Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (846)

Search Parameters:
Keywords = large frequency ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3035 KiB  
Article
Study of Taconis-Based Cryogenic Thermoacoustic Engine with Hydrogen and Helium
by Matthew P. Shenton, Jacob W. Leachman and Konstantin I. Matveev
Energies 2025, 18(15), 4114; https://doi.org/10.3390/en18154114 (registering DOI) - 2 Aug 2025
Abstract
Taconis oscillations represent spontaneous excitation of acoustic modes in tubes with large temperature gradients in cryogenic systems. In this study, Taconis oscillations in hydrogen and helium systems are enhanced with a porous material resulting in a standing-wave thermoacoustic engine. A theoretical model is [...] Read more.
Taconis oscillations represent spontaneous excitation of acoustic modes in tubes with large temperature gradients in cryogenic systems. In this study, Taconis oscillations in hydrogen and helium systems are enhanced with a porous material resulting in a standing-wave thermoacoustic engine. A theoretical model is developed using the thermoacoustic software DeltaEC, version v6.4b2.7, to predict system performance, and an experimental apparatus is constructed for engine characterization. The low-amplitude thermoacoustic model predicts the pressure amplitude, frequency, and temperature gradient required for excitation of the standing-wave system. Experimental measurements, including the onset temperature ratio, acoustic pressure amplitudes, and frequencies, are recorded for different stack materials and geometries. The findings indicate that, independent of stack, hydrogen systems excite at smaller temperature differentials than helium (because of different properties such as lower viscosity for hydrogen), and the stack geometry and material affect the onset temperature ratio. However, pressure amplitude in the excited states varies minimally. Initial measurements are also conducted in a cooling setup with an added regenerator. The configuration with stainless-steel mesh screens produces a small cryogenic refrigeration effect with a decrease in temperature of about 1 K. The reported characterization of a Taconis-based thermoacoustic engine can be useful for the development of novel thermal management systems for cryogenic storage vessels, including refrigeration and pressurization. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

26 pages, 7150 KiB  
Article
Design and Validation of the MANTiS-32 Wireless Monitoring System for Real-Time Performance-Based Structural Assessment
by Jaehoon Lee, Geonhyeok Bang, Yujae Lee and Gwanghee Heo
Appl. Sci. 2025, 15(15), 8394; https://doi.org/10.3390/app15158394 - 29 Jul 2025
Viewed by 179
Abstract
This study aims to develop an integrated wireless monitoring system named MANTiS-32, which leverages an open-source platform to enable autonomous modular operation, high-speed large-volume data transmission via Wi-Fi, and the integration of multiple complex sensors. The MANTiS-32 system is composed of ESP32-based MANTiS-32 [...] Read more.
This study aims to develop an integrated wireless monitoring system named MANTiS-32, which leverages an open-source platform to enable autonomous modular operation, high-speed large-volume data transmission via Wi-Fi, and the integration of multiple complex sensors. The MANTiS-32 system is composed of ESP32-based MANTiS-32 hubs connected to eight MPU-6050 sensors each via RS485. Four MANTiS-32 hubs transmit data to a main PC through an access point (AP), making the system suitable for real-time monitoring of modal information necessary for structural performance evaluation. The fundamental performance of the developed MANTiS-32 system was validated to demonstrate its effectiveness. The evaluation included assessments of acceleration and frequency response measurement performance, wireless communication capabilities, and real-time data acquisition between the MANTiS-32 hub and the eight connected MPU-6050 sensors. To assess the feasibility of using MANTiS-32 for performance monitoring, a flexible model cable-stayed bridge, representing a mid- to long-span bridge, was designed. The system’s ability to perform real-time monitoring of the dynamic characteristics of the bridge model was confirmed. A total of 26 MPU-6050 sensors were distributed across four MANTiS-32 hubs, and real-time data acquisition was successfully achieved through an AP (ipTIME A3004T) without any bottleneck or synchronization issues between the hubs. Vibration data collected from the model bridge were analyzed in real time to extract dynamic characteristics, such as natural frequencies, mode shapes, and damping ratios. The extracted dynamic characteristics showed a measurement error of less than approximately 1.6%, validating the high-precision performance of the MANTiS-32 wireless monitoring system for real-time structural performance evaluation. Full article
(This article belongs to the Special Issue Structural Health Monitoring in Bridges and Infrastructure)
Show Figures

