Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = large-scale electric heat pumps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4243 KiB  
Article
Sustainable Heating Analysis and Energy Model Development of a Community Building in Kuujjuaq, Nunavik
by Alice Cavalerie, Jasmin Raymond, Louis Gosselin, Jean Rouleau and Ali Hakkaki-Fard
Thermo 2025, 5(2), 14; https://doi.org/10.3390/thermo5020014 - 29 Apr 2025
Viewed by 958
Abstract
Energy transition is a challenge for remote northern communities mainly relying on diesel for electricity generation and space heating. Solar-assisted ground-coupled heat pump (SAGCHP) systems represent an alternative that was investigated in this study for the Kuujjuaq Forum, a multi-activity facility in Nunavik, [...] Read more.
Energy transition is a challenge for remote northern communities mainly relying on diesel for electricity generation and space heating. Solar-assisted ground-coupled heat pump (SAGCHP) systems represent an alternative that was investigated in this study for the Kuujjuaq Forum, a multi-activity facility in Nunavik, Canada. The energy requirements of community buildings facing a subarctic climate are poorly known. Based on energy bills, technical documents, and site visits, this study provided an opportunity to better document the energy consumption of such building, especially considering the recent solar photovoltaic (PV) system installed on part of the roof. A comprehensive model was developed to analyze the building’s heating demand and simulate the performance of a ground-source heat pump (GSHP) coupled with PV panels. The air preheating load, accounting for 268,200 kWh and 47% of the total heating demand, was identified as an interesting and realistic load that could be met by SAGCHP. The GSHP system would require a total length of at least 8000 m, with boreholes at depths between 170 and 200 m to meet this demand. Additional PV panels covering the entire roof could supply 30% of the heat pump’s annual energy demand on average, with seasonal variations from 22% in winter to 53% in spring. Economic and environmental analysis suggest potential annual savings of CAD 164,960 and 176.7 tCO2eq emissions reduction, including benefits from exporting solar energy surplus to the local grid. This study provides valuable insights on non-residential building energy consumption in subarctic conditions and demonstrates the technical viability of SAGCHP systems for large-scale applications in remote communities. Full article
(This article belongs to the Special Issue Innovative Technologies to Optimize Building Energy Performance)
Show Figures

Figure 1

20 pages, 5100 KiB  
Article
Leveraging Seawater Thermal Energy Storage and Heat Pumps for Coupling Electricity and Urban Heating: A Techno-Economic Analysis
by Timur Abbiasov, Aldo Bischi, Manfredi Gangi, Andrea Baccioli, Paolo Santi and Carlo Ratti
Energies 2025, 18(7), 1869; https://doi.org/10.3390/en18071869 - 7 Apr 2025
Viewed by 404
Abstract
This paper presents an economic assessment of seawater thermal energy storage (TES) integrated with industrial heat pumps to couple renewable electricity generation with urban district heating networks. Using Amsterdam as a case study, we develop a techno-economic model leveraging real-world data on electricity [...] Read more.
This paper presents an economic assessment of seawater thermal energy storage (TES) integrated with industrial heat pumps to couple renewable electricity generation with urban district heating networks. Using Amsterdam as a case study, we develop a techno-economic model leveraging real-world data on electricity prices, heat demand, and system costs. Our findings show that large-scale TES using seawater as a storage medium significantly enhances district heating economics through energy arbitrage and operational flexibility. The optimal configuration yields a net present value (NPV) of EUR 466 million over 30 years and a payback period under 6 years. Thermal storage increases NPV by 17% compared to systems without storage, while within-day load shifting further boosts economic value by 23%. Accurate demand and price forecasting is critical, as forecasting errors can reduce NPV by 13.7%. The proposed system is scalable and well suited for coastal cities, offering a sustainable, space-efficient solution for urban decarbonization and addressing renewable energy overproduction. Full article
Show Figures

