Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,588)

Search Parameters:
Keywords = laser additive manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1363 KB  
Review
A Review of the Parameters Controlling Crack Growth in AM Steels and Its Implications for Limited-Life AM and CSAM Parts
by Rhys Jones, Andrew Ang, Nam Phan, Michael R. Brindza, Michael B. Nicholas, Chris Timbrell, Daren Peng and Ramesh Chandwani
Materials 2026, 19(2), 372; https://doi.org/10.3390/ma19020372 (registering DOI) - 16 Jan 2026
Abstract
This paper reviews the fracture mechanics parameters associated with the variability in the crack growth curves associated with forty-two different tests that range from additively manufactured (AM) steels to cold spray additively manufactured (CSAM) 316L steel. As a result of this review, it [...] Read more.
This paper reviews the fracture mechanics parameters associated with the variability in the crack growth curves associated with forty-two different tests that range from additively manufactured (AM) steels to cold spray additively manufactured (CSAM) 316L steel. As a result of this review, it is found that, to a first approximation, the effects of different building processes and R-ratios on the relationship between ΔK and the crack growth rate (da/dN) can be captured by allowing for changes in the fatigue threshold and the apparent cyclic toughness in the Schwalbe crack driving force (Δκ). Whilst this observation, when taken in conjunction with similar findings for AM Ti-6Al-4V, Inconel 718, Inconel 625, and Boeing Space Intelligence and Weapon Systems (BSI&WS) laser powder bed (LPBF)-built Scalmalloy®, as well as for a range of CSAM pure metals, go a long way in making a point; it is NOT a mathematical proof. It is merely empirical evidence. As a result, this review highlights that for AM and CSAM materials, it is advisable to plot the crack growth rate (da/dN) against both ΔK and Δκ. The observation that, for the AM and CSAM steels examined in this study, the da/dN versus Δκ curves are similar, when coupled with similar observation for a range of other AM materials, supports a prior study that suggested using fracture toughness measurements in conjunction with the flight load spectrum and the operational life requirement to guide the choice of the building process for AM Ti-6Al-4V parts. The observations outlined in this study, when taken together with related findings given in the open literature for AM Ti-6Al-4V, AM Inconel 718, AM Inconel 625, and BSI&WS LPFB-built Scalmalloy®, as well as for a range of CSAM-built pure metals, have implications for the implementation and certification of limited-life AM parts. Full article
21 pages, 4628 KB  
Article
Effect of Inclined Angles and Contouring Parameters on Upskin Surface Characteristics of Parts Made by Laser Powder-Bed Fusion
by Nismath Valiyakath Vadakkan Habeeb and Kevin Chou
Coatings 2026, 16(1), 119; https://doi.org/10.3390/coatings16010119 - 16 Jan 2026
Abstract
Surface finish plays a critical role in the tribological performance of additively manufactured engineering components. In exploring part characteristics in laser powder-bed fusion (L-PBF), this study investigates the effect of contouring strategies on the upskin surface of inclined specimens (30°, 45°, and 60°) [...] Read more.
Surface finish plays a critical role in the tribological performance of additively manufactured engineering components. In exploring part characteristics in laser powder-bed fusion (L-PBF), this study investigates the effect of contouring strategies on the upskin surface of inclined specimens (30°, 45°, and 60°) made with L-PBF, using post- and pre-contouring strategies with various levels of process parameters. The surface data of fabricated inclined specimens were acquired by white-light interferometry, followed by a quantitative analysis using surface images. The results show that post-contouring leads to better surface finishes, with the lowest Sa of 8.68 µm attained at the highest laser power (195 W) and the slowest scan speed (500 mm/s) on 30°-inclined specimens, likely due to increased remelting and less step-edges. In contrast, pre-contouring produces distinct surface textures on the upskin of L-PBF specimens, resulting in a rougher surface morphology, with a maximum Sa of 33.39 µm also from 30°-inclined specimens at the lowest power (100 W) and the highest speed (2000 mm/s), suggesting an insufficient remelting of surface defects. In comparative analysis, in general, post-contouring yields smoother upskin surfaces, with a 17%–30% reduction in Sa, than those from equivalent pre-contouring conditions, highlighting the potential of scan sequences for optimizing L-PBF to improve the surface finish of inclined structures. Full article
Show Figures