Figure 1

22 pages, 11766 KiB  
Article
Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions
by Ziang Pan, Qiming Qi, Ruifeng Yu, Huaping Yang, Changjiang Shao and Haomeng Cui
Buildings 2025, 15(15), 2666; https://doi.org/10.3390/buildings15152666 - 28 Jul 2025
Viewed by 135
Abstract
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield [...] Read more.
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield strength: 3000 kN; initial gap: 100 mm; post-yield stiffness ratio: 15%) are optimized through seismic analysis under near-fault ground motions, incorporating pulse characteristic investigations. The optimized TSD effectively reduces bearing displacements and results in smaller pier top displacements and internal forces compared to the bridge with fixed bearings. Due to the higher-order mode effects, there is no direct correlation between top displacements and bottom internal forces. As pier height decreases, the S-shaped shear force and bending moment envelopes gradually become linear, reflecting the reduced influence of these modes. Medium- to long-period pulse-like motions amplify seismic responses due to resonance (pulse period ≈ fundamental period) or susceptibility to large low-frequency spectral values. Higher-order mode effects on bending moments and shear forces intensify under prominent high-frequency components. However, the main velocity pulse typically masks the influence of high-order modes by the overwhelming seismic responses due to large spectral values at medium to long periods. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

23 pages, 2002 KiB  
Article
Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Biomedicines 2025, 13(8), 1835; https://doi.org/10.3390/biomedicines13081835 - 28 Jul 2025
Viewed by 428
Abstract
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of [...] Read more.
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. Methods: AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1 mutations significantly associated with improved prognosis (p = 1 × 10−5). Conclusions: AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate health burdens—underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis. Full article
Show Figures

Figure 1

24 pages, 5578 KiB  
Article
Simplified Frequency Estimation of Prefabricated Electric Poles Through Regression-Based Modal Analysis
by Hakan Erkek, Ibrahim Karataş, Doğucan Resuloğulları, Emriye Çınar Resuloğullari and Şahin Tolga Güvel
Appl. Sci. 2025, 15(15), 8179; https://doi.org/10.3390/app15158179 - 23 Jul 2025
Viewed by 235
Abstract
Prefabricated construction elements are widely used in both large- and small-scale projects, serving structural and infrastructural purposes. One notable application is in power transmission poles, which ensure the safe and efficient delivery of electricity. Despite their importance, limited research exists on the structural [...] Read more.
Prefabricated construction elements are widely used in both large- and small-scale projects, serving structural and infrastructural purposes. One notable application is in power transmission poles, which ensure the safe and efficient delivery of electricity. Despite their importance, limited research exists on the structural and modal behavior of reinforced concrete power poles. This study presents a comprehensive modal analysis of such poles, focusing on how factors like modulus of elasticity, height, and lower/upper inner and outer diameters influence dynamic performance. A total of 3240 finite element models were created, with reinforced concrete poles partially embedded in the ground. Modal analyses were performed to evaluate natural frequencies, mode shapes, and modal mass participation ratios. Results showed that increasing the modulus of elasticity raised frequency values, while greater pole height decreased them. Enlarging the lower inner and upper outer radii also led to higher frequencies. Regression analysis yielded high accuracy, with R2 values exceeding 90% and an average error rate of about 6%. The study provides empirical formulas that allow for quick frequency estimations without the need for detailed finite element modeling, as long as the material and geometric properties remain consistent. The approach can be extended to other prefabricated structural elements. Full article
Show Figures

