), 9432; https://doi.org/10.3390/app15179432 - 28 Aug 2025
Viewed by 196
Abstract
The geometry and quality of a weld seam are critical factors in laser beam welding, influencing mechanical performance and structural integrity. Dynamically modulated laser beams provide a precise means of tailoring energy input in high-power laser welding processes. This study investigates the influence [...] Read more.
The geometry and quality of a weld seam are critical factors in laser beam welding, influencing mechanical performance and structural integrity. Dynamically modulated laser beams provide a precise means of tailoring energy input in high-power laser welding processes. This study investigates the influence of beam shape and modulated frequency on weld seam geometry, penetration depth, and capillary behaviour using a coherent beam combining (CBC) laser system from Civan Lasers. Three beam intensity distributions—single point, line–point–line (LPL), and boomerang—were applied across a modulation frequency range of 1, 10, and 100 kHz during the welding of duplex and austenitic stainless steels. High-speed imaging captured real-time capillary dynamics, and the data were analysed to assess capillary stability, measure capillary diameter, and determine the capillary front angle as a function of frequency and beam shape. Transverse cross-sections of the welds were prepared to evaluate seam geometry and microstructure. The results show that beam shape significantly affects energy distribution and weld profile, while modulation frequency critically influences capillary behaviour and penetration characteristics. These findings highlight the critical role of dynamic beam shaping and frequency modulation in optimizing laser welding processes for material-specific performance, offering a versatile platform for advancing precision manufacturing using CBC technology. Full article
(This article belongs to the Special Issue Advanced Welding Technology and Its Applications)
Show Figures

Figure 1

9 pages, 1015 KB  
Article
Semiconductor Laser with Electrically Modulated Frequency
by Boris Laikhtman, Gregory Belenky and Sergey Suchalkin
Photonics 2025, 12(9), 860; https://doi.org/10.3390/photonics12090860 - 27 Aug 2025
Viewed by 151
Abstract
We propose a novel method for controlling the frequency of semiconductor lasers. This technique facilitates the production of devices with fast frequency tuning and intrinsic linearization of laser frequency sweeps. The electrical contact layer positioned between the lower undoped cladding and the waveguide, [...] Read more.
We propose a novel method for controlling the frequency of semiconductor lasers. This technique facilitates the production of devices with fast frequency tuning and intrinsic linearization of laser frequency sweeps. The electrical contact layer positioned between the lower undoped cladding and the waveguide, along with the upper laser contact, is used for the optical gain pumping. Since the laser pumping current does not pass through the lower cladding, changes in carrier concentration within the cladding affect the laser frequency while minimally impacting the device’s output power. Control of the free carrier concentration in the lower cladding is achieved using the space-charge-limited current (SCLC) technique. This novel approach establishes a linear relationship between the laser frequency shift (∆f) and voltage (V) applied to the cladding—an essential feature for light detection and ranging (LIDAR) system development. The proposed technique is applicable to all semiconductor lasers. As an example, we present the calculated characteristics of a quantum cascade laser (QCL) operating at a 10 µm wavelength. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

11 pages, 2248 KB  
Communication
Extra-Cavity Modulation of a Quartic Soliton with Negative Fourth-Order Dispersion
by Dayu Wang, Daqian Tang, Yangyang Peng, Junxiao Zhan, Haoming Wang and Yan Zhou
Photonics 2025, 12(9), 858; https://doi.org/10.3390/photonics12090858 - 26 Aug 2025
Viewed by 211
Abstract
Quartic solitons in ultrafast fibre lasers (intra-cavity optical fibre modulation systems) have been theoretically and experimentally analysed in recent years. However, there are few reports about extra-cavity modulating quartic solitons. In this situation, the purpose of this work is to investigate a quartic [...] Read more.
Quartic solitons in ultrafast fibre lasers (intra-cavity optical fibre modulation systems) have been theoretically and experimentally analysed in recent years. However, there are few reports about extra-cavity modulating quartic solitons. In this situation, the purpose of this work is to investigate a quartic soliton’s extra-cavity modulation. In this paper, we theoretically simulate an extra-cavity-modulating quartic soliton with negative fourth-order dispersion at 1550 nm. The simulation relies on a physical model of a single-mode optical fibre system. Through controlling soliton parameters in an extra-cavity modulation system, a quartic soliton’s orthogonal polarisation modes will show unique characteristics depending on which kind of parameter is changed (seven parameters are considered for variation). For example, through the variation in the projection angle, only a horizontally polarised quartic soliton pulse is generated. These results explore the dynamics of quartic solitons in single-mode optical fibre modulation systems and are applicable to optical soliton transmission techniques in the field of optical fibre communication. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

