Storing Excess Solar Power in Hot Water on Household Level as Power-to-Heat System
Abstract
:1. Introduction
2. Materials and Methods
- -
- EE1my = Excess electricity produced on an average weekday for month m in year y (kWh).
- -
- Yf = Yield factor of solar panels (99.5%).
- -
- x = Number of years since 2023.
- -
- Ep1hmy = Electricity produced on an average weekday at hour h for month m in year y (kWh).
- -
- Eu1hm = Electricity used on an average weekday at hour h for month m (kWh).
- -
- EE2my = Excess electricity produced on an average weekend day for month m (kWh).
- -
- Ep2hmy = Electricity produced on an average weekend day at hour h for month m (kWh).
- -
- Eu2hm = Electricity used on an average weekend day at hour h for month m (kWh).
- -
- Eboiler = Amount of electricity required by the boiler per day (kWh).
- -
- Vboiler = Volume of the boiler (L).
- -
- ρwater = Specific density of water (1 kg/L).
- -
- cwater = Specific heat capacity of water (J/(kg*K)).
- -
- ΔT = Change in temperature of boiler (45 °C in summer, 50 °C in winter).
- -
- BE1my = Amount of electricity utilized by the boiler on a weekday for month m in year y (kWh).
- -
- BE2my = Amount of electricity utilized by the boiler on a weekend day for month m in year y (kWh).
- -
- EG1my = Electricity sent back to the grid on a weekday for month m in year y (kWh).
- -
- EG2my = Electricity sent back to the grid on a weekend day for month m in year y (kWh).
- -
- ER1my = Electricity required from the grid on a weekday for month m in year y (kWh).
- -
- ER2my = Electricity required from the grid on a weekend day for month m in year y (kWh).
- -
- TBEy = Total amount of electricity utilized by the boiler in year y (kWh).
- -
- TEGy = Total amount of electricity sent back to the grid in year y (kWh).
- -
- TERy = Total amount of electricity required from the grid in year y (kWh).
- -
- ND1my = Number of weekdays in month m for year y.
- -
- ND2my = Number of weekend days in month m for year y.
- -
- NPy = Net profits obtained by P2DHW (€).
- -
- EC1y = Energy costs when only netting is utilized (€).
- -
- EC2y = Energy costs when netting and P2DHW are utilized (€).
- -
- TEN1y = Total electricity available for netting, consisting of the amount of electricity sent to the grid, but having a maximum of TEGy (kWh).
- -
- ET = Electricity tariff (€/kWh).
- -
- REG1y = Remaining energy returned to grid that cannot be used for netting (kWh).
- -
- ERT = Electricity return tariff (€/kWh).
- -
- TEN2y = Total electricity available for netting, in this case consisting of the amount of electricity sent to the grid after utilizing P2DHW, also having a maximum of TEGy (kWh).
- -
- LHVG = Lower heating value of natural gas (MJ).
- -
- GT = Natural gas tariff (€/m3).
- -
- REG2y = Remaining energy returned to grid that cannot be used for netting while having utilized P2DHW (kWh).
- Small household, low installed power
- 1.1.
- Single person living in a house with older solar panels.
- 1.2.
- Two elderly people living together, needing more time for showering.
- 1.3.
- Single parent living with a young child.
- Large household, low installed power
- 2.1.
- Family with two young children living in an older house.
- 2.2.
- Family with three children. One of the children is a young adult living on their own but staying over regularly.
- 2.3.
- Family with four children (all teenagers) living in an older house.
- Small household, high installed power
- 3.1.
- Rich businessperson who lives on their own, but often receives visitors.
- 3.2.
- Married couple living in a modern (well insulated) house, with no plans to have children.
- 3.3.
- Young couple with a Jacuzzi in their home.
- Large household, high installed power
- 4.1.
- Family with two children living in a modern (well insulated) house.
- 4.2.
- Family with three children. One of the children is a young adult living on their own but staying over regularly.
- 4.3.
- Family with four children living in a modern (well insulated) house.