Figure 1

19 pages, 4729 KiB  
Article
Performance Enhancement of Seismically Protected Buildings Using Viscoelastic Tuned Inerter Damper
by Pan-Pan Gai, Jun Dai, Yang Yang, Qin-Sheng Bi, Qing-Song Guan and Gui-Yu Zhang
Actuators 2025, 14(8), 360; https://doi.org/10.3390/act14080360 - 22 Jul 2025
Viewed by 139
Abstract
In this paper, a viscoelastic (VE) tuned inerter damper (TID) that replaces conventional stiffness and damping elements with a cost-effective VE element is proposed to achieve a target-based improvement of seismically protected buildings. The semi-analytical solution of the optimal tuning frequency ratio of [...] Read more.
In this paper, a viscoelastic (VE) tuned inerter damper (TID) that replaces conventional stiffness and damping elements with a cost-effective VE element is proposed to achieve a target-based improvement of seismically protected buildings. The semi-analytical solution of the optimal tuning frequency ratio of the VE TID is presented based on a two-degree-of-freedom (2-DOF) system, accounting for inherent structural damping disturbances, and then is extended to a MDOF system via an effective mass ratio. The accuracy of the semi-analytical solution is validated by comparing the numerical solution. Finally, numerical analyses on a viscoelastically damped building and a base-isolated building with optimally designed VE TIDs under historical earthquakes are performed. The numerical results validate the target-based improvement capability of the VE TID with a modest mass ratio in avoiding large strokes or deformation of existing dampers and isolators, and further reducing the specific mode vibration. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

13 pages, 380 KiB  
Article
Association Between Carbohydrate Quality Index During Pregnancy and Risk for Large-for-Gestational-Age Neonates: Results from the BORN 2020 Study
by Antigoni Tranidou, Antonios Siargkas, Ioannis Tsakiridis, Emmanouela Magriplis, Aikaterini Apostolopoulou, Michail Chourdakis and Themistoklis Dagklis
Children 2025, 12(7), 955; https://doi.org/10.3390/children12070955 - 20 Jul 2025
Viewed by 256
Abstract
Background/Objectives: To assess the association between early pregnancy carbohydrate quality, as measured by the Carbohydrate Quality Index (CQI), and the risk of delivering a large-for-gestational-age (LGA) infant in a Mediterranean pregnant cohort of northern Greece. Methods: We analyzed singleton pregnancies from [...] Read more.
Background/Objectives: To assess the association between early pregnancy carbohydrate quality, as measured by the Carbohydrate Quality Index (CQI), and the risk of delivering a large-for-gestational-age (LGA) infant in a Mediterranean pregnant cohort of northern Greece. Methods: We analyzed singleton pregnancies from the BORN 2020 prospective cohort in Greece. Dietary intake was assessed via a validated food frequency questionnaire, and CQI was computed from glycemic index, fiber density, whole-to-refined grain ratio, and solid-to-liquid carbohydrate ratio. Multivariable logistic regression was used to estimate the association between CQI (in tertiles) and LGA risk, defined as birthweight >90th percentile. Results: Among the 797 participants, 152 (19.1%) delivered LGA infants, and 117 (14.7%) were diagnosed with GDM. Of those with GDM, 23 (19.7%) delivered LGA infants. In the total population, higher maternal weight (p < 0.001), height (p = 0.006), and pre-pregnancy BMI (p = 0.004) were significantly associated with LGA. A greater proportion of women with LGA had a BMI > 25 (p = 0.007). In the GDM subgroup, maternal height remained significantly higher in those who delivered LGA infants (p = 0.017). In multivariable models, moderate CQI was consistently associated with increased odds of LGA across all models (Model 1: aOR = 1.60 (95% CI: 1.03–2.50), p = 0.037, Model 2: aOR = 1.57 (95% CI: 1.01–2.46), p = 0.046, Model 3: aOR = 1.58 (95% CI: 1.01–2.47), p = 0.044, Model 4 aOR: 1.70; 95% CI: 1.08–2.72; p = 0.023), whereas high CQI was not. In the GDM subgroup, a significant association between high CQI and increased LGA risk was observed in less adjusted models (Model 1 aOR: 6.74; 95% CI: 1.32–56.66; p = 0.039, Model 2 aOR: 6.64; 95% CI: 1.27–57.48; p = 0.044), but this was attenuated and became non-significant in the fully adjusted model (aOR: 3.05; 95% CI: 0.47–30.22; p = 0.28). When examining CQI components individually, no consistent associations were observed. Notably, a higher intake of low-quality carbohydrates (≥50% of energy intake) was significantly associated with increased LGA risk in the total population (aOR: 4.25; 95% CI: 1.53–11.67; p = 0.005). Conclusions: Higher early pregnancy intake of low-quality carbohydrates was associated with an elevated risk of LGA in the general population. However, CQI itself showed a non-linear and inconsistent relationship with LGA, with moderate, but not high, CQI linked to increased risk, particularly in GDM pregnancies, where associations were lost after adjustment. Both carbohydrate quality and quantity evaluations are essential, particularly in high-risk groups, to inform dietary guidance in pregnancy. Full article
(This article belongs to the Special Issue Recent Advances in Maternal and Fetal Health (2nd Edition))
Show Figures