13 pages, 4031 KB  
Article
A Low-Power Comparator-Based Automatic Power and Modulation Control Circuit for VCSEL Drivers
by Yejin Choi and Sung-Min Park
Photonics 2025, 12(9), 844; https://doi.org/10.3390/photonics12090844 - 24 Aug 2025
Viewed by 240
Abstract
This paper proposes an automatic power and modulation control (APMC) circuit that can directly detect the degradation of vertical cavity surface emitting laser (VCSEL) diodes by utilizing a novel voltage sensing mechanism, thereby eliminating the need for costly external monitoring photodiodes. Notably, the [...] Read more.
This paper proposes an automatic power and modulation control (APMC) circuit that can directly detect the degradation of vertical cavity surface emitting laser (VCSEL) diodes by utilizing a novel voltage sensing mechanism, thereby eliminating the need for costly external monitoring photodiodes. Notably, the proposed APMC architecture facilely observes the performance degradation by sampling the voltage values at the upper node of the VCSEL diode during both modulation on and off states. The APC loop can perceive a 25 mV voltage drop that corresponds to a 0.5 mA increase in the threshold current, providing a 4-bit digital switch signal. Thereafter, it is delivered to the VCSEL diode driver to initiate compensation of the bias current. In the AMC loop, a 50 mV voltage drop equivalent to a 1 mA reduction in the modulation current is similarly detected to produce another 4-bit digital code. The proposed APMC IC is designed by using a 180 nm CMOS process and consumes a total power of 18.2 mW from a single 3.3 V supply. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

8 pages, 749 KB  
Communication
Numerical Investigation on the Effect of Smoothing by Spectral Dispersion on Transverse Stimulated Raman Scattering Gain in KDP Crystals
by Xinmin Fan, Chunhong Wang, Yan Wang, Jianxin Zhang, Yong Shang, Shun Li, Fuyong Qin, Zaifa Du and Chunyan Wang
Photonics 2025, 12(9), 843; https://doi.org/10.3390/photonics12090843 - 24 Aug 2025
Viewed by 288
Abstract
In inertial confinement fusion (ICF) laser drivers, large-aperture high-intensity third-harmonic (3ω, central wavelength 351 nm) laser pulses passing through KDP crystals (potassium dihydrogen phosphate) can produce strong transverse stimulated Raman scattering (TSRS). TSRS not only depletes the energy of the 3ω laser beam [...] Read more.
In inertial confinement fusion (ICF) laser drivers, large-aperture high-intensity third-harmonic (3ω, central wavelength 351 nm) laser pulses passing through KDP crystals (potassium dihydrogen phosphate) can produce strong transverse stimulated Raman scattering (TSRS). TSRS not only depletes the energy of the 3ω laser beam but also damages the KDP crystal, thus significantly limiting the enhancement of ICF laser driver capabilities. Therefore, effectively suppressing TSRS in KDP crystals is a critical issue in the design and construction of ICF laser driver systems. This paper first proposes that SSD has the ability to suppress TSRS through theoretical analysis of the characteristics of SSD beams. Secondly, through numerical simulations, it presents the influence of variations in three key parameters—modulation amplitude, modulation frequency, and grating dispersion coefficient—on the TSRS gain. The results show that the Stokes gain decreases with increasing modulation amplitude and modulation frequency; specifically, the suppression capability of SSD for TSRS gradually strengthens as modulation bandwidth increases. In addition, previous reports have demonstrated that SSD can significantly suppress stimulated rotational Raman scattering (SRRS) in air, which highlights the potential value of applying SSD in large laser facilities such as ICF driver systems. Full article
Show Figures