Figure 1

22 pages, 8303 KiB  
Article
Operation Margin of the ITER Central Solenoid During the Plasma Scenario
by Lorenzo Cavallucci, Marco Breschi, Junjun Li and Christine Hoa
Appl. Sci. 2025, 15(7), 3526; https://doi.org/10.3390/app15073526 - 24 Mar 2025
Viewed by 437
Abstract
For the large-scale fusion magnets of the International Thermonuclear Experimental Reactor (ITER) tokamak, wound with cable-in-conduit conductors, the application of sophisticated numerical models able to analyse the thermal–hydraulic behaviour during plasma scenarios is of paramount importance to guarantee an adequate stability margin during [...] Read more.
For the large-scale fusion magnets of the International Thermonuclear Experimental Reactor (ITER) tokamak, wound with cable-in-conduit conductors, the application of sophisticated numerical models able to analyse the thermal–hydraulic behaviour during plasma scenarios is of paramount importance to guarantee an adequate stability margin during operating conditions. The SuperMagnet code has been developed by CryoSoft with the intent to simultaneously simulate the electrical, thermal and hydraulic phenomena occurring during the operation of superconducting coils. In this work, the SuperMagnet code is applied to analyse the thermal–hydraulic behaviour of the central solenoid of the ITER tokamak under the plasma scenario. The central solenoid (CS) is composed of six modules for a total amount of 240 pancakes. The software is able to tackle the complex structure of the CS and its cryogenic closed loop. In the present work, the circulation pump operation and the heat transfer to the helium bath are investigated. The results presented here show the temperature evolution of the magnet and of the supercritical helium during the plasma scenario, which allows the determination of the operation margin of the CS. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

21 pages, 9402 KiB  
Article
Experimental Study on R290 Performance of an Integrated Thermal Management System for Electric Vehicle
by Zihao Luo, Shusheng Xiong, Min Wen, Jiahao Zhao and Yifei Zhang
Energies 2025, 18(4), 802; https://doi.org/10.3390/en18040802 - 9 Feb 2025
Viewed by 1496
Abstract
Integrated thermal management system (ITMS) technology for electric vehicles (EV) has become a major industry research direction. However, R290 refrigerants are still not applied on a large scale in EVs. Therefore, we developed a suitable thermal management system for R290 in this study. [...] Read more.
Integrated thermal management system (ITMS) technology for electric vehicles (EV) has become a major industry research direction. However, R290 refrigerants are still not applied on a large scale in EVs. Therefore, we developed a suitable thermal management system for R290 in this study. This architecture adapts an unusual indirect design, which can coordinate the heat between the air conditioner, battery pack, and electric motor. We focused on heat pump air conditioning systems for EV thermal management; thus, we carried out the performance analysis of R290 under the cooling and heating conditions of our ITMS through an experimental approach. The current study explores various aspects affecting the performance of heat-pump air conditioners: refrigerant charge, electronic expansion valve (EXV) opening, compressor speed, and performance between R290 and R134a under different external temperatures. We aim to improve cooling and heating efficiencies. Among these parameters, the EXV opening and compressor speed have the greatest impact on the performance of the ITMS, as evidenced by the optimal EXV opening and lower compressor speed to maximize the coefficient of performance (COP) and increase the heat transfer rate. In addition, this study has shown that, compared to an ITMS equipped with R134a, R290 has a smaller refrigerant charge, better heat transfer rate and COP under heating conditions, and similar performance under cooling conditions. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