Figure 1

18 pages, 2807 KiB  
Article
The Nonlinear Vibration Response of Umbrella-Shaped Membrane Structure Under Heavy Rainfall Loads
by Zhongwei Luo, Zhoulian Zheng, Rui Yang and Peng Zhang
Buildings 2025, 15(14), 2529; https://doi.org/10.3390/buildings15142529 - 18 Jul 2025
Viewed by 157
Abstract
This paper investigates the vibration characteristics of tensioned umbrella-shaped membrane structures with complex curvature under heavy rainfall. To solve the geometrical problem of the complex curvature of a membrane surface, we set the rule of segmentation and simplify the shape by dividing it [...] Read more.
This paper investigates the vibration characteristics of tensioned umbrella-shaped membrane structures with complex curvature under heavy rainfall. To solve the geometrical problem of the complex curvature of a membrane surface, we set the rule of segmentation and simplify the shape by dividing it into multi-segment conical membranes. The generatrix becomes a polyline with a constant surface curvature in each segment, simplifying calculations. The equivalent uniform load of different rainfall intensity is determined by the theory of the stochastic process. The governing equations of the isotropic damped nonlinear forced vibration of membranes are established by using the theory of large deflection by von Karman and the principle of d’Alembert. The equations of the forced vibration of the membrane are solved by using Galerkin’s method and the small-parameter perturbation method, and the displacement function, vibration frequency, and acceleration of the membrane are obtained. At last, the influence of the height–span ratio, number of segments, pretension and load on membrane displacement, vibration frequency, and acceleration of the membrane surface are analyzed. Based on the above data, the general law of deformation of the umbrella-shaped membrane under heavy rainfall is obtained. Data and methods are provided for the design and construction of the membrane structure as a reference. Moreover, we propose methods to enhance calculation accuracy and streamline the computational process. Full article
Show Figures

Figure 1

15 pages, 2098 KiB  
Article
Experimental Testing of Amplified Inertia Response from Synchronous Machines Compared with Frequency Derivative-Based Synthetic Inertia
by Martin Fregelius, Vinicius M. de Albuquerque, Per Norrlund and Urban Lundin
Energies 2025, 18(14), 3776; https://doi.org/10.3390/en18143776 - 16 Jul 2025
Viewed by 193
Abstract
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This [...] Read more.
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This inertia emulation approach is contrasted by what is called synthetic inertia, which uses a frequency-locked loop in order to extract the grid frequency. The synthetic inertia faces the usual input signal filtering challenges if the signal-to-noise ratio is low. The amplified inertia controller avoids the input filtering since it only amplifies the natural inertial response from a synchronous machine. However, rotor angle oscillations lead to filtering requirements of the amplified version as well, but on the output signal of the controller. Experimental comparisons are conducted both on the measurement output from the physical experiments in a microgrid and on analysis based on input from on-site measurements from a 55 MVA hydropower generator connected to the Nordic grid. In the specific cases compared, we observe that the amplified inertia version is the better method for smaller power systems, with large frequency fluctuations. On the other hand, the synthetic inertia method is the better in larger power systems as compared to the amplification of the inertial response from a real production unit. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