Figure 1

17 pages, 2956 KB  
Article
Impact of Photobiomodulation on the Pro-Osteogenic Activity of Dental Pulp Mesenchymal Stem/Stromal Cells
by Marcella Rodrigues Ueda Fernandes, Gabriella Teti, Valentina Gatta, Aurora Longhin, Ana Cecilia Corrêa Aranha and Mirella Falconi
Int. J. Mol. Sci. 2025, 26(17), 8174; https://doi.org/10.3390/ijms26178174 - 22 Aug 2025
Viewed by 428
Abstract
Photobiomodulation (PBM) consists of applying low-level laser light to biological tissues, leading to modulation of cellular functions. PBM has recently gained much attention in the field of regenerative dentistry thanks to its powerful effect on tissue repair and regeneration. Dental pulp mesenchymal stem/stromal [...] Read more.
Photobiomodulation (PBM) consists of applying low-level laser light to biological tissues, leading to modulation of cellular functions. PBM has recently gained much attention in the field of regenerative dentistry thanks to its powerful effect on tissue repair and regeneration. Dental pulp mesenchymal stem/stromal cells (DP-MSCs) represent the ideal targets in regenerative dentistry due to their ability to stimulate the regeneration of mineralized and soft tissues and the paracrine factors that they produce. Although there have been several studies evaluating the influence of PBM on DP-MSCs’ regenerative capacity, the results are conflicting, and there are few studies on the influence of PBM on the paracrine factors released by DP-MSCs. Therefore, the aim of this study was to investigate the effect of PBM, using different energy doses of laser irradiation, on the osteogenic capacity of DP-MSCs, focusing on changes in gene expression, mineralizing ability, and release of pro-osteogenic factors. DP-MSCs were irradiated in vitro and differentiated into an osteogenic phenotype. A cell viability assay, alizarin red staining, and TEM analysis were carried out to evaluate the effect of PBM on cell activity, morphology, and mineralization ability. The expression of the main osteogenesis-related markers Runx2, Col1A1, ALP, and BMP was measured to evaluate the influence of PBM on the ability of DP-MSCs to differentiate toward an osteogenic phenotype. The release of IL-6 and IL-8, which are mainly involved in bone remodeling processes, was investigated in the cell medium following PBM irradiation. The results showed a high level of cell viability, suggesting a lack of phototoxicity under the tested conditions. Furthermore, PBM had a significant effect on mineral deposition, IL-6 and IL-8 release, and expression of osteogenic markers. TEM analysis showed intracellular modifications linked mainly to mitochondria, the endoplasmic reticulum, and autophagic vesicles after PBM treatment. These findings demonstrated that the impact of PBM on the osteogenic potential of DP-MSCs is energy dose-dependent, supporting its potential as an effective strategy in regenerative dentistry, particularly for enhancing bone remodeling. Full article
(This article belongs to the Special Issue Application of Biotechnology to Dental Treatment)
Show Figures

Figure 1

11 pages, 1849 KB  
Article
Miniaturized Multicolor Femtosecond Laser Based on Quartz-Encapsulated Nonlinear Frequency Conversion
by Bosong Yu, Siying Wang, Aimin Wang, Yizhou Liu and Lishuang Feng
Photonics 2025, 12(9), 836; https://doi.org/10.3390/photonics12090836 - 22 Aug 2025
Viewed by 279
Abstract
Ultrafast lasers operating at 740 nm and 820 nm have attracted widespread attention as two-photon light sources for the detection of biological metabolism. Here, we report on a solid-like quartz-encapsulated femtosecond laser with a repetition rate of 80 MHz, delivering 740 nm and [...] Read more.
Ultrafast lasers operating at 740 nm and 820 nm have attracted widespread attention as two-photon light sources for the detection of biological metabolism. Here, we report on a solid-like quartz-encapsulated femtosecond laser with a repetition rate of 80 MHz, delivering 740 nm and 820 nm femtosecond laser pulses. This home-built laser system was realized by employing an erbium-doped 1560 nm fiber laser as the fundamental laser source. A quartz-encapsulated nonlinear frequency conversion stage, consisting of a second-harmonic generation (SHG) stage and self-phase modulation (SPM)-based nonlinear spectral broadening stage, was utilized to deliver 30 mW, 53.7 fs, 740 nm laser pulses and the 15 mW, 60.8 fs, 820 nm laser pulses. Further imaging capabilities of both wavelengths were validated using a custom-built inverted two-photon microscope. Clear imaging results were obtained from mouse kidney sections and pollen samples by collecting the corresponding fluorescence signals. The achieved results demonstrate the great potential of this laser source for advanced two-photon microscopy in metabolic detection. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

