Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (203)

Search Parameters:
Keywords = laser induced periodic surface structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2557 KiB  
Article
Multiline Laser Interferometry for Non-Contact Dynamic Morphing of Hierarchical Surfaces
by Biagio Audia, Caterina Maria Tone, Pasquale Pagliusi, Alfredo Mazzulla, George Papavieros, Vassilios Constantoudis and Gabriella Cipparrone
Biomimetics 2025, 10(8), 486; https://doi.org/10.3390/biomimetics10080486 - 23 Jul 2025
Viewed by 348
Abstract
Hierarchical surface structuring is a critical aspect of advanced materials design, impacting fields ranging from optics to biomimetics. Among several laser-based methods for complex structuring of photo-responsive surfaces, the broadband vectorial interferometry proposed here offers unique performances. Such a method leverages a polychromatic [...] Read more.
Hierarchical surface structuring is a critical aspect of advanced materials design, impacting fields ranging from optics to biomimetics. Among several laser-based methods for complex structuring of photo-responsive surfaces, the broadband vectorial interferometry proposed here offers unique performances. Such a method leverages a polychromatic laser source, an unconventional choice for holographic encoding, to achieve deterministic multiscale surface structuring through interference light patterning. Azopolymer films are used as photosensitive substrates. By exploring the interaction between optomechanical stress modulations at different spatial periodicities induced within the polymer bulk, we demonstrate the emergence of hierarchical Fourier surfaces composed of multiple deterministic levels. These structures range from sub-micrometer to tens of micrometers scale, exhibiting a high degree of control over their morphology. The experimental findings reveal that the optical encoding scheme significantly influences the resulting topographies. The polarization light patterns lead to more regular and symmetric hierarchical structures compared to those obtained with intensity patterns, underscoring the role of vectorial light properties in controlling surface morphologies. The proposed method is fully scalable, compatible with more complex recording schemes (including multi-beam interference), and it is applicable to a wide range of advanced technological fields. These include optics and photonics (diffractive elements, polarimetric devices), biomimetic surfaces, topographical design, information encoding, and anti-counterfeiting, offering a rapid, reliable, and versatile strategy for high-precision surface structuring at a submicrometric scale. Full article
Show Figures

Figure 1

15 pages, 14270 KiB  
Article
Repetition Frequency-Dependent Formation of Oxidized LIPSSs on Amorphous Silicon Films
by Liye Xu, Wei Yan, Weicheng Cui and Min Qiu
Photonics 2025, 12(7), 667; https://doi.org/10.3390/photonics12070667 - 1 Jul 2025
Viewed by 314
Abstract
Laser-induced periodic surface structures (LIPSSs) produced via ultrafast laser-induced oxidation offer a promising route for high-quality nanostructuring, with reduced thermal damage compared to conventional ablation-based methods. However, the influence of laser repetition frequency on the formation and morphology of oxidized LIPSSs remains insufficiently [...] Read more.
Laser-induced periodic surface structures (LIPSSs) produced via ultrafast laser-induced oxidation offer a promising route for high-quality nanostructuring, with reduced thermal damage compared to conventional ablation-based methods. However, the influence of laser repetition frequency on the formation and morphology of oxidized LIPSSs remains insufficiently explored. In this study, we systematically investigate the effects of varying the femtosecond laser repetition frequency from 1 kHz to 100 kHz while keeping the total pulse number constant on the oxidation-induced LIPSSs formed on amorphous silicon films. Scanning electron microscopy and Fourier analysis reveal a transition between two morphological regimes with increasing repetition frequency: at low frequencies, the long inter-pulse intervals result in irregular, disordered oxidation patterns; at high frequencies, closely spaced pulses promote the formation of highly ordered, periodic surface structures. Statistical measurements show that the laser-modified area decreases with frequency, while the LIPSS period remains relatively stable and the ridge width exhibits a peak at 10 kHz. Finite-difference time-domain (FDTD) and finite-element simulations suggest that the observed patterns result from a dynamic balance between light-field modulation and oxidation kinetics, rather than thermal accumulation. These findings advance the understanding of oxidation-driven LIPSS formation dynamics and provide guidance for optimizing femtosecond laser parameters for precise surface nanopatterning. Full article
Show Figures