16 pages, 3084 KiB  
Article
Generating Large Time–Bandwidth Product RF-Chirped Waveforms Using Vernier Dual-Optical Frequency Combs
by Mohammed S. Alshaykh
Photonics 2025, 12(7), 700; https://doi.org/10.3390/photonics12070700 - 11 Jul 2025
Viewed by 252
Abstract
Chirped radio-frequency signals are essential waveforms in radar systems. To enhance resolution and improve the signal-to-noise ratio through higher energy transmission, chirps with high time–bandwidth products are highly desirable. Photonic technologies, with their ability to handle broad electrical bandwidths, have been widely employed [...] Read more.
Chirped radio-frequency signals are essential waveforms in radar systems. To enhance resolution and improve the signal-to-noise ratio through higher energy transmission, chirps with high time–bandwidth products are highly desirable. Photonic technologies, with their ability to handle broad electrical bandwidths, have been widely employed in the generation, filtering, processing, and detection of broadband electrical waveforms. In this work, we propose a photonics-based large-TBWP RF chirp generator utilizing dual optical frequency combs with a small difference in the repetition rate. By employing dispersion modules for frequency-to-time mapping, we convert the spectral interferometric patterns into a temporal RF sinusoidal carrier signal whose frequency is swept through the optical shot-to-shot delay. We derive analytical expressions to quantify the system’s performance under various design parameters, including the comb repetition rate and its offset, the second-order dispersion, the transform-limited optical pulse width, and the photodetector’s bandwidth limitations. We benchmark the expected system performance in terms of RF bandwidth, chirp duration, chirp rate, frequency step size, and TBWP. Using realistic dual-comb source parameters, we demonstrate the feasibility of generating RF chirps with a duration of 284.44 μs and a bandwidth of 234.05 GHz, corresponding to a TBWP of 3.3×107. Full article
Show Figures