19 pages, 7241 KB  
Article
RICNET: Retinex-Inspired Illumination Curve Estimation for Low-Light Enhancement in Industrial Welding Scenes
by Chenbo Shi, Xiangyu Zhang, Delin Wang, Changsheng Zhu, Aiping Liu, Chun Zhang and Xiaobing Feng
Sensors 2025, 25(16), 5192; https://doi.org/10.3390/s25165192 - 21 Aug 2025
Viewed by 448
Abstract
Feature tracking is essential for welding crawler robots’ trajectory planning. As welding often occurs in dark environments like pipelines or ship hulls, the system requires low-light image capture for laser tracking. However, such images typically have poor brightness and contrast, degrading both weld [...] Read more.
Feature tracking is essential for welding crawler robots’ trajectory planning. As welding often occurs in dark environments like pipelines or ship hulls, the system requires low-light image capture for laser tracking. However, such images typically have poor brightness and contrast, degrading both weld seam feature extraction and trajectory anomaly detection accuracy. To address this, we propose a Retinex-based low-light enhancement network tailored for cladding scenarios. The network features an illumination curve estimation module and requires no paired or unpaired reference images during training, alleviating the need for cladding-specific datasets. It adaptively adjusts brightness, restores image details, and effectively suppresses noise. Extensive experiments on public (LOLv1 and LOLv2) and self-collected weld datasets show that our method outperformed existing approaches in PSNR, SSIM, and LPIPS. Additionally, weld seam segmentation under low-light conditions achieved 95.1% IoU and 98.9% accuracy, confirming the method’s effectiveness for downstream tasks in robotic welding. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 2675 KB  
Article
Sub-ppb Methane Detection via EMD–Wavelet Adaptive Thresholding in Wavelength Modulation TDLAS: A Hybrid Denoising Approach for Trace Gas Sensing
by Tong Mu, Xing Tian, Peiren Ni, Shichao Chen, Yanan Cao and Gang Cheng
Sensors 2025, 25(16), 5167; https://doi.org/10.3390/s25165167 - 20 Aug 2025
Viewed by 459
Abstract
Wavelength modulation-tunable diode laser absorption spectroscopy (WM-TDLAS) is a critical tool for gas detection. However, noise in second harmonic signals degrades detection performance. This study presents a hybrid denoising algorithm combining Empirical Mode Decomposition (EMD) and wavelet adaptive thresholding to enhance WM-TDLAS performance. [...] Read more.
Wavelength modulation-tunable diode laser absorption spectroscopy (WM-TDLAS) is a critical tool for gas detection. However, noise in second harmonic signals degrades detection performance. This study presents a hybrid denoising algorithm combining Empirical Mode Decomposition (EMD) and wavelet adaptive thresholding to enhance WM-TDLAS performance. The algorithm decomposes raw signals into intrinsic mode functions (IMFs) via EMD, selectively denoises high-frequency IMFs using wavelet thresholding, and reconstructs the signal while preserving spectral features. Simulation and experimental validation using the CH4 absorption spectrum at 1654 nm demonstrate that the system achieves a threefold improvement in detection precision (0.1181 ppm). Allan variance analysis revealed that the detection capability of the system was significantly enhanced, with the minimum detection limit (MDL) drastically reduced from 2.31 ppb to 0.53 ppb at 230 s integration time. This approach enhances WM-TDLAS performance without hardware modification, offering significant potential for environmental monitoring and industrial safety applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