Figure 1

16 pages, 13859 KB  
Article
Micromanufacturing Process of Complex 3D FeCo Core Microwindings for Magnetic Flux Modulation in Micromotors
by Efren Diez-Jimenez, Diego Lopez-Pascual, Gabriel Villalba-Alumbreros, Ignacio Valiente-Blanco, Miguel Fernandez-Munoz, Jesús del Olmo-Anguix, Oscar Manzano-Narro, Alexander Kanitz, Jan Hoppius and Jan Philipp
Micromachines 2026, 17(1), 115; https://doi.org/10.3390/mi17010115 - 15 Jan 2026
Abstract
This work presents the design, fabrication, and characterization of a three-dimensional FeCo-based flux-modulator microwinding intended for integration into high-torque axial-flux Vernier micromotors. The proposed micromotor architecture modulates the stator magnetic flux using 12 magnetically isolated FeCo teeth interacting with an 11-pole permanent-magnet rotor. [...] Read more.
This work presents the design, fabrication, and characterization of a three-dimensional FeCo-based flux-modulator microwinding intended for integration into high-torque axial-flux Vernier micromotors. The proposed micromotor architecture modulates the stator magnetic flux using 12 magnetically isolated FeCo teeth interacting with an 11-pole permanent-magnet rotor. The design requires the manufacturing of complex three-dimensional micrometric parts, including three teeth and a cylindrical core. Such a complex design cannot be manufactured using conventional micromanufacturing lithography or 2D planar methods. The flux-modulator envelope dimensions are 250 μm outer diameter and 355 μm height. It is manufactured using a femtosecond laser-machining process that preserves factory-finished surfaces and minimizes heat-affected zones. In addition, this micrometric part has been wound using 20 μm diameter enamelled copper wire. A dedicated magnetic clamping fixture is developed to enable multilayer microwinding of the integrated core, producing a 17-turn inductor with a 60.6% fill factor—the highest reported for a manually wound ferromagnetic-core microcoil of this scale. Geometric and magnetic characterization validates the simulation model and demonstrates the field distribution inside the isolated core. The results establish a viable micromanufacturing workflow for complex 3D FeCo microwindings, supporting the development of next-generation high-performance MEMS micromotors. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

36 pages, 8065 KB  
Article
Early-Age Shrinkage Monitoring of 3D-Printed Cementitious Mixtures: Comparison of Measuring Techniques and Low-Cost Alternatives
by Karol Federowicz, Daniel Sibera, Nikola Tošić, Adam Zieliński and Pawel Sikora
Materials 2026, 19(2), 344; https://doi.org/10.3390/ma19020344 - 15 Jan 2026
Viewed by 63
Abstract
Early-age shrinkage in 3D-printed concrete constitutes a critical applied challenge due to the rapid development of deformations and the absence of conventional reinforcement systems. From a scientific standpoint, a clear knowledge gap exists in materials science concerning the reliable quantification of very small, [...] Read more.
Early-age shrinkage in 3D-printed concrete constitutes a critical applied challenge due to the rapid development of deformations and the absence of conventional reinforcement systems. From a scientific standpoint, a clear knowledge gap exists in materials science concerning the reliable quantification of very small, rapidly evolving strains in fresh and early-age cementitious materials produced by additive manufacturing. This study investigates practical and low-cost alternatives to commercial optical systems for monitoring early-age shrinkage in 3D-printed concrete, a key challenge given the rapid deformation of printed elements and their typical lack of reinforcement. The work focuses on identifying both the most precise method for capturing minor, fast-developing strains and affordable tools suitable for laboratories without access to advanced equipment. Three mixtures with different aggregate types were examined to broaden the applicability of the findings and to evaluate how aggregate selection affects fresh properties, hardened performance, and shrinkage behavior. Shrinkage measurements were carried out using a commercial digital image correlation system, which served as the reference method, along with simplified optical setups based on a smartphone camera and a GoPro device. Additional measurements were performed with laser displacement sensors and Linear Variable Differential Transformer LVDT transducers mounted in a dedicated fixture. Results were compared with the standardized linear shrinkage test to assess precision, stability, and the influence of curing conditions. The findings show that early-age shrinkage must be monitored immediately after printing and under controlled environmental conditions. When the results obtained after 12 h of measurement were compared with the values recorded using the commercial reference system, differences of 19%, 13%, 16%, and 14% were observed for the smartphone-based method, the GoPro system, the laser sensors, and the LVDT transducers, respectively. Full article
(This article belongs to the Special Issue Advanced Concrete Formulations: Nanotechnology and Hybrid Materials)
Show Figures