Figure 1

18 pages, 2260 KiB  
Article
Study of Detection of Typical Pesticides in Paddy Water Based on Dielectric Properties
by Shuanggen Huang, Mei Yang, Junshi Huang, Longwei Shang, Qi Chen, Fang Peng, Muhua Liu, Yan Wu and Jinhui Zhao
Agronomy 2025, 15(7), 1666; https://doi.org/10.3390/agronomy15071666 - 9 Jul 2025
Viewed by 252
Abstract
Due to the dramatic increase in pesticide usage and improper application, large amounts of unused pesticides enter the environment through paddy water, causing severe pesticide pollution. To find a rapid method for identifying pesticide types and predicting their concentrations, the dielectric properties frequency [...] Read more.
Due to the dramatic increase in pesticide usage and improper application, large amounts of unused pesticides enter the environment through paddy water, causing severe pesticide pollution. To find a rapid method for identifying pesticide types and predicting their concentrations, the dielectric properties frequency response of pesticides was analyzed in paddy water. A rapid detection method for typical pesticides such as chlorpyrifos, isoprothiolane, imidacloprid and carbendazim was studied based on their dielectric properties. In this paper, amplitude and phase frequency response data for blank paddy water samples and 15 types of paddy water samples containing pesticides were collected at 10 different temperatures. Principal component analysis (PCA) and competitive adaptive reweighted sampling (CARS) were used to extract characteristic frequencies. A species identification model based on support vector machine (SVM) for rapid detection of pesticides in paddy water was established using amplitude and phase frequency response data separately. Frequency response data of 431 sets from nine types of paddy water samples were divided into training and prediction sets in a 3:1 ratio, and a content prediction model based on artificial neural networks (ANN) with multiple inputs and single output was established using amplitude and phase frequency response data after CARS feature extraction. The experimental results show that both PCA-SVM and CARS-SVM species identification models established using amplitude and phase frequency response data have excellent identification effects, reaching over 90%. The PCA-SVM model based on phase frequency response data has the best identification effect for typical pesticides in paddy water with a prediction recognition accuracy range of 97.5–100%. The ANN content prediction model established using phase frequency response data performs well, and the highest R2 prediction values of chlorpyrifos, isoprothiolane, imidacloprid and carbendazim in paddy water were 0.8249, 0.8639, 0.9113 and 0.8368 respectively. The research established a dielectric property detection method for the identification and content prediction of typical pesticides in paddy water, providing a theoretical basis for the hardware design of capacitive sensors based on dielectric property and the detection of pesticide residues in paddy water. This provides a new method and approach for pesticide residue detection, which is of great significance for scientific pesticide application and sustainable agricultural development. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 3471 KiB  
Systematic Review
Do Pain and Autonomic Regulation Share a Common Central Compensatory Pathway? A Meta-Analysis of HRV Metrics in Pain Trials
by Marianna Daibes, Bassel Almarie, Maria Fernanda Andrade, Giovanna de Paula Vidigal, Nadine Aranis, Anna Gianlorenco, Carlos Bandeira de Mello Monteiro, Prateek Grover, David Sparrow and Felipe Fregni
NeuroSci 2025, 6(3), 62; https://doi.org/10.3390/neurosci6030062 - 5 Jul 2025
Viewed by 504
Abstract
Background: Chronic pain is closely associated with dysregulation of the autonomic nervous system, often reflected by reduced heart rate variability (HRV). While observational studies have demonstrated this association, the extent to which pain interventions modulate HRV and the impact of individual factors on [...] Read more.
Background: Chronic pain is closely associated with dysregulation of the autonomic nervous system, often reflected by reduced heart rate variability (HRV). While observational studies have demonstrated this association, the extent to which pain interventions modulate HRV and the impact of individual factors on HRV changes remain unclear. Objective: To evaluate the impact of pain interventions on HRV parameters through meta-analysis of randomized controlled trials (RCTs), and to examine whether intervention type and individual factors such as body mass index (BMI) moderate HRV responses. Methods: We conducted a systematic review of 23 RCTs and a meta-analysis of 21 RCTs (1262 subjects) involving patients with acute and chronic pain. HRV outcomes were extracted pre- and post-intervention. Both between-group (active vs. sham/control) and one-group (pre-post within active group) analyses were performed for time-domain indices—standard deviation of normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD), and percentage of successive normal-to-normal intervals > 50 ms (pNN50)—and frequency-domain indices—high-frequency (HF) and low-frequency (LF) components. Meta-regressions tested moderators including BMI, age, and pain phenotype. The protocol was registered in PROSPERO (CRD42023448264). Results: Twenty-three RCTs involving 1262 participants with a wide range of pain conditions were included. Meta-analysis of time-domain HRV parameters showed a trend toward improvement: SDNN (g = 0.435, p = 0.059) approached significance, while RMSSD (g = 0.361, p = 0.099) and pNN50 (g = 0.222, p = 0.548) showed smaller, non-significant effects. Frequency-domain analysis revealed a significant moderate reduction in the LF/HF ratio (g = −0.378, p = 0.003), suggesting a shift toward parasympathetic dominance. HF and LF showed small, non-significant changes. One-group meta-analysis confirmed significant improvements in vagally mediated HRV, with large effects for RMSSD (g = 1.084, p < 0.001) and HF (g = 0.622, p < 0.001), and a moderate effect for SDNN (g = 0.455, p = 0.004). Meta-regression identified BMI as a significant moderator: higher BMI was associated with attenuated improvements in HF and RMSSD and a slight shift toward sympathetic predominance. Conclusions: Pain interventions can significantly modulate autonomic function, as reflected in HRV improvements, particularly in vagally mediated indices. These effects are influenced by patient characteristics such as BMI. HRV may serve as a valuable biomarker for both treatment efficacy and autonomic recovery in pain management. In this context, HRV highlights its role as a biomarker for pain dysregulation and compensatory failure, reflecting shared top-down modulation between nociception and autonomic regulation. Full article
Show Figures