14 pages, 6767 KB  
Article
Reduction of Visual Artifacts in Laser Beam Scanning Displays
by Peng Zhou, Huijun Yu, Xiaoguang Li, Wenjiang Shen and Dongmin Wu
Micromachines 2025, 16(8), 949; https://doi.org/10.3390/mi16080949 - 19 Aug 2025
Viewed by 340
Abstract
Laser beam scanning (LBS) projection systems based on MEMS micromirrors offer advantages such as compact size, low power consumption, and vivid color performance, making them well suited for applications like AR glasses and portable projectors. Among various scanning methods, raster scanning is widely [...] Read more.
Laser beam scanning (LBS) projection systems based on MEMS micromirrors offer advantages such as compact size, low power consumption, and vivid color performance, making them well suited for applications like AR glasses and portable projectors. Among various scanning methods, raster scanning is widely adopted; however, it suffers from artifacts such as dark bands between adjacent scanning lines and non-uniform distribution of the scanning trajectory relative to the original image. These issues degrade the overall viewing experience. In this study, we address these problems by introducing random variations to the slow-axis driving signal to alter the vertical offset of the scanning trajectories between different scan cycles. The variation is defined as an integer multiple of 1/8 of the fast-axis scanning period (1/fh) Due to the temporal integration effect of human vision, trajectories from different cycles overlap, thereby enhancing the scanning fill factor relative to the target image area. The simulation and experimental results demonstrate that the maximum ratio of non-uniform line spacing is reduced from 7:1 to 1:1, and the modulation of the scanned display image is reduced to 0.0006—below the human eye’s contrast threshold of 0.0039 under the given experimental conditions. This method effectively addresses scanning display artifacts without requiring additional hardware modifications. Full article
(This article belongs to the Special Issue Recent Advances in MEMS Mirrors)
Show Figures

Figure 1

36 pages, 8958 KB  
Article
Dynamic Resource Target Assignment Problem for Laser Systems’ Defense Against Malicious UAV Swarms Based on MADDPG-IA
by Wei Liu, Lin Zhang, Wenfeng Wang, Haobai Fang, Jingyi Zhang and Bo Zhang
Aerospace 2025, 12(8), 729; https://doi.org/10.3390/aerospace12080729 - 17 Aug 2025
Viewed by 485
Abstract
The widespread adoption of Unmanned Aerial Vehicles (UAVs) in civilian domains, such as airport security and critical infrastructure protection, has introduced significant safety risks that necessitate effective countermeasures. High-Energy Laser Systems (HELSs) offer a promising defensive solution; however, when confronting large-scale malicious UAV [...] Read more.
The widespread adoption of Unmanned Aerial Vehicles (UAVs) in civilian domains, such as airport security and critical infrastructure protection, has introduced significant safety risks that necessitate effective countermeasures. High-Energy Laser Systems (HELSs) offer a promising defensive solution; however, when confronting large-scale malicious UAV swarms, the Dynamic Resource Target Assignment (DRTA) problem becomes critical. To address the challenges of complex combinatorial optimization problems, a method combining precise physical models with multi-agent reinforcement learning (MARL) is proposed. Firstly, an environment-dependent HELS damage model was developed. This model integrates atmospheric transmission effects and thermal effects to precisely quantify the required irradiation time to achieve the desired damage effect on a target. This forms the foundation of the HELS–UAV–DRTA model, which employs a two-stage dynamic assignment structure designed to maximize the target priority and defense benefit. An innovative MADDPG-IA (I: intrinsic reward, and A: attention mechanism) algorithm is proposed to meet the MARL challenges in the HELS–UAV–DRTA problem: an attention mechanism compresses variable-length target states into fixed-size encodings, while a Random Network Distillation (RND)-based intrinsic reward module delivers dense rewards that alleviate the extreme reward sparsity. Large-scale scenario simulations (100 independent runs per scenario) involving 50 UAVs and 5 HELS across diverse environments demonstrate the method’s superiority, achieving mean damage rates of 99.65% ± 0.32% vs. 72.64% ± 3.21% (rural), 79.37% ± 2.15% vs. 51.29% ± 4.87% (desert), and 91.25% ± 1.78% vs. 67.38% ± 3.95% (coastal). The method autonomously evolved effective strategies such as delaying decision-making to await the optimal timing and cross-region coordination. The ablation and comparison experiments further confirm MADDPG-IA’s superior convergence, stability, and exploration capabilities. This work bridges the gap between complex mathematical and physical mechanisms and real-time collaborative decision optimization. It provides an innovative theoretical and methodological basis for public-security applications. Full article
Show Figures

Figure 1

Back to TopTop