Figure 1

23 pages, 8261 KiB  
Article
Flow Boiling Heat Transfer Enhancement via Femtosecond Laser-Textured Inclined Microfeatures
by Frederik Mertens, Thomas Ponnet, Balasubramanian Nagarajan, Senthil Kumar Parimalanathan, Johan Steelant, Sylvie Castagne and Maria Rosaria Vetrano
Energies 2025, 18(11), 2732; https://doi.org/10.3390/en18112732 - 24 May 2025
Viewed by 463
Abstract
This work addresses enhancing flow boiling heat transfer via the use of engineered surfaces possessing specific novel geometries created via femtosecond laser texturing. Surface functionalization can result in improved, more controlled, and denser nucleation as well as controlled surface rewetting, leading to reduced [...] Read more.
This work addresses enhancing flow boiling heat transfer via the use of engineered surfaces possessing specific novel geometries created via femtosecond laser texturing. Surface functionalization can result in improved, more controlled, and denser nucleation as well as controlled surface rewetting, leading to reduced incipient superheats, higher heat transfer coefficients, reduced flow instabilities, and increased critical heat fluxes with respect to a non-modified reference surface. Specifically, this study investigates how bubble dynamics and heat transfer performance are affected by three different surface textures fabricated on 200 µm thick 316L stainless steel foils using a femtosecond (fs) laser. The examined textures consist of inclined (=45°) microgrooves, inclined (=45°) conical microholes, and laser-induced periodic surface structures (LIPSSs). Each textured surface’s degree of heat transfer enhancement is assessed with respect to a plain reference surface in identical operating conditions. The working fluid is PP1, a replacement of 3M™ FC-72 in heat transfer applications. Among the tested surfaces, submicron-scale LIPSSs contribute to the rewetting of the surface but only show a slight improvement when not combined with bigger microscale structures. The inclined grooves result in the most gradual onset, showing almost no incipient overshoot. The inclined conical microholes achieve superior results, improving heat transfer coefficients up to 70% and reducing the incipient temperature up to 13.5 °C over a plain reference surface. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

19 pages, 6232 KiB  
Article
Study on the Driving Performance and Influencing Factors of Multi-Electrothermal Co-Actuation Devices Considering Application Environments
by Yujuan Tang, Zihao Guo, Yujiao Ding and Xinjie Wang
Micromachines 2025, 16(6), 603; https://doi.org/10.3390/mi16060603 - 22 May 2025
Cited by 1 | Viewed by 327
Abstract
Electrothermal actuators, with their simple structure, small size, strong anti-interference ability, and easy integration, have emerged as a promising solution for micro-drive technology. However, deploying them in extreme environments, such as the fuze systems—which demand exceptional reliability under high mechanical overloads. In this [...] Read more.
Electrothermal actuators, with their simple structure, small size, strong anti-interference ability, and easy integration, have emerged as a promising solution for micro-drive technology. However, deploying them in extreme environments, such as the fuze systems—which demand exceptional reliability under high mechanical overloads. In this study, a device based on multi-electrothermal co-actuation is designed for the fuze system of loitering munition. The overall structure and work principle of the multi-electrothermal co-actuation device is discussed. Considering application environments, the effect factors of V-beam numbers, air gap, type of contact surface, external load force, periodic voltage and gas damping on the output performance of the multi-electrothermal co-actuation device are systematically addressed via simulation and experimental method. Furthermore, the high overload resistance performance of the co-actuation device applied in loitering munition is studied. The results show that the proposed multi-electrothermal co-actuation device could operate stably under a high overload (12,000 g/73.79 μs) environment, fully meeting the demanding requirements of fuze system for loitering munition. In addition, this study identifies laser processing-induced thermal gradients and mechanical stresses as critical fabrication challenges. This study provides significant insights into the design and optimization of multi-electrothermal actuation systems for next-generation fuze applications, establishing a valuable framework for future development in this field. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