- The goal of the MCA is to find a technology that enables savings in energy costs and lowered emissions for Dutch households in the period 2024 to 2032, preferably by allowing excess solar energy to become usable for the household.
- Five criteria were utilized:
- Total costs, consisting simply of the required total financial investments to be able to utilize the technology, including installation costs. The values used were €1500 for the P2DHW system, €5000 for the home battery [3], €2915 for the heat pump boiler, and €3800 for the solar boiler.
- Return-on-investment (ROI), determined by the following equation:
- Simple payback time, more commonly known as the payback period [40], which was determined by the following equation:
- PV energy effectiveness, which describes how much more PV energy can be utilized effectively through the technology, was determined by the following equations:
- -
- ET1my = Excess energy utilized by the technology on a weekday in month m for year y (kWh).
- -
- ET2my = Excess energy utilized by the technology on a weekend day in month m for year y (kWh).
- -
- TETy = Total excess energy utilized by the technology in year y (kWh).
- -
- TEEy = Total excess electricity produced in year y (kWh).
- e.
- Reduction in CO2 emissions in kg through lowering gas use. The following equation was used to determine these values:
- 4.
- The scores were standardized using the maximum standardization method [41]: criteria b, d, and e prefer higher scores, so they are standardized by dividing the score of each technology by the highest score. Criteria a and c prefer lower scores, so these are standardized by dividing the score of each technology by the highest score, multiplying by −1 and adding a value of 1.
- 5.
- Each score is assigned a weight using the expected values method [42], which reflects how important the criterion is compared to the other criteria. Using five criteria means that five different weight scores are distributed each time per scenario. The following equations show how these weights Wi are calculated:
- 6.
- A sensitivity analysis was conducted on the weights of the criteria to check how sensitive each technology is to each criterion. This step consisted of varying the weights between 0 and 1 in steps of 0.1 and checking the changes in score for each technology.
3. Results
3.1. Results Derived from Basic Calculations
3.2. Household Scenarios
3.3. MCA
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dutch New Energy Research (DNER) Nationaal Solar Trendrapport. 2024. Available online: https://www.solarsolutions.nl/trendrapport/ (accessed on 11 October 2024).
- Donker, J.; Halstead, M. Divestment from Fossil Fuels: Is It Accelerating the Energy Transition? TNO Perspectives Series on Energy Transition Financing. 2020. Available online: https://publications.tno.nl/publication/34637651/n4ZjNd/TNO-2020-divestment.pdf (accessed on 11 October 2024).
- Milieucentraal. Thuisbatterij: Zonne-Energie Opslaan. 2022. Available online: https://www.milieucentraal.nl/energie-besparen/zonnepanelen/thuisbatterij-zonne-energie-opslaan/ (accessed on 11 October 2024).
- Bakker, J.W.; Verheij, F.J.; Menkveld, M.; Usmani, O.A. Update Effect Afbouw Salderingsregeling op de Terugverdientijd van Investeringen in Zonnepanelen. 2022. Available online: https://www.rijksoverheid.nl/documenten/rapporten/2022/07/01/tno-rapport-update-effect-afbouw-salderingsregeling-op-de-terugverdientijd-van-investeringen-in-zonnepanelen (accessed on 11 October 2024).