Figure 1

22 pages, 12759 KB  
Article
Implementation of a Digital Twin in Additive Manufacturing of Copper—Methodology, Implications, and Future Prospects
by Moritz Benedikt Schäfle, Michel Fett, Philipp Bojunga, Florian Sondermann and Eckhard Kirchner
Machines 2026, 14(1), 97; https://doi.org/10.3390/machines14010097 - 13 Jan 2026
Viewed by 126
Abstract
Digital twins are increasingly being used to visualize, analyze, or control physical processes and systems. Implementation currently poses challenges for users due to the cross-domain complexity of digital twins. In this study, the authors utilize a self-developed method to support the implementation of [...] Read more.
Digital twins are increasingly being used to visualize, analyze, or control physical processes and systems. Implementation currently poses challenges for users due to the cross-domain complexity of digital twins. In this study, the authors utilize a self-developed method to support the implementation of a digital twin (DT) for a powder bed fusion additive manufacturing system (PBF-LB/M) for copper components, utilizing a green laser. The study highlights the support offered by the developed approach and the implications of using DTs for PBF of copper. The DT focuses in particular on monitoring maintenance requirements, assisting in the selection of correct process parameters, and alerting plant operators in the event of problems. In addition, a process model focused on lack of fusion is implemented, based on earlier studies. In the human–machine system, DTs thus represent a further building block towards an improved process stability in PBF-LB/M of copper, and the method used lowers the barrier to entry for widespread use of DTs. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

24 pages, 18396 KB  
Article
Modeling and Mechanistic Analysis of Molten Pool Evolution and Energy Synergy in Laser–Cold Metal Transfer Hybrid Additive Manufacturing of 316L Stainless Steel
by Jun Deng, Chen Yan, Xuefei Cui, Chuang Wei and Ji Chen
Materials 2026, 19(2), 292; https://doi.org/10.3390/ma19020292 - 11 Jan 2026
Viewed by 210
Abstract
The present work uses numerical methods to explore the impact of spatial orientation on the behavior of molten pool and thermal responses during the laser–Cold Metal Transfer (CMT) hybrid additive manufacturing of metallic cladding layers. Based on the traditional double-ellipsoidal heat source model, [...] Read more.
The present work uses numerical methods to explore the impact of spatial orientation on the behavior of molten pool and thermal responses during the laser–Cold Metal Transfer (CMT) hybrid additive manufacturing of metallic cladding layers. Based on the traditional double-ellipsoidal heat source model, an adaptive CMT arc heat source model was developed and optimized using experimentally calibrated parameters to accurately represent the coupled energy distribution of the laser and CMT arc. The improved model was employed to simulate temperature and velocity fields under horizontal, transverse, vertical-up, and vertical-down orientations. The results revealed that variations in gravity direction had a limited effect on the overall molten pool morphology due to the dominant role of vapor recoil pressure, while significantly influencing the local convection patterns and temperature gradients. The simulations further demonstrated the formation of keyholes, dual-vortex flow structures, and Marangoni-driven circulation within the molten pool, as well as the redistribution of molten metal under different orientations. In multi-layer deposition simulations, optimized heat input effectively mitigated excessive thermal stresses, ensured uniform interlayer bonding, and maintained high forming accuracy. This work establishes a comprehensive numerical framework for analyzing orientation-dependent heat and mass transfer mechanisms and provides a solid foundation for the adaptive control and optimization of laser–CMT hybrid additive manufacturing processes. Full article
Show Figures