Figure 1

16 pages, 2351 KiB  
Article
Associations Between Dietary Amino Acid Intake and Elevated High-Sensitivity C-Reactive Protein in Children: Insights from a Cross-Sectional Machine Learning Study
by Lianlong Yu, Xiaodong Zheng, Jilan Li, Changqing Liu, Yiya Liu, Meina Tian, Qianrang Zhu, Zhenchuang Tang and Maoyu Wu
Nutrients 2025, 17(13), 2235; https://doi.org/10.3390/nu17132235 - 5 Jul 2025
Viewed by 535
Abstract
Background High-sensitivity C-reactive protein (hs-CRP) is a protein that indicates inflammation and the risk of cardiovascular diseases. The intake of dietary amino acids can influence immune and inflammatory reactions. However, studies on the relationship between dietary amino acids and hs-CRP, especially in children, [...] Read more.
Background High-sensitivity C-reactive protein (hs-CRP) is a protein that indicates inflammation and the risk of cardiovascular diseases. The intake of dietary amino acids can influence immune and inflammatory reactions. However, studies on the relationship between dietary amino acids and hs-CRP, especially in children, remain scarce. Methods This cross-sectional study analyzed data from the Nutrition and China Children and Lactating Women Nutrition and Health Survey (2016–2019), focusing on 3514 children (724 with elevated hs-CRP ≥ 3 mg/L and 2790 with normal levels). Dietary information was gathered via a food frequency questionnaire, and hs-CRP levels were obtained from blood samples. Boruta algorithm and propensity scores were used to select and match dietary factors and sample sizes. Machine learning (ML) algorithms and logistic regression models assessed the link between amino acid intake and elevated hs-CRP risk, adjusting for age, sex, BMI, and lifestyle factors. Results The odds ratios (ORs) for elevated hs-CRP were significant for several amino acids, including Ile, Leu, Lys, Ser, Cys, Tyr, His, Pro, SAA, and AAA, with values ranging from 1.10 to 2.07. The LightGBM algorithm was the most effective in predicting elevated hs-CRP risk, achieving an AUC of 0.927. Tyrosine, methionine, cysteine, and proline were identified as important features by SHAP analysis and logistic regression. The intake of Ser, Cys, Tyr, and Pro showed a linear increase in the risk of elevated hs-CRP, especially in individuals with low protein intake and normal weight (p < 0.1). Conclusions Intake of amino acids like Ser, Cys, Tyr, and Pro significantly impacts hs-CRP levels in children, indicating that regulating these could help prevent inflammation-related diseases. This study supports future dietary and health management strategies. This is first large-scale ML study linking amino acids to pediatric inflammation in China. The main limitations are the cross-section design and the use of self-reported dietary data. Full article
Show Figures

Figure 1

11 pages, 2536 KiB  
Article
Electrical Performance of ZTO Thin-Film Transistors and Inverters
by Jieyang Wang, Liang Guo, Xuefeng Chu, Fan Yang, Hansong Gao, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2025, 16(7), 751; https://doi.org/10.3390/mi16070751 - 25 Jun 2025
Viewed by 326
Abstract
In this study, zinc–tin oxide (ZTO) thin films were prepared via radio-frequency magnetron sputtering to examine the influence of annealing temperature on the performance of thin-film transistors (TFTs) and their resistive-load inverters. The findings reveal that annealing modulates the concentration and spatial distribution [...] Read more.
In this study, zinc–tin oxide (ZTO) thin films were prepared via radio-frequency magnetron sputtering to examine the influence of annealing temperature on the performance of thin-film transistors (TFTs) and their resistive-load inverters. The findings reveal that annealing modulates the concentration and spatial distribution of oxygen vacancies (VO), which directly affect carrier density and interface trap density, ultimately determining the electrical behavior of inverters. At the optimal annealing temperature of 600 °C, the VO concentration was effectively moderated, resulting in a TFT with a mobility of 12.39 cm2 V−1 s−1, a threshold voltage of 6.13 V, an on/off current ratio of 1.09 × 108, and a voltage gain of 11.77 in the corresponding inverter. However, when the VO concentration deviated from this optimal range, whether in excess or deficiency, the gain was reduced and power consumption increased. This VO engineering strategy enables the simultaneous optimization of both TFT and inverter performance without relying on rare elements, offering a promising pathway toward the development of low-cost, large-area, flexible, and transparent electronic devices. Full article
Show Figures