- Londo, H.M.; Matton, R.; Usmani, O.; van Klaveren, M.; Tigchelaar, C. De Salderingsregeling: Effecten van een Aantal Hervormingsopties; ECN: Petten, The Netherlands, 2017. [Google Scholar]
- Bloess, A.; Schill, W.P.; Zerrahn, A. Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials. Appl. Energy 2018, 212, 1611–1626. [Google Scholar] [CrossRef]
- Naranjo-Mendoza, C.; Oyinlola, M.A.; Wright, A.J.; Greenough, R.M. Experimental study of a domestic solar-assisted ground source heat pump with seasonal underground thermal energy storage through shallow boreholes. Appl. Therm. Eng. 2019, 162, 114218. [Google Scholar] [CrossRef]
- Nami, H.; Anvari-Moghaddam, A.; Arabkoohsar, A. Application of CCHPs in a centralized domestic heating, cooling and power network—Thermodynamic and economic implications. Sustain. Cities Soc. 2020, 60, 102151. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, M.; Zhao, Y.; Yan, H.; Yan, J. Design and performance evaluation of a new thermal energy storage system integrated within a coal-fired power plant. J. Energy Storage 2022, 50, 104335. [Google Scholar] [CrossRef]
- Visser, L.; Elsinga, B.; AlSkaif, T.; van Sark, W. Open-Source Quality Control Routine and Multi-Year Power Generation Data of 175 PV Systems (0.0.1.); Data Set; Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- CBS. Meer Elektriciteit Uit Hernieuwbare Bronnen, Minder Uit Fossiele Bronnen. 2022. Available online: https://www.cbs.nl/nl-nl/nieuws/2022/10/meer-elektriciteit-uit-hernieuwbare-bronnen-minder-uit-fossiele-bronnen (accessed on 11 October 2024).
- Hall, E.F.; Maas, R.J.M.; Limaheluw, J.; Betgen, C.D. Mondiaal Klimaatbeleid: Gezondheidswinst in Nederland Bij Minder Klimaatverandering; Report 2020-0200; RIVM: Bilthoven, The Netherlands, 2021. [Google Scholar]
- Milieucentraal. Gemiddeld Energieverbruik. 2022. Available online: https://www.milieucentraal.nl/energie-besparen/inzicht-in-je-energierekening/gemiddeld-energieverbruik/ (accessed on 11 October 2024).
- CBS. Woningen; Hoofdverwarmingsinstallaties, Region. 2023. Available online: https://opendata.cbs.nl/#/CBS/nl/dataset/84948NED/table (accessed on 11 October 2024).
- Boilergarant. Energiezuinig/Anti-Kalk Boilers. 2023. Available online: https://www.boilergarant.nl/c/energiezuinig-anti-kalk-boilers?product_category_id=44&price_from=&price_to=&attribute_63_from=&attribute_63_to=&attribute_64_from=&attribute_64_to=&attribute_65_from=&attribute_65_to=&sort=price:asc (accessed on 11 October 2024).
- Solyx Energy. Product Solar iBoost. 2023. Available online: https://www.solyxenergy.nl/product/solar-iboost/ (accessed on 11 October 2024).
- MFFBAS. Sectordocumenten. 2023. Available online: https://www.mffbas.nl/documenten/ (accessed on 11 October 2024).
- Enexis Netbeheer. Welke Aansluiting heb ik Nodig? 2023. Available online: https://www.enexis.nl/aansluitingen/welke-aansluiting-heb-ik-nodig (accessed on 11 October 2024).
- Nibud. Kosten van Energie en Water. 2023. Available online: https://www.nibud.nl/onderwerpen/uitgaven/kosten-energie-water/ (accessed on 11 October 2024).
- DTU Wind Energy. CorRES. 2022. Available online: https://corres.windenergy.dtu.dk/using-corres (accessed on 11 October 2024).
- De Felice, M. ENTSO-E Pan-European Climatic Database (PECD 2021.3) in Parquet Format; Data Set; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Majcen, D.; Itard, L.; Visscher, H. Actual and theoretical gas consumption in Dutch dwellings: What causes the differences? Energy Policy 2013, 61, 460–471. [Google Scholar] [CrossRef]
- CBS. Watergebruik Thuis (WGT) 2021. 2022. Available online: https://www.cbs.nl/nl-nl/longread/aanvullende-statistische-diensten/2022/watergebruik-thuis--wgt---2021/6-de-douche#:~:text=De%20gemiddelde%20doucheduur%20is%207,79%2C6%20liter%20per%20douchebeurt (accessed on 11 October 2024).