Figure 1

30 pages, 35300 KB  
Article
Mechanical Characterization and Numerical Modeling of 316 Stainless Steel Specimens Fabricated Using SLM
by Ana-Gabriela Badea, Stefan Tabacu, Alina-Ionela Aparaschivei, Denis Negrea, Sorin Moga and Catalin Ducu
J. Manuf. Mater. Process. 2026, 10(1), 29; https://doi.org/10.3390/jmmp10010029 - 10 Jan 2026
Viewed by 224
Abstract
This study examines the influence of build orientation on the mechanical behavior of 316 stainless steel components fabricated by selective laser melting (SLM). Additively manufactured tensile specimens produced in different build orientations were experimentally analyzed and compared with reference specimens obtained from conventionally [...] Read more.
This study examines the influence of build orientation on the mechanical behavior of 316 stainless steel components fabricated by selective laser melting (SLM). Additively manufactured tensile specimens produced in different build orientations were experimentally analyzed and compared with reference specimens obtained from conventionally hot-rolled material and laser-cut to identical geometries. Uniaxial tensile testing combined with digital image correlation (DIC) was employed to evaluate the mechanical response and full-field strain evolution. Microstructural features were investigated using scanning electron microscopy (SEM), while phase composition was assessed by X-ray diffraction (XRD). The results reveal a pronounced orientation-dependent mechanical anisotropy in the SLM specimens, reflected in variations in yield strength, ultimate tensile strength, and ductility. Specimens loaded perpendicular to the build directions exhibited higher strength but reduced ductility compared to those loaded parallel to the build direction, whereas the rolled material showed a more isotropic mechanical response. Although the XYZ and XZY samples feature similar deposition patterns, the XRD analysis revealed a the existence of a 220 texture. Thus, the mechanical performances of XZY specimens are about 10% lower compared to XYZ printed samples. The stress maximum–strain curves were extrapolated from the true data using the Swift model. The section dedicated to numerical modeling includes a failure model based on the traixility. The numerical models were validated for the range η0.330.45 specific to uniaxial tension. Fractographic observations further confirmed the correlation between build orientation, microstructural features, and fracture behavior. The present study provides a multiscale experimental framework linking processing conditions, microstructure, and mechanical response in additively manufactured stainless steel. Full article
Show Figures

Figure 1

26 pages, 4558 KB  
Review
Integrating Additive Manufacturing into Dental Production: Innovations, Applications and Challenges
by Maryna Yeromina, Jan Duplak, Jozef Torok, Darina Duplakova and Monika Torokova
Inventions 2026, 11(1), 7; https://doi.org/10.3390/inventions11010007 - 7 Jan 2026
Viewed by 251
Abstract
Additive manufacturing (AM) has emerged as a key enabling technology in contemporary dental manufacturing, driven by its capacity for customization, geometric complexity, and seamless integration with digital design workflows. This article presents a technology-oriented narrative review of additive manufacturing in dental implant production, [...] Read more.
Additive manufacturing (AM) has emerged as a key enabling technology in contemporary dental manufacturing, driven by its capacity for customization, geometric complexity, and seamless integration with digital design workflows. This article presents a technology-oriented narrative review of additive manufacturing in dental implant production, focusing on dominant processing routes, material systems, and emerging research trends rather than a systematic or critical appraisal of the literature. An indicative descriptive analysis of publications indexed in the Web of Science and Scopus databases between 2014 and 2024 was used to contextualize the technological development of the field and identify major research directions. Emphasis was placed on metal powder bed fusion technologies, specifically Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS), which enable the fabrication of titanium implants with controlled porosity and enhanced osseointegration. Ceramic AM approaches, including SLA, DLP, and PBF, are discussed in relation to their potential for aesthetic dental restorations and customized prosthetic components. The publication trend overview indicates a growing interest in ceramic AM after 2020, an increasing focus on hybrid and functionally graded materials, and persistent challenges related to standardization and the availability of long-term clinical evidence. Key technological limitations—including manufacturing accuracy, material stability, validated metrology, and process reproducibility—are highlighted alongside emerging directions such as artificial intelligence-assisted workflows, nanostructured surface modifications, and concepts enabling accelerated or immediate clinical use of additively manufactured dental restorations. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