13 pages, 2316 KiB  
Article
Laser Nanostructuring of Titanium Surfaces for Enhanced Bioactive Applications
by Angela De Bonis, Mariangela Curcio, Agostino Galasso, Nicola Caggiano, Antonio Lettino, Patrizia Dolce, Donato Mollica, Maria Lucia Pace and Antonio Santagata
Materials 2025, 18(10), 2362; https://doi.org/10.3390/ma18102362 - 19 May 2025
Viewed by 714
Abstract
Laser nanostructuring via Laser-Induced Periodic Surface Structures (LIPSS), generated using femtosecond laser pulses, has been investigated as a method for precisely modifying titanium surfaces. By adjusting parameters such as the fluence and pulse number of the laser beam, it is feasible to tailor [...] Read more.
Laser nanostructuring via Laser-Induced Periodic Surface Structures (LIPSS), generated using femtosecond laser pulses, has been investigated as a method for precisely modifying titanium surfaces. By adjusting parameters such as the fluence and pulse number of the laser beam, it is feasible to tailor the surface morphology, roughness, and oxidation states of species that can significantly influence the properties and surface bioactivity of the material. In this study, the LIPSS was applied to commercially pure titanium and evaluated for its ability to support calcium phosphate nucleation and growth in Simulated Body Fluid (SBF). Scanning Electron Microscopy (SEM) and Fast Fourier Transform (FFT) analysis confirmed the formation of well-defined periodic structures. Additional characterizations performed by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) revealed, after laser treatment of titanium, its increased surface roughness and oxidation levels, respectively. These features, when assessed after immersion in SBF, were associated with an improved potential biological performance of the nanostructured surface of the investigated material. The results demonstrated that LIPSS-treated titanium effectively promoted calcium phosphate growth, indicating its enhanced potential bioactivity. Overall, LIPSS nanostructuring presents a scalable and cost-effective strategy for engineering titanium surfaces with potential bioactive properties, supporting their promising application in advanced biomedical implants. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Engineered Nanomaterials)
Show Figures

Figure 1

12 pages, 26718 KiB  
Article
Laser-Induced Periodic Nanostructure on Polyimide Film Surface Using 248 nm Excimer Laser
by Songqing Zhao, Xuan Xie, Mingyang Li, Limin Yang and Tongjing Liu
Nanomaterials 2025, 15(10), 742; https://doi.org/10.3390/nano15100742 - 15 May 2025
Viewed by 447
Abstract
In this study, nanoscale periodic surface structures were fabricated on polyimide (PI) films using a linearly polarized KrF excimer laser with a wavelength of 248 nm. The effects of laser energy density and pulse number on the morphology and surface roughness of laser-induced [...] Read more.
In this study, nanoscale periodic surface structures were fabricated on polyimide (PI) films using a linearly polarized KrF excimer laser with a wavelength of 248 nm. The effects of laser energy density and pulse number on the morphology and surface roughness of laser-induced periodic surface structures (LIPSSs) were systematically investigated. When the pulse width was 20 ns, the repetition rate was 10 Hz, and the beam incidence angle was normal (90°), periodic ripples with a spatial period of approximately 200 nm formed within an energy density range of 7–18 mJ/cm2 and pulse number range of 6000–18,000. The most uniform and well-defined structures were achieved at 14.01 mJ/cm2 and 12,000 pulses, with a ripple depth of 60 nm and surface roughness (Ra) approximately 26 times greater than that of pristine PI. The ripple orientation was consistently perpendicular to the laser polarization, consistent with low-spatial-frequency LIPSS (LSFL) formation mechanisms governed by interference-induced photothermal effects. In addition, surface wettability was found to be significantly enhanced due to changes in both surface chemistry and topography, with the water contact angle decreasing from 73.7° to 19.7°. These results demonstrate the potential of UV nanosecond laser processing for the scalable fabrication of functional nanostructures on polymer surfaces for applications in surface engineering and biointerfaces. Full article
Show Figures