- Green, D.W.; Southard, M.Z. Perry’s Chemical Engineers’ Handbook; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Heslinga, D.C.; van Harmelen, A.K. Vaststellingsmethodieken Voor CO2-Emissiefactoren Van Aardgas in Nederland; TNO: Apeldoorn, The Netherlands, 2006. [Google Scholar]
- Croezen, H.; Doe, M.; Jorna, N. Broeikasgasemissies Aardgasketens; Report BI4005IBRP001F01; Royal HaskoningDHV: Rotterdam, The Netherlands, 2022; Available online: https://www.co2emissiefactoren.nl/wp-content/uploads/2022/01/35-RHDHV-Broeikasgasemissies-aardgasketens-2022.pdf (accessed on 11 October 2024).
- Doebbeling, B.N.; Wenzel, R.P. The epidemiology of Legionella pneumophila infections. Semin. Respir. Infect. 1987, 2, 206–221. [Google Scholar] [PubMed]
- Van der Molen, M.; Pieterse-Quirijns, I.; Donocik, A.; Smulders, E. Eigenschappen bodem en oppervlak beïnvloeden temperatuurstijging rond drinkwaterleidingen. H2O 2009, 42, 33. [Google Scholar]
- Berkhout, P.; Bergevoet, R.; Jellema, A. Knelpuntenanalyse Conflict Oekraïne: Analyse Knelpunten Korte Termijn voor de Agrarische Ketens; Report No. 2022-037; Wageningen Economic Research, Wageningen University Research: Wageningen, The Netherlands, 2022; Available online: https://research.wur.nl/en/publications/knelpuntenanalyse-conflict-oekraine-analyse-knelpunten-korte-term (accessed on 11 October 2024).
- Easyswitch. Energieprijzen. 2023. Available online: https://www.easyswitch.nl/energieprijzen/ (accessed on 11 October 2024).
- Energyshift. Salderen Stopt: Besluit Nieuw Cabinet. 2024. Available online: https://www.energyshift.nl/salderen-stopt-besluit-nieuw-kabinet/#:~:text=met%20budgettaire%20punten.-,Daarin%20werd%20ook%20de%20salderingsregeling%20genoemd%2C%20die%20eerder%20zou%20worden,voor%20veel%20installateurs%20en%20fabrikanten (accessed on 11 October 2024).
- Solvari BV. Zonnepanelen Wattpiek. 2023. Available online: https://www.zonnepanelen.net/wattpiek/ (accessed on 11 October 2024).
- Dodgson, J.S.; Spackman, M.; Pearman, A.; Phillips, L.D. Multi-Criteria Analysis: A Manual; Economic History Working Papers 12761; Communities and Local Government Publication: London, UK, 2009. [Google Scholar]
- Leestemaker, L.; Otten, M.; Scholten, P.; Hilster, D.; Meijer, C.; Király, J.; Van den Berg, R.; Bruinsma, M. STREAM Personenvervoer: Emissiekentallen Modaliteiten 2022. Publication Number 23.2210506.108, CE Delft. 2023. Available online: https://cedelft.eu/wp-content/uploads/sites/2/2023/03/CE_Delft_210506_STREAM_Personenvervoer_2022_DEF.pdf (accessed on 11 October 2024).
- Beccali, M.; Bonomolo, M.; Martorana, F.; Catrini, P.; Buscemi, A. Electrical hybrid heat pumps assisted by natural gas boilers: A review. Appl. Energy 2022, 322, 119466. [Google Scholar] [CrossRef]
- Boilergarant. Alle Warmtepompboilers. 2023. Available online: https://www.boilergarant.nl/c/alle-warmtepompboilers?product_category_id=65&sort=price:asc (accessed on 11 October 2024).
- Boilergarant. AquaThermica 200L (Zonder Warmtewisselaar). 2023. Available online: https://www.boilergarant.nl/p/aquathermica-200l-zonder-warmtewisselaar (accessed on 11 October 2024).
- Lupu, A.G.; Homutescu, V.M.; Balanescu, D.T.; Popescu, A. Efficiency of Solar Collectors—A Review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 444, p. 082015. [Google Scholar]
- Milieucentraal. Zonneboiler. 2022. Available online: https://www.milieucentraal.nl/energie-besparen/duurzaam-warm-water/zonneboiler/ (accessed on 11 October 2024).