23 pages, 3351 KiB  
Article
Assessing the Economic and Environmental Dimensions of Large-Scale Energy-Efficient Renovation Decisions in District-Heated Multifamily Buildings from Both the Building and Urban Energy System Perspectives
by Alaa Khadra, Jan Akander, Xingxing Zhang and Jonn Are Myhren
Energies 2025, 18(3), 513; https://doi.org/10.3390/en18030513 - 23 Jan 2025
Viewed by 954
Abstract
The European Union (EU) has introduced a range of policies to promote energy efficiency, including setting specific targets for energy-efficient renovations across the EU building stock. This study provides a comprehensive environmental and economic assessment of energy-efficient renovation scenarios in a large-scale multifamily [...] Read more.
The European Union (EU) has introduced a range of policies to promote energy efficiency, including setting specific targets for energy-efficient renovations across the EU building stock. This study provides a comprehensive environmental and economic assessment of energy-efficient renovation scenarios in a large-scale multifamily building project that is district-heated, considering both the building and the broader urban energy system. A systematic framework was developed for this assessment and applied to a real case in Sweden, where emission factors from energy production are significantly lower than the EU average: 114 g CO2e/kWh for district heating and 37 g CO2e/kWh for electricity. The project involved the renovation of four similar district-heated multifamily buildings with comparable energy efficiency measures. The primary distinction between the measures lies in the type of HVAC system installed: (1) exhaust ventilation with air pressure control, (2) mechanical ventilation with heat recovery, (3) exhaust ventilation with an exhaust air heat pump, and (4) exhaust ventilation with an exhaust air heat pump combined with photovoltaic (PV) panels. The study’s findings show that the building with an exhaust air heat pump which operates intermittently with PV panels achieves the best environmental performance from both perspectives. A key challenge identified for future research is balancing the reduced electricity production from Combined Heat and Power (CHP) plants within the energy system. Full article
(This article belongs to the Special Issue Advances in Energy Management and Control for Smart Buildings)
Show Figures

Figure 1

28 pages, 4215 KiB  
Article
Optimizing Energy Yield and Economic Benefit of Renewable Energy Technologies for Urban Mediterranean Dwellings
by Andre’ Mizzi and Charles Yousif
Sustainability 2024, 16(20), 9082; https://doi.org/10.3390/su16209082 - 20 Oct 2024
Cited by 1 | Viewed by 1228
Abstract
Mediterranean European cities are characterized by high population density and limited space for large-scale implementation of renewable energy installations. This paper addresses the optimization of renewable energy installations in Mediterranean dwellings with the scope of increasing their energy contribution and cost-effectiveness. In a [...] Read more.
Mediterranean European cities are characterized by high population density and limited space for large-scale implementation of renewable energy installations. This paper addresses the optimization of renewable energy installations in Mediterranean dwellings with the scope of increasing their energy contribution and cost-effectiveness. In a case study for Malta, the three technologies studied were solar photovoltaics, solar water heating, and heat pump water heating. Technical and economic analyses were performed on a number of reference configurations using Polysun software (version 2022.8). Sensitivity analyses were also conducted to study the impact that different technical and economic factors have on the performance of the configurations considered. Finally, comparisons were made between the techno-economic results obtained from the reference and sensitivity analyses. Based on data collected, the presence of renewable energy source (RES) technologies in the residential sector of Malta was characterized and correlated with the types of dwellings considered. Among the results obtained, it was found that although a solar RES installation may experience some shading, this does not mean that it is rendered economically unfeasible. Moreover, from the simulations conducted, electrical energy storage technology was considered as too premature unless strongly subsidized, making economic sense only in specific circumstances. On the other hand, although heat pump water heating technology is also relatively modern, it was concluded to be the most beneficial in terms of both energy yield and economic benefit, generally speaking. Furthermore, it was determined that in a higher occupancy dwelling, solar water heating (SWH) and heat pump water heating (HPWH) result in considerably more attractive energy savings. Full article
Show Figures