Figure 1

38 pages, 9782 KiB  
Review
Laser-Fabricated Micro/Nanostructures: Mechanisms, Fabrication Techniques, and Applications
by Andrei Teodor Matei, Anita Ioana Visan and Irina Negut
Micromachines 2025, 16(5), 573; https://doi.org/10.3390/mi16050573 - 13 May 2025
Viewed by 1241
Abstract
The rapid evolution of optoelectronic devices necessitates innovative fabrication techniques to improve their performance and functionality. This review explores the advancements in laser processing as a versatile method for creating micro- and nanostructured surfaces, tailored to enhance the efficiency of optoelectronic applications. We [...] Read more.
The rapid evolution of optoelectronic devices necessitates innovative fabrication techniques to improve their performance and functionality. This review explores the advancements in laser processing as a versatile method for creating micro- and nanostructured surfaces, tailored to enhance the efficiency of optoelectronic applications. We begin by elucidating the fundamental mechanisms underlying laser interactions with materials, which facilitate the precise engineering of surface topographies. Following this, we systematically review various micro/nanostructures fabricated by laser techniques, such as laser ablation, laser-induced periodic surface structures (LIPSS), and two-photon polymerization, highlighting their unique properties and fabrication parameters. The review also delves into the significant applications of these laser-fabricated surfaces in optoelectronic devices, including photovoltaics, photodetectors, and sensors, emphasizing how tailored surface structures can lead to improved light absorption, enhanced charge carrier dynamics, and optimized device performance. By synthesizing current knowledge and identifying emerging trends, this work aims to inspire future research directions in the design and application of laser-fabricated micro/nanostructures within the field of optoelectronics. Our findings underscore the critical role of laser technology in advancing the capabilities of next-generation optoelectronic devices, aligning with the scope of emerging trends in device engineering. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering)
Show Figures

Figure 1

17 pages, 15636 KiB  
Article
Fabrication of Mechanically Robust Hydrophobic Surfaces Using Femtosecond Laser Shock Peening
by Chao Xu, Mengyu Jia, Yucheng Gu, Peishuo Wang, Zhen Zhang and Yulei Wang
Materials 2025, 18(9), 2154; https://doi.org/10.3390/ma18092154 - 7 May 2025
Viewed by 457
Abstract
The harsh service environment has increased the demand for hydrophobic surfaces with excellent mechanical properties; however, how to manufacture such surfaces remains a significant challenge. In this study, a method for fabricating hydrophobic surfaces with excellent mechanical properties using femtosecond laser shock peening [...] Read more.
The harsh service environment has increased the demand for hydrophobic surfaces with excellent mechanical properties; however, how to manufacture such surfaces remains a significant challenge. In this study, a method for fabricating hydrophobic surfaces with excellent mechanical properties using femtosecond laser shock peening (fs-LSP) is proposed, without the need for any additional processing steps. Taking CH1900A martensitic steel as an example, a systematic analysis of the microstructure was conducted after fs-LSP, revealing the mechanisms by which fs-LSP affects surface morphology, grain structure, dislocation density, and grain boundary characteristics. The high-density dislocations and grain refinement induced by fs-LSP significantly enhanced the surface hardness and introduced residual compressive stresses. Additionally, the laser-induced periodic micro/nanostructures on the surface ensured excellent hydrophobic properties. The effect of single pulse energy and the number of impacts on fs-LSP has also been discussed in detail. As the pulse energy and number of impacts were increased, the surface microstructure of the material was progressively optimized, evidenced by grain refinement, an increase in geometrically necessary dislocation (GND) density, and a higher proportion of high-angle grain boundaries (HAGBs). Such optimization is not monotonous or unlimited; a pulse energy of 75 μJ and six impacts achieved the optimal effect, with the surface hardness reaching up to 8.2 GPa and a contact angle of 135 degrees. The proposed fs-LSP provides a new strategy for manufacturing hydrophobic surfaces with excellent mechanical properties, and the detailed discussion and analysis also provide theoretical guidance for process optimization. Full article
Show Figures