- Zhao, Y.; Zhao, C.; Wen, T.; Markides, C.N. High Temperature Sensible Storage—Industrial Applications. Encycl. Energy Storage 2022, 1, 329–337. [Google Scholar]
- Mohamad, I.B.; Usman, D. Standardization and its effects on K-means clustering algorithm. Res. J. Appl. Sci. Eng. Technol. 2013, 6, 3299–3303. [Google Scholar] [CrossRef]
- Durbach, I.N.; Stewart, T.J. Using expected values to simplify decision making under uncertainty. Omega 2009, 37, 312–330. [Google Scholar] [CrossRef]
Type of Household | Number of Occupants | Number of PV Panels | Power per PV Panel (Wp) | Size of Boiler (L) |
---|---|---|---|---|
1.1 | 1 | 8 | 300 | 50 |
1.2 | 2 | 10 | 275 | 120 |
1.3 | 2 | 10 | 300 | 80 |
2.1 | 4 | 10 | 275 | 150 |
2.2 | 5 | 10 | 300 | 200 |
2.3 | 6 | 10 | 375 | 300 |
3.1 | 1 | 12 | 400 | 150 |
3.2 | 2 | 15 | 375 | 100 |
3.3 | 2 | 15 | 400 | 150 |
4.1 | 4 | 15 | 400 | 200 |
4.2 | 5 | 18 | 375 | 200 |
4.3 | 6 | 20 | 400 | 300 |
Scenario | No Priority | Priority | ||||
---|---|---|---|---|---|---|
Total Costs | ROI | Payback Period | PV Energy Effectiveness | Reduction in CO2 Emissions | ||
Total costs | 0.20 | 0.46 | 0.16 | 0.16 | 0.09 | 0.09 |
ROI | 0.20 | 0.16 | 0.46 | 0.26 | 0.04 | 0.04 |
Payback period | 0.20 | 0.26 | 0.09 | 0.46 | 0.16 | 0.16 |
PV energy effectiveness | 0.20 | 0.09 | 0.04 | 0.04 | 0.46 | 0.26 |
Reduction in CO2 emissions | 0.20 | 0.04 | 0.26 | 0.09 | 0.26 | 0.46 |
Household | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total |
---|---|---|---|---|---|---|---|---|---|---|
1.1 | €53.64 | €49.90 | €47.65 | €68.74 | €68.59 | €68.65 | €68.29 | €68.13 | €67.98 | €561.57 |
1.2 | −€218.79 | −€222.43 | −€223.99 | €125.63 | €125.33 | €125.11 | €124.40 | €123.89 | €123.49 | €82.63 |
1.3 | −€96.59 | −€101.35 | −€103.66 | €97.80 | €97.57 | €97.54 | €97.08 | €96.87 | €96.66 | €281.92 |
2.1 | −€242.23 | −€240.19 | −€237.73 | €120.89 | €119.89 | €118.83 | €117.58 | €116.44 | €115.38 | −€11.13 |
2.2 | −€265.57 | −€263.35 | −€260.66 | €132.56 | €131.47 | €130.31 | €128.94 | €127.71 | €126.54 | −€12.06 |
2.3 | −€374.93 | −€372.26 | −€368.72 | €187.60 | €186.18 | €184.75 | €183.01 | €181.45 | €179.97 | −€12.96 |
3.1 | €207.29 | €207.53 | €206.52 | €206.13 | €205.74 | €205.80 | €204.71 | €204.37 | €204.02 | €1852.11 |
3.2 | €149.56 | €149.95 | €149.32 | €149.05 | €148.78 | €148.97 | €148.35 | €148.22 | €148.09 | €1340.30 |
3.3 | €214.20 | €214.80 | €213.83 | €213.40 | €212.97 | €213.23 | €212.19 | €211.90 | €211.62 | €1918.14 |
4.1 | €119.51 | €111.02 | €105.42 | €250.52 | €250.04 | €250.04 | €248.92 | €248.49 | €248.07 | €1832.04 |
4.2 | €218.71 | €209.26 | €202.86 | €259.47 | €258.93 | €258.93 | €257.65 | €257.16 | €256.68 | €2179.66 |