6 pages, 169 KB  
Editorial
Advanced Insights into Laser-Based Metal Additive Manufacturing: From Microstructural Control to Functional Performance
by Rǎzvan Pǎcurar and Petru Berce
Metals 2026, 16(1), 69; https://doi.org/10.3390/met16010069 - 7 Jan 2026
Viewed by 175
Abstract
Laser based metal additive manufacturing has emerged as a transformative solution for producing next-generation metallic components, from architected lattices [...] Full article
23 pages, 65931 KB  
Article
Numerical Investigation of the Fatigue Behavior of Lattice Structures Under Compression–Compression Loading
by Matthias Greiner, Andreas Kappel, Marc Röder and Christian Mittelstedt
J. Compos. Sci. 2026, 10(1), 28; https://doi.org/10.3390/jcs10010028 - 7 Jan 2026
Viewed by 272
Abstract
Recent years have shown that additive manufacturing is able to significantly increase the potential for enhancing lightweight structural design. In particular, strut-based lattices have attracted considerable research interest due to their promising mechanical performance in lightweight engineering applications. While the quasi-static properties of [...] Read more.
Recent years have shown that additive manufacturing is able to significantly increase the potential for enhancing lightweight structural design. In particular, strut-based lattices have attracted considerable research interest due to their promising mechanical performance in lightweight engineering applications. While the quasi-static properties of such lattices are relatively well established, their fatigue behavior remains insufficiently understood. This work presents a numerical investigation of the fatigue life of laser powder bed-fused strut-based lattices using the finite element method (FEM). Periodic AlSi10Mg lattice structures with two different unit cells, bcc and f2ccz, and three different aspect ratios were analyzed under uniaxial compression–compression loading. The stress-life approach was used to model the fatigue failure of the representative unit cells in the high-cycle fatigue region. The numerical predictions were compared with experimental results, showing good agreement between simulations and physical tests. The findings highlighted that the fatigue response was primarily governed by aspect ratio, unit cell topology, bulk material properties, and mean stress imposed by the load ratio. Moreover, stress concentrations arising from notch effects in the nodal regions were identified as critical fatigue crack initiation sites. Full article
(This article belongs to the Special Issue Lattice Structures)
Show Figures

Figure 1

15 pages, 6959 KB  
Article
Densification Behavior and Microstructure of Nickel Aluminum Bronze Alloy Fabricated by Laser Powder Bed Fusion
by Yizhe Huang, Guanjun Fu, An Wang, Zhongxu Xiao, Jinfeng Sun, Jun Wang and Xiaojia Nie
Materials 2026, 19(1), 208; https://doi.org/10.3390/ma19010208 - 5 Jan 2026
Viewed by 147
Abstract
Nickel–Aluminum–Bronze (NAB) has gained significant attention in marine applications due to its excellent corrosion resistance and has shown growing potential for laser powder bed fusion (L-PBF) additive manufacturing. However, research on the fabrication of NAB alloys using L-PBF remains relatively limited. In this [...] Read more.
Nickel–Aluminum–Bronze (NAB) has gained significant attention in marine applications due to its excellent corrosion resistance and has shown growing potential for laser powder bed fusion (L-PBF) additive manufacturing. However, research on the fabrication of NAB alloys using L-PBF remains relatively limited. In this study, fully dense NAB samples were successfully fabricated through L-PBF process parameter optimization. The microstructural evolution and mechanical properties of both as-built and annealed L-PBF samples were systematically investigated and compared with those of traditionally cast NAB. The results reveal that the as-built L-PBF specimens primarily consist of columnar β′ grains, with the α phase distributed along the grain boundaries and a small amount of κ phase precipitated within the β′ matrix, distinctly different from the cast microstructure characterized by a columnar α-phase matrix with precipitated β′ and κ phases. After annealing at 675 °C for 6 h, the β′ phase in both methods decomposed into α + κ phases, and the original columnar structure in the L-PBF specimens transformed into a dendritic morphology. Compared to the cast samples, the L-PBF-produced NAB alloy exhibited significantly enhanced yield strength, tensile strength, and microhardness, attributable to rapid solidification during the L-PBF process. Following annealing, the yield strength and elongation increased by 12.8% and 184.4%, respectively, compared to the as-built condition, resulting from the decomposition of the martensitic phase into α + κ phases and further grain refinement. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