Figure 1

19 pages, 4742 KiB  
Article
Storing Excess Solar Power in Hot Water on Household Level as Power-to-Heat System
by Ivar Kotte, Emma Snaak and Wilfried van Sark
Energies 2024, 17(20), 5154; https://doi.org/10.3390/en17205154 - 16 Oct 2024
Cited by 1 | Viewed by 1459
Abstract
PV technology has become widespread in the Netherlands, reaching a cumulative installed capacity of 22.4 GWp in 2023 and ranking second in the world for solar PV per capita at 1268 W/capita. Despite this growth, there is an inherent discrepancy between energy supply [...] Read more.
PV technology has become widespread in the Netherlands, reaching a cumulative installed capacity of 22.4 GWp in 2023 and ranking second in the world for solar PV per capita at 1268 W/capita. Despite this growth, there is an inherent discrepancy between energy supply and demand during the day. While the netting system in the Netherlands can currently negate the economic drawbacks of this discrepancy, grid congestion and imbalanced electricity prices show that improvements are highly desirable for the sustainability of electricity grids. This research analyzes the effectiveness of a Power-to-Domestic-Hot-Water (P2DHW) system at improving the utilization of excess PV electricity in Dutch households and compares it to similar technologies. The results show that the example P2DHW system, the WaterAccu, compares favorably as a low cost and flexible solution. In particular, for twelve different households differing in size (1–6 occupants), PV capacity (2.4–8 kWp), and size of hot water storage boiler (50–300 L), it is shown that the total economic benefits for the period 2024–2032 vary from −€13 to €3055, assuming the current net metering scheme is abolished in 2027. Only for large households with low PV capacity are the benefits a little negative. Based on a multi-criteria analysis, it is found that the WaterAccu is the cheapest option compared to other storage options, such as a home battery, a heat pump boiler, and a solar boiler. A sensitivity study demonstrated that these results are overall robust. Furthermore, the WaterAccu has a positive societal impact owing to its peak shaving potential. Further research should focus on the potential of the technology to decrease grid congestion when implemented on a neighborhood scale. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

20 pages, 3485 KiB  
Article
Validation of a Model Predictive Control Strategy on a High Fidelity Building Emulator
by Davide Fop, Ali Reza Yaghoubi and Alfonso Capozzoli
Energies 2024, 17(20), 5117; https://doi.org/10.3390/en17205117 - 15 Oct 2024
Cited by 1 | Viewed by 1413
Abstract
In recent years, advanced controllers, including Model Predictive Control (MPC), have emerged as promising solutions to improve the efficiency of building energy systems. This paper explores the capabilities of MPC in handling multiple control objectives and constraints. A first MPC controller focuses on [...] Read more.
In recent years, advanced controllers, including Model Predictive Control (MPC), have emerged as promising solutions to improve the efficiency of building energy systems. This paper explores the capabilities of MPC in handling multiple control objectives and constraints. A first MPC controller focuses on the task of ensuring thermal comfort in a residential house served by a heat pump while minimizing the operating costs when subject to different pricing schedules. A second MPC controller working on the same system tests the ability of MPC to deal with demand response events by enforcing a time-varying maximum power usage limitation signal from the electric grid. Furthermore, multiple combinations of the control parameters are tested in order to assess their influence on the controller performance. The controllers are tested on the BOPTEST framework, which offers standardized test cases in high-fidelity emulation models, and pre-defined baseline control strategies to allow fair comparisons also across different studies. Results show that MPC is able to handle multi-objective optimal control problems, reducing thermal comfort violations by between 66.9% and 82% and operational costs between 15.8% up to 20.1%, depending on the specific scenario analyzed. Moreover, MPC proves its capability to exploit the building thermal mass to shift heating power consumption, allowing the latter to adapt its time profile to time-varying constraints. The proposed methodology is based on technologically feasible steps that are intended to be easily transferred to large scale, in-field applications. Full article
Show Figures

Figure 1

24 pages, 6415 KiB  
Article
Impact of Energy-Related Properties of Cities on Optimal Urban Energy System Design
by Joel Bertilsson, Lisa Göransson and Filip Johnsson
Energies 2024, 17(15), 3813; https://doi.org/10.3390/en17153813 - 2 Aug 2024
Cited by 1 | Viewed by 2585
Abstract
This study investigates how differences in energy-related properties of cities influence the composition of a cost-efficient urban energy system, assuming electrification of the transport and industry sectors and zero-emission of CO2. These differences are evaluated for two scenarios regarding the capacities [...] Read more.
This study investigates how differences in energy-related properties of cities influence the composition of a cost-efficient urban energy system, assuming electrification of the transport and industry sectors and zero-emission of CO2. These differences are evaluated for two scenarios regarding the capacities of the modeled cities to import electricity. A linear optimization model that encompasses the electricity, heating, industry, and transport sectors, using measured data from six cities in Sweden, is applied. Results show that when strict constraints on electricity imports are enforced, cities with a lower ratio of annual electricity demand for heat encourage the implementation of power-to-heat solutions in the heating sector. This study also reveals that under such stringent electricity import conditions, cities with a high level of flexibility in electricity demand favor a combination of batteries and solar photovoltaics as opposed to biomass-based electricity production. Conversely, when electricity importation is less restricted and biomass prices surpass 20 EUR/MWh, local electricity generation is outcompeted by imports, and large-scale heat pumps working in tandem with thermal energy storage dominate the heating sector in all modeled cities. This assertion holds true when the maximum electricity import capacity is utilized up to 5000 h annually. Full article
Show Figures