4.3 | €281.78 | €270.95 | €263.01 | €374.81 | €374.17 | €374.20 | €372.59 | €372.02 | €371.45 | €3054.98 |
Household | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | Total |
---|---|---|---|---|---|---|---|---|---|---|
1.1 | €69.08 | €69.26 | €68.90 | €68.74 | €68.59 | €68.65 | €68.29 | €68.13 | €67.98 | €617.63 |
1.2 | €127.00 | €126.60 | €125.94 | €125.63 | €125.33 | €125.11 | €124.40 | €123.89 | €123.49 | €1.127.38 |
1.3 | €98.46 | €98.53 | €98.03 | €97.80 | €97.57 | €97.54 | €97.08 | €96.87 | €96.66 | €878.53 |
2.1 | €124.10 | €123.06 | €121.79 | €120.89 | €119.89 | €118.83 | €117.58 | €116.44 | €115.38 | €1077.96 |
2.2 | €136.06 | €134.92 | €133.55 | €132.56 | €131.47 | €130.31 | €128.94 | €127.71 | €126.54 | €1182.05 |
2.3 | €192.09 | €190.72 | €188.91 | €187.60 | €186.18 | €184.75 | €183.01 | €181.45 | €179.97 | €1674.67 |
3.1 | €207.29 | €207.53 | €206.52 | €206.13 | €205.74 | €205.80 | €204.71 | €204.37 | €204.02 | €1852.11 |
3.2 | €149.56 | €149.95 | €149.32 | €149.05 | €148.78 | €148.97 | €148.35 | €148.22 | €148.09 | €1340.30 |
3.3 | €214.20 | €214.80 | €213.83 | €213.40 | €212.97 | €213.23 | €212.19 | €211.90 | €211.62 | €1918.14 |
4.1 | €251.91 | €252.12 | €251.00 | €250.52 | €250.04 | €250.04 | €248.92 | €248.49 | €248.07 | €2251.12 |
4.2 | €261.04 | €261.29 | €260.01 | €259.47 | €258.93 | €258.93 | €257.65 | €257.16 | €256.68 | €2331.18 |
4.3 | €376.68 | €377.01 | €375.46 | €374.81 | €374.17 | €374.20 | €372.59 | €372.02 | €371.45 | €3368.40 |
WaterAccu | Home Battery | Heat Pump Boiler | Solar Boiler | |
---|---|---|---|---|
Total costs (€) | 1500 | 5000 | 2915 | 3800 |
ROI (%) | 87 | 42 | 115 | 60 |
Payback period (year) | 11 | 18 | 8 | 15 |
Effectiveness (%) | 62 | 39 | 24 | 0 |
Reduced CO2 emissions (kg) | 4055 | 5029 | 5515 | 2988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotte, I.; Snaak, E.; van Sark, W. Storing Excess Solar Power in Hot Water on Household Level as Power-to-Heat System. Energies 2024, 17, 5154. https://doi.org/10.3390/en17205154
Kotte I, Snaak E, van Sark W. Storing Excess Solar Power in Hot Water on Household Level as Power-to-Heat System. Energies. 2024; 17(20):5154. https://doi.org/10.3390/en17205154
Chicago/Turabian StyleKotte, Ivar, Emma Snaak, and Wilfried van Sark. 2024. "Storing Excess Solar Power in Hot Water on Household Level as Power-to-Heat System" Energies 17, no. 20: 5154. https://doi.org/10.3390/en17205154
APA StyleKotte, I., Snaak, E., & van Sark, W. (2024). Storing Excess Solar Power in Hot Water on Household Level as Power-to-Heat System. Energies, 17(20), 5154. https://doi.org/10.3390/en17205154