Figure 1

15 pages, 5737 KiB  
Article
Guidance of Osteoblast Migration Using Femtosecond Laser-Induced Hierarchical Structures
by Johannes Heitz, Simon Glachs, Lukas Wagner, Christoph Wolf, Cristina Plamadeala, Martina Muck, Karoline Seibert, Christian Maier, Romy Marek, Agnes Weth and Werner Baumgartner
Coatings 2025, 15(2), 127; https://doi.org/10.3390/coatings15020127 - 23 Jan 2025
Viewed by 1102
Abstract
The adhesion and alignment of osteoblasts and fibroblasts on titanium alloy (Ti-6Al-4V) surfaces can be adjusted over a wide range by femtosecond laser treatment and anodization. The great differences in cell behavior between different experimental conditions raised further questions about the role of [...] Read more.
The adhesion and alignment of osteoblasts and fibroblasts on titanium alloy (Ti-6Al-4V) surfaces can be adjusted over a wide range by femtosecond laser treatment and anodization. The great differences in cell behavior between different experimental conditions raised further questions about the role of cell migration, which will be addressed in this study. For that, Ti-6Al-4V surfaces were laser-structured to obtain a surface covered with ripples, i.e., laser-induced periodic surface structures (LIPSS), or micro-cones superimposed with ripples. Then, cells were seeded either directly onto the non-structured or laser-structured areas on the titanium alloy samples or beside such samples where they can reach the surface by cell migration. After two weeks in culture, the cell coverage of the samples was evaluated by scanning electron microscopy (SEM). The results showed that cells directly seeded onto the non-structured or laser-structured areas covered the surface nearly completely and eventually aligned along the ripple direction for the laser-structured areas. In contrast, for cell-seeding beside the samples, the laser-structured areas remain nearly cell-free while the non-structured areas were covered with cells in a similar non-oriented manner as for direct cell-seeding. These results on reduced osteoblast migration due to laser structuring are in line with the findings in animal experiments. There, the new bone formation of laser-processed samples was 26.1% ± 16.9% lower in comparison to untreated samples of the same type, which can be explained by hindered cell migration on the laser-processed areas of the screws. Full article
(This article belongs to the Special Issue Bioadhesion on Laser Functionalized Surfaces)
Show Figures

Figure 1

25 pages, 43406 KiB  
Article
Effect of Nanosecond Laser Texturization on Tribological Behavior of AISI 321 Stainless Steel
by Paweł Zawadzki, Sergey Dobrotvorskiy, Borys Aleksenko and Rafał Talar
Materials 2024, 17(23), 5870; https://doi.org/10.3390/ma17235870 - 29 Nov 2024
Cited by 2 | Viewed by 1020
Abstract
This study investigates how laser-induced surface modifications influence key properties such as wear resistance, hardness, and friction in dry and lubricated conditions. The research applies nanosecond pulsed laser treatment to create random, quasi-random, quasi-periodic, and periodic surface structures on the steel surface, aiming [...] Read more.
This study investigates how laser-induced surface modifications influence key properties such as wear resistance, hardness, and friction in dry and lubricated conditions. The research applies nanosecond pulsed laser treatment to create random, quasi-random, quasi-periodic, and periodic surface structures on the steel surface, aiming to enhance the wear resistance and reduce the coefficient of friction (COF). The frictional performance between the carbon steel ball and the texturized surface was evaluated, including an analysis of the initial friction phase contact (single, double, and multi-contact), with the surface topography assessed before and after wear. The results of the pin-on-plate tests indicate that laser texturing improves the hardness by transforming austenite into martensite, modifies the wettability by periodizing the surface, reduces the COF, and enhances the wear resistance. Periodic surface structures allow for better lubricant retention and change in the lubrication regime, contributing to lower friction and a longer surface lifespan. Minimizing ball–surface contact through appropriate surface periodization significantly affects the load transfer. The primary wear phenomena are the adhesive and abrasion wear of a two-body nature, transforming into a three-body one. The study concludes that laser surface texturing is an effective method for enhancing the tribological performance of AISI 321 steel, with potential applications in industries requiring high wear resistance. Full article
Show Figures