Figure 1

19 pages, 2087 KiB  
Article
Assessment of Grid and System Supportability Based on Spatio-Temporal Conditions—Novel Key Performance Indicators for Energy System Evaluation
by Heiko Waurisch, Nick von Bargen, Nico Ploczicki, Bente Ralfs, Berit Elsner, Reiner Schütt and Nassipkul Dyussembekova
Energies 2024, 17(7), 1534; https://doi.org/10.3390/en17071534 - 23 Mar 2024
Viewed by 1611
Abstract
The energy transition introduces new technical standards, laws and regulations regarding the stability and reliability of energy grids and systems. Due to the non-existence of a measuring standard, key performance indicators (KPIs) were developed to enable the measurement and comparison of individual energy [...] Read more.
The energy transition introduces new technical standards, laws and regulations regarding the stability and reliability of energy grids and systems. Due to the non-existence of a measuring standard, key performance indicators (KPIs) were developed to enable the measurement and comparison of individual energy grid (namely electricity, heat and gas grid) and system supportabilities while also promoting well-founded decision-making and optimization efforts. Inconsistencies in definitions concerning fundamental energy terms and the correlations between them inhibit the effective usage of the KPIs. Therefore, the overarching issue of the security of energy supply and its related subjects were also approached. The primary subject of this paper is the development of two new KPIs to measure and compare the energy grid and system supportability. These KPIs are based on spatio-temporal conditions in their respective grids. The usage and benefits of the developed KPIs are exemplarily highlighted by analyzing the impact of a scenario with the integration of a large-scale heat pump into the electricity and heat grid. The energy grid supportability is determined for each grid, whereas the energy system supportability takes the interactions of the electricity and heat grid into account. The developed KPIs are intended to enable stakeholders to identify areas with optimization potential in energy grids and systems. Moreover, the KPIs can be used to create a standardized evaluation method for regulatory requirements. Full article
(This article belongs to the Special Issue Energy Efficiency Assessments and Improvements)
Show Figures

Figure 1

19 pages, 2836 KiB  
Article
Economic Model-Predictive Control of Building Heating Systems Using Backbone Energy System Modelling Framework
by Topi Rasku, Toni Lastusilta, Ala Hasan, Rakesh Ramesh and Juha Kiviluoma
Buildings 2023, 13(12), 3089; https://doi.org/10.3390/buildings13123089 - 12 Dec 2023
Cited by 3 | Viewed by 1945
Abstract
Accessing the demand-side management potential of the residential heating sector requires sophisticated control capable of predicting buildings’ response to changes in heating and cooling power, e.g., model-predictive control. However, while studies exploring its impacts both for individual buildings as well as energy markets [...] Read more.
Accessing the demand-side management potential of the residential heating sector requires sophisticated control capable of predicting buildings’ response to changes in heating and cooling power, e.g., model-predictive control. However, while studies exploring its impacts both for individual buildings as well as energy markets exist, building-level control in large-scale energy system models has not been properly examined. In this work, we demonstrate the feasibility of the open-source energy system modelling framework Backbone for simplified model-predictive control of buildings, helping address the above-mentioned research gap. Hourly rolling horizon optimisations were performed to minimise the costs of flexible heating and cooling electricity consumption for a modern Finnish detached house and an apartment block with ground-to-water heat pump systems for the years 2015–2022. Compared to a baseline using a constant electricity price signal, optimisation with hourly spot electricity market prices resulted in 3.1–17.5% yearly cost savings depending on the simulated year, agreeing with comparable literature. Furthermore, the length of the optimisation horizon was not found to have a significant impact on the results beyond 36 h. Overall, the simplified model-predictive control was observed to behave rationally, lending credence to the integration of simplified building models within large-scale energy system modelling frameworks. Full article
Show Figures