Figure 1

18 pages, 1987 KiB  
Article
AI-HOPE-TGFbeta: A Conversational AI Agent for Integrative Clinical and Genomic Analysis of TGF-β Pathway Alterations in Colorectal Cancer to Advance Precision Medicine
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
AI 2025, 6(7), 137; https://doi.org/10.3390/ai6070137 - 24 Jun 2025
Cited by 2 | Viewed by 644
Abstract
Introduction: Early-onset colorectal cancer (EOCRC) is rising rapidly, particularly among the Hispanic/Latino (H/L) populations, who face disproportionately poor outcomes. The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in colorectal cancer (CRC) progression by mediating epithelial-to-mesenchymal transition (EMT), immune evasion, and [...] Read more.
Introduction: Early-onset colorectal cancer (EOCRC) is rising rapidly, particularly among the Hispanic/Latino (H/L) populations, who face disproportionately poor outcomes. The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in colorectal cancer (CRC) progression by mediating epithelial-to-mesenchymal transition (EMT), immune evasion, and metastasis. However, integrative analyses linking TGF-β alterations to clinical features remain limited—particularly for diverse populations—hindering translational research and the development of precision therapies. To address this gap, we developed AI-HOPE-TGFbeta (Artificial Intelligence agent for High-Optimization and Precision Medicine focused on TGF-β), the first conversational artificial intelligence (AI) agent designed to explore TGF-β dysregulation in CRC by integrating harmonized clinical and genomic data via natural language queries. Methods: AI-HOPE-TGFbeta utilizes a large language model (LLM), Large Language Model Meta AI 3 (LLaMA 3), a natural language-to-code interpreter, and a bioinformatics backend to automate statistical workflows. Tailored for TGF-β pathway analysis, the platform enables real-time cohort stratification and hypothesis testing using harmonized datasets from the cBio Cancer Genomics Portal (cBioPortal). It supports mutation frequency comparisons, odds ratio testing, Kaplan–Meier survival analysis, and subgroup evaluations across race/ethnicity, microsatellite instability (MSI) status, tumor stage, treatment exposure, and age. The platform was validated by replicating findings on the SMAD4, TGFBR2, and BMPR1A mutations in EOCRC. Exploratory queries were conducted to examine novel associations with clinical outcomes in H/L populations. Results: AI-HOPE-TGFbeta successfully recapitulated established associations, including worse survival in SMAD4-mutant EOCRC patients treated with FOLFOX (fluorouracil, leucovorin and oxaliplatin) (p = 0.0001) and better outcomes in early-stage TGFBR2-mutated CRC patients (p = 0.00001). It revealed potential population-specific enrichment of BMPR1A mutations in H/L patients (OR = 2.63; p = 0.052) and uncovered MSI-specific survival benefits among SMAD4-mutated patients (p = 0.00001). Exploratory analysis showed better outcomes in SMAD2-mutant primary tumors vs. metastatic cases (p = 0.0010) and confirmed the feasibility of disaggregated ethnicity-based queries for TGFBR1 mutations, despite small sample sizes. These findings underscore the platform’s capacity to detect both known and emerging clinical–genomic patterns in CRC. Conclusions: AI-HOPE-TGFbeta introduces a new paradigm in cancer bioinformatics by enabling natural language-driven, real-time integration of genomic and clinical data specific to TGF-β pathway alterations in CRC. The platform democratizes complex analyses, supports disparity-focused investigation, and reveals clinically actionable insights in underserved populations, such as H/L EOCRC patients. As a first-of-its-kind system studying TGF-β, AI-HOPE-TGFbeta holds strong promise for advancing equitable precision oncology and accelerating translational discovery in the CRC TGF-β pathway. Full article
(This article belongs to the Section Medical & Healthcare AI)
Show Figures

Figure 1

Back to TopTop