Graphical abstract

12 pages, 3666 KiB  
Article
Selective Ablation and Laser-Induced Periodical Surface Structures (LIPSS) Produced on (Ni/Ti) Nano Layer Thin Film with Ultra-Short Laser Pulses
by Biljana Gaković, Suzana Petrović, Christina Siogka, Dubravka Milovanović, Miloš Momčilović, George D. Tsibidis and Emmanuel Stratakis
Photonics 2024, 11(11), 1054; https://doi.org/10.3390/photonics11111054 - 10 Nov 2024
Viewed by 1327
Abstract
The interaction of ultra-short laser pulses (USLP) with Nickel/Titanium (Ni/Ti) thin film has been presented. The nano layer thin film (NLTF), composed of ten alternating Ni and Ti layers, was deposited on silicon (Si) substrate by ion-sputtering. A single and multi-pulse irradiation was [...] Read more.
The interaction of ultra-short laser pulses (USLP) with Nickel/Titanium (Ni/Ti) thin film has been presented. The nano layer thin film (NLTF), composed of ten alternating Ni and Ti layers, was deposited on silicon (Si) substrate by ion-sputtering. A single and multi-pulse irradiation was performed in air with focused and linearly polarized laser pulses. For achieving selective ablation of one or more surface layers, without reaching the Si substrate, single pulse energy was gradually increased from near the ablation threshold value to an energy value that caused the complete removal of the NLTF. In addition to single-pulse selective ablation, the multi-pulse USLP irradiation and production of laser-induced periodic surface structures (LIPSSs) were also studied. In the presented experiment, we found the optimal combination of accumulated pulse number and pulse energy to achieve the LIPSS formation on the thin film. The laser-induced morphology was examined with optical microscopy, scanning electron microscopy, and optical profilometry. To interpret the experimental observations, a theoretical simulation has been performed to explore the thermal response of the NLTFs after irradiation with single laser pulses. Full article
Show Figures

Figure 1

13 pages, 6787 KiB  
Article
Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser
by Junyu Duan, Gui Long, Xu Xu, Weiming Liu, Chuankun Li, Liang Chen, Jianguo Zhang and Junfeng Xiao
Micromachines 2024, 15(11), 1304; https://doi.org/10.3390/mi15111304 - 27 Oct 2024
Cited by 1 | Viewed by 2029
Abstract
In this paper, hierarchical micro/nano structures composed of periodic microstructures, laser-induced periodic surface structures (LIPSS), and nanoparticles were fabricated by femtosecond laser processing (LP). A layer of hydrophobic species was formed on the micro/nano structures through perfluorosilane modification (PM). The reflectivity and hydrophobicity’s [...] Read more.
In this paper, hierarchical micro/nano structures composed of periodic microstructures, laser-induced periodic surface structures (LIPSS), and nanoparticles were fabricated by femtosecond laser processing (LP). A layer of hydrophobic species was formed on the micro/nano structures through perfluorosilane modification (PM). The reflectivity and hydrophobicity’s influence mechanisms of structural height, duty cycle, and size are experimentally elucidated. The average reflectivity of the silicon surface in the visible light band is reduced to 3.0% under the optimal parameters, and the surface exhibits a large contact angle of 172.3 ± 0.8° and a low sliding angle of 4.2 ± 1.4°. Finally, the durability of the anti-reflection and superhydrophobicity is also confirmed. This study deepens our understanding of the principles of anti-reflection and superhydrophobicity and expands the design and preparation methods for self-cleaning and anti-reflective surfaces. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Fabrication)
Show Figures

Figure 1

36 pages, 3550 KiB  
Review
Advanced Laser Techniques for the Development of Nature-Inspired Biomimetic Surfaces Applied in the Medical Field
by Anita Ioana Visan and Gianina Florentina Popescu-Pelin
Coatings 2024, 14(10), 1290; https://doi.org/10.3390/coatings14101290 - 9 Oct 2024
Cited by 2 | Viewed by 2895
Abstract
This review focuses on the innovative use of laser techniques in developing and functionalizing biomimetic surfaces, emphasizing their potential applications in the medical and biological fields. Drawing inspiration from the remarkable properties of various natural systems, such as the water-repellent lotus leaf, the [...] Read more.
This review focuses on the innovative use of laser techniques in developing and functionalizing biomimetic surfaces, emphasizing their potential applications in the medical and biological fields. Drawing inspiration from the remarkable properties of various natural systems, such as the water-repellent lotus leaf, the adhesive gecko foot, the strong yet lightweight spider silk, and the unique optical structures of insect wings, we explore the potential for replicating these features through advanced laser surface modifications. Depending on the nature and architecture of the surface, particular techniques have been designed and developed. We present an in-depth analysis of various methodologies, including laser ablation/evaporation techniques, such as Pulsed Laser Deposition and Matrix-Assisted Pulsed Laser Evaporation, and approaches for laser surface structuring, including two-photon lithography, direct laser interference patterning, laser-induced periodic surface structures, direct laser writing, laser-induced forward transfer, and femtosecond laser ablation of metals in organic solvents. Additionally, specific applications are highlighted with the aim of synthesizing this knowledge and outlining future directions for research that further explore the intersection of laser techniques and biomimetic surfaces, paving the way for advancements in biomedical applications. Full article
(This article belongs to the Special Issue Biomimetic Approaches in Coatings Synthesis)
Show Figures