Figure 1

21 pages, 12254 KiB  
Article
The Design of Water Loop Facility for Supporting the WCLL Breeding Blanket Technology and Safety
by Alessandra Vannoni, Pietro Arena, Bruno Gonfiotti, Marica Eboli, Pierdomenico Lorusso, Amelia Tincani, Nicolò Badodi, Antonio Cammi, Fabio Giannetti, Cristiano Ciurluini, Nicola Forgione, Francesco Galleni, Ilenia Catanzaro, Eugenio Vallone, Pietro Alessandro Di Maio, Pietro Agostini and Alessandro Del Nevo
Energies 2023, 16(23), 7746; https://doi.org/10.3390/en16237746 - 24 Nov 2023
Cited by 6 | Viewed by 1699
Abstract
The WCLL Breeding Blanket of DEMO and the Test Blanket Module (TBM) of ITER require accurate R&D activities, i.e., concept validation at a relevant scale and safety demonstrations. In view of this, the strategic objective of the Water Loop (WL) facility, belonging to [...] Read more.
The WCLL Breeding Blanket of DEMO and the Test Blanket Module (TBM) of ITER require accurate R&D activities, i.e., concept validation at a relevant scale and safety demonstrations. In view of this, the strategic objective of the Water Loop (WL) facility, belonging to the W-HYDRA experimental platform planned at C.R. Brasimone of ENEA, is twofold: to conduct R&D activities for the WCLL BB to validate design performances and to increase the technical maturity level for selection and validation phases, as well as to support the ITER WCLL Test Blanket System program. Basically, the Water Loop facility will have the capability to investigate the design features and performances of scaled-down or portions of breeding blanket components, as well as full-scale TBM mock-ups. It is a large-/medium-scale water coolant plant that will provide water coolant at high pressure and temperature. It is composed by single-phase primary (designed at 18.5 MPa and 350 °C) and secondary (designed at 2.5 MPa and 220 °C) systems thermally connected with a two-phase tertiary loop acting as an ultimate heat sink (designed at 6 bar and 80 °C). The primary loop has two main sources of power: an electrical heater up to about 1 MWe, installed in the cold side, downstream of the pump and upstream of the test section, and an electron beam gun acting as a heat flux generator. The WL has unique features and is designed as a multi-purpose facility capable of being coupled with the LIFUS5/Mod4 facility to study PbLi/water reaction at a large scale. This paper presents the status of the Water Loop facility, highlighting objectives, design features, and the analyses performed. Full article
Show Figures

Figure 1

16 pages, 2021 KiB  
Review
Pumped Thermal Energy Storage Technology (PTES): Review
by Ayah Marwan Rabi, Jovana Radulovic and James M. Buick
Thermo 2023, 3(3), 396-411; https://doi.org/10.3390/thermo3030024 - 11 Jul 2023
Cited by 17 | Viewed by 7046
Abstract
In recent years, there has been an increase in the use of renewable energy resources, which has led to the need for large-scale Energy Storage units in the electric grid. Currently, Compressed Air Energy Storage (CAES) and Pumped Hydro Storage (PHES) are the [...] Read more.
In recent years, there has been an increase in the use of renewable energy resources, which has led to the need for large-scale Energy Storage units in the electric grid. Currently, Compressed Air Energy Storage (CAES) and Pumped Hydro Storage (PHES) are the main commercially available large-scale energy storage technologies. However, these technologies are restricted geographically and can require fossil fuel streams to heat the air. Thus, there is a need to develop novel large-scale energy storage technologies that do not suffer from the abovementioned drawbacks. Among the in-development, large-scale Energy Storage Technologies, Pumped Thermal Electricity Storage (PTES), or Pumped Heat Energy Storage, stands out as the most promising due to its long cycle life, lack of geographical limitations, the absence of fossil fuel streams, and the possibility of integrating it with conventional fossil-fuel power plants. There have been a number of PTES systems proposed using different thermodynamic cycles, including the Brayton cycle, the Rankine cycle, and the transcritical Rankine cycle. The purpose of this paper is to provide a comprehensive overview of PTES concepts, as well as the common thermodynamic cycles they implement, indicating their individual strengths and weaknesses. Furthermore, the paper provides a comprehensive reference for planning and integrating various types of PTES into energy systems. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2023)
Show Figures