28 pages, 6311 KB  
Article
Machine Learning-Assisted Optimisation of the Laser Beam Powder Bed Fusion (PBF-LB) Process Parameters of H13 Tool Steel Fabricated on a Preheated to 350 C Building Platform
by Katsiaryna Kosarava, Paweł Widomski, Michał Ziętala, Daniel Dobras, Marek Muzyk and Bartłomiej Adam Wysocki
Materials 2026, 19(1), 210; https://doi.org/10.3390/ma19010210 - 5 Jan 2026
Viewed by 441
Abstract
This study presents the first application of Machine Learning (ML) models to optimise Powder Bed Fusion using Laser Beam (PBF-LB) process parameters for H13 steel fabricated on a 350 °C preheated building platform. A total of 189 cylindrical specimens were produced for training [...] Read more.
This study presents the first application of Machine Learning (ML) models to optimise Powder Bed Fusion using Laser Beam (PBF-LB) process parameters for H13 steel fabricated on a 350 °C preheated building platform. A total of 189 cylindrical specimens were produced for training and testing machine learning (ML) models using variable process parameters: laser power (250–350 W), scanning speed (1050–1300 mm/s), and hatch spacing (65–90 μm). Eight ML models were investigated: 1. Support Vector Regression (SVR), 2. Kernel Ridge Regression (KRR), 3. Stochastic Gradient Descent Regressor, 4. Random Forest Regressor (RFR), 5. Extreme Gradient Boosting (XGBoost), 6. Extreme Gradient Boosting with limited depth (XGBoost LD), 7. Extra Trees Regressor (ETR) and 8. Light Gradient Boosting Machine (LightGBM). All models were trained using the Fast Library for Automated Machine Learning & Tuning (FLAML) framework to predict the relative density of the fabricated samples. Among these, the XGBoost model achieved the highest predictive accuracy, with a coefficient of determination R2=0.977, mean absolute percentage error MAPE = 0.002, and mean absolute error MAE = 0.017. Experimental validation was conducted on 27 newly fabricated samples using ML predicted process parameters. Relative densities exceeding 99.6% of the theoretical value (7.76 g/cm3) for all models except XGBoost LD and KRR. The lowest MAE = 0.004 and the smallest difference between the ML-predicted and PBF-LB validated density were obtained for samples made with LightGBM-predicted parameters. Those samples exhibited a hardness of 604 ± 13 HV0.5, which increased to approximately 630 HV0.5 after tempering at 550 °C. The LightGBM optimised parameters were further applied to fabricate a part of a forging die incorporating internal through-cooling channels, demonstrating the efficacy of machine learning-guided optimisation in achieving dense, defect-free H13 components suitable for industrial applications. Full article
(This article belongs to the Special Issue Multiscale Design and Optimisation for Metal Additive Manufacturing)
Show Figures

Graphical abstract

21 pages, 10391 KB  
Article
Comparison of Microstructure and Fatigue Life of Laser Powder Bed Fusion and Forging/Rolling Inconel 718 Alloy After Solution Heat Treatment and Double Aging
by Rafael Eringer Cubi, Rodolfo Luiz Prazeres Gonçalves, Marcos Massi, Gleicy de Lima Xavier Ribeiro, Luis Reis and Antonio Augusto Couto
Metals 2026, 16(1), 57; https://doi.org/10.3390/met16010057 - 1 Jan 2026
Viewed by 293
Abstract
Nickel superalloy Inconel 718 (IN718) is widely employed in harsh environments with prolonged cyclic stresses in the aerospace and energy sectors, due to its corrosion/oxidation resistance and mechanical strength obtained by precipitation hardening. This work investigates the mechanical behavior in fatigue of IN718 [...] Read more.
Nickel superalloy Inconel 718 (IN718) is widely employed in harsh environments with prolonged cyclic stresses in the aerospace and energy sectors, due to its corrosion/oxidation resistance and mechanical strength obtained by precipitation hardening. This work investigates the mechanical behavior in fatigue of IN718 manufactured by Additive Manufacturing (AM), specifically by Laser Powder Bed Fusion (PBF-LB), and compares its results with the material produced by forging and rolling. Samples from both processes were subjected to heat treatments of solution and double aging to increase their mechanical strength. Then, tensile, microhardness, microstructural characterization, and uniaxial fatigue tests were performed (with loading ratio R = −1). The results showed that, although the IN718 produced by AM had higher microhardness and a higher tensile strength limit than the forged and rolled material, its fatigue performance was lower. The S–N curve (stress vs. number of cycles) for the material obtained by PBF-LB demonstrated shorter fatigue life, especially under low and medium stresses. The analysis of the fracture surfaces revealed differences in the regions where the crack initiated and propagated. The shorter fatigue life of the material obtained by PBF-LB was attributed to typical process defects and microstructural differences, such as the shape of the grains, which act as points of crack nucleation. Full article
Show Figures