Figure 1

16 pages, 11172 KiB  
Article
Light Beam Scattering from the Metal Surface with a Complex Mono- and Two-Periodic Microstructure Formed with Femtosecond Laser Radiation
by Sergey Dobrotvorskiy, Borys A. Aleksenko, Yevheniia Basova, Iaroslav M. Gnilitskyi, Mikołaj Kościński and José Machado
Appl. Sci. 2024, 14(19), 8662; https://doi.org/10.3390/app14198662 - 25 Sep 2024
Cited by 3 | Viewed by 1707
Abstract
Currently, the technology of imparting the necessary reflective properties to a surface is becoming increasingly important. Darkening the surface and matting it helps to diffuse the reflected beam and prevent glare. The surface’s reflective properties are determined by its microstructure. Modern pico- and [...] Read more.
Currently, the technology of imparting the necessary reflective properties to a surface is becoming increasingly important. Darkening the surface and matting it helps to diffuse the reflected beam and prevent glare. The surface’s reflective properties are determined by its microstructure. Modern pico- and femtosecond lasers make it possible to obtain surfaces with high precision and create various LIPSS (laser-induced periodic surface structure) types. In this article, we describe the process of formation of a complex two-periodic microstructure on the surface of AISI 321 stainless steel under the influence of radiation from femtosecond lasers and describe the process of scattering of a light beam by the resulting surface. Modeling shows that the presence of an additional transparent coating on a flat surface does not improve its scattering properties and does not eliminate glare. In the event that a complex two-periodic structure is formed on the reflective surface and the coating surface, the nature of the reflection has a clearly defined scattered character, regardless of the angle of incidence of the light beam. This study shows the feasibility and effectiveness of forming a two-periodic structure in order to give it stealth characteristics and reduce visibility. Full article
(This article belongs to the Collection Optical Design and Engineering)
Show Figures

Figure 1

13 pages, 16375 KiB  
Article
Laser-Induced Periodic Surface Structures and Their Application for Gas Sensing
by Johann Zehetner, Ivan Hotovy, Vlastimil Rehacek, Ivan Kostic, Miroslav Mikolasek, Dana Seyringer and Fadi Dohnal
Micromachines 2024, 15(9), 1161; https://doi.org/10.3390/mi15091161 - 17 Sep 2024
Cited by 1 | Viewed by 4031
Abstract
Semiconducting metal oxides are widely used for solar cells, photo-catalysis, bio-active materials and gas sensors. Besides the material properties of the semiconductor being used, the specific surface topology of the sensors determines device performance. This study presents different approaches for increasing the sensing [...] Read more.
Semiconducting metal oxides are widely used for solar cells, photo-catalysis, bio-active materials and gas sensors. Besides the material properties of the semiconductor being used, the specific surface topology of the sensors determines device performance. This study presents different approaches for increasing the sensing area of semiconducting metal oxide gas sensors. Micro- and nanopatterned laser-induced periodic surface structures (LIPSSs) are generated on silicon, Si/SiO2 and glass substrates. The surface morphologies of the fabricated samples are examined by FE SEM. We selected the nanostructuring and characterization of nanostructured source Ni/Au and Ti/Au films prepared on glass using laser ablation as the most suitable of the investigated approaches. Surface structures produced on glass by backside ablation provide 100 nm features with a high surface area; they are also transparent and have high resistivity. The value of the hydrogen sensitivity in the range concentrations from 100 to 500 ppm was recorded using transmittance measurements to be twice as great for the nanostructured target TiO2/Au as compared to the NiO/Au. It was found that such transparent materials present additional possibilities for producing optical gas sensors. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro- and Nanoprocessing, 2nd Edition)
Show Figures

Figure 1

Back to TopTop