Figure 1

23 pages, 6202 KiB  
Article
Optimal Installation of Heat Pumps in Large District Heating Networks
by Martina Capone, Elisa Guelpa and Vittorio Verda
Energies 2023, 16(3), 1448; https://doi.org/10.3390/en16031448 - 1 Feb 2023
Cited by 14 | Viewed by 3523
Abstract
Power-to-heat technology represents a promising solution for the decarbonization of the energy sector. The installation of large-scale heat pumps within district heating systems is widely recognized to be a cost-effective and competitive way to provide flexibility to the electric system, enhancing the use [...] Read more.
Power-to-heat technology represents a promising solution for the decarbonization of the energy sector. The installation of large-scale heat pumps within district heating systems is widely recognized to be a cost-effective and competitive way to provide flexibility to the electric system, enhancing the use of intermittent renewable energy sources. The goal of this paper is to show how the economic and environmental benefits provided by the installation of a large-scale heat pump in existing district heating systems vary according to the installation location in different scenarios. To do that, an integrated methodology is developed. This includes a physical model of the thermo-fluid dynamic of the district heating network and a detailed modeling of the heat pump. To compare the different positions and also the different operating conditions, an approach based on exergy analysis is adopted. Moreover, a specific control strategy of the mass-flow rate is analyzed to further reduce greenhouse gas emissions. The application to a real large-scale district heating network shows that reductions in CO2 emissions of almost 4% can be obtained by installing a single heat pump of about 4 MWe (over a total thermal load of about 305 MWt), while this positive effect can be reduced by up to 63% if placing the heat pump at non-optimal locations. Full article
(This article belongs to the Special Issue Sustainable Technologies for Decarbonising the Energy Sector)
Show Figures

Figure 1

27 pages, 6016 KiB  
Article
Electrified Process Heating in Textile Wet-Processing Industry: A Techno-Economic Analysis for China, Japan, and Taiwan
by Ali Hasanbeigi and M. Jibran S. Zuberi
Energies 2022, 15(23), 8939; https://doi.org/10.3390/en15238939 - 25 Nov 2022
Cited by 4 | Viewed by 3633 | Correction
Abstract
The textile industry accounts for approximately 2% of global greenhouse gas emissions. There is a significant opportunity to decarbonize the textile industry by electrification of process heating where low- or zero-carbon electricity is used. Electrified process heating can be achieved through cross-cutting technologies [...] Read more.
The textile industry accounts for approximately 2% of global greenhouse gas emissions. There is a significant opportunity to decarbonize the textile industry by electrification of process heating where low- or zero-carbon electricity is used. Electrified process heating can be achieved through cross-cutting technologies without modifying the textile process equipment and/or through replacing the existing equipment with technologies that employ electromagnetic or resistance heating techniques for specific end-use applications. This paper aims to investigate the potential for electrification of process heating in the textile wet-processing industry in three of the top textile-producing and exporting regions in the world. To do this, two separate technology pathways, i.e., electrification through (a) industrial heat pumps and (b) textile end-use processes are developed and analyzed. The results show that the total potential final energy and CO2 savings due to electrification in both scenarios could be substantially large due to the lower energy intensity of the electrified heating systems. Moreover, the costs per unit of textile production are found to be lower in the case of industrial heat pumps compared to other systems. It is concluded that wide-scale electrification of process heating in the textile wet-processing industry will require major changes to the electricity system and individual sites, and the coordination efforts among different stakeholders to plan these changes must be intensified. Full article
Show Figures

Figure 1

Back to TopTop