Figure 1

9 pages, 2809 KB  
Proceeding Paper
Hybrid Structural Health Monitoring for Impact Damage in PLA Plates Using SLDV and the Electromechanical Impedance Method
by Paresh Mirgal and Paweł H. Malinowski
Eng. Proc. 2025, 119(1), 43; https://doi.org/10.3390/engproc2025119043 - 30 Dec 2025
Viewed by 238
Abstract
With the growing use of 3D-printed polymers in structural applications, understanding their damage response under impact is critical for reliability and safety. This study investigates the impact response and damage progression in Fused Deposition Modelling (FDM)-printed Polylactic Acid (PLA) plates with varying infill [...] Read more.
With the growing use of 3D-printed polymers in structural applications, understanding their damage response under impact is critical for reliability and safety. This study investigates the impact response and damage progression in Fused Deposition Modelling (FDM)-printed Polylactic Acid (PLA) plates with varying infill densities (40%, 60%, and 100%) using a combination of scanning laser Doppler vibrometry (SLDV) and electromechanical impedance (EMI) techniques. Progressive impacts were applied in four stages, and damage was evaluated through wave attenuation, impedance deviation, and phase distortion metrics. Results show that lower infill densities exhibit more severe degradation, with increased damping and poor wave transmission, while 100% infill demonstrates higher damage resistance and better detectability. The findings underscore the importance of infill design in optimizing mechanical performance and structural health monitoring in additively manufactured components. Full article
Show Figures

Figure 1

20 pages, 6158 KB  
Article
Improving Surface Roughness and Printability of LPBF Ti6246 Components Without Affecting Their Structure, Mechanical Properties and Building Rate
by Thibault Mouret, Aurore Leclercq, Patrick K. Dubois and Vladimir Brailovski
Metals 2026, 16(1), 32; https://doi.org/10.3390/met16010032 - 27 Dec 2025
Viewed by 234
Abstract
Laser powder bed fusion (LPBF) is the best suited technology to manufacture temperature-resistant Ti-6Al-2Sn-4Zr-6Mo parts with complex geometrical features for high-end applications. Improving printing accuracy by reducing the layer thickness (t) generally requires repeating a tedious and time-consuming process optimization routine. [...] Read more.
Laser powder bed fusion (LPBF) is the best suited technology to manufacture temperature-resistant Ti-6Al-2Sn-4Zr-6Mo parts with complex geometrical features for high-end applications. Improving printing accuracy by reducing the layer thickness (t) generally requires repeating a tedious and time-consuming process optimization routine. To simplify this endeavour, the present work proposes three process equivalence criteria allowing to transfer optimized process conditions from one printing parameter set to another. This approach recommends keeping the volumetric laser energy density (VED) and hatching space-to-layer thickness ratio (h/t) constant, while adjusting the scanning speed (v) and hatching space (h) accordingly. To validate this approach, Ti6246 parts were printed with 50 µm and 25 µm layer thicknesses, while keeping VED = 100 J/mm3 and h/t = 3 constant for both cases. The printed samples were analyzed in terms of their density, microstructure and mechanical properties, as well as the geometric compliance of wall-, gap- and channel-containing artefacts. Highly dense samples exhibiting comparable microstructures and mechanical properties were obtained with both parameters sets investigated. However, they induced markedly differing geometric characteristics. Notably, using 25 µm layers allowed printing walls as thin as 0.2 mm as compared to 1.0 mm for 50 µm layers. Full article
(This article belongs to the Special Issue Recent Advances in Powder-Based Additive Manufacturing of Metals)
Show Figures

Figure 1

Back to TopTop