Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (431)

Search Parameters:
Keywords = landscape ecological risks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

17 pages, 12216 KiB  
Article
Green/Blue Initiatives as a Proposed Intermediate Step to Achieve Nature-Based Solutions for Wildfire Risk Management
by Stella Schroeder and Carolina Ojeda Leal
Fire 2025, 8(8), 307; https://doi.org/10.3390/fire8080307 - 5 Aug 2025
Viewed by 154
Abstract
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To [...] Read more.
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To address these challenges, this exploratory study proposes a new concept: green/blue initiatives. These initiatives represent intermediate steps, encompassing small-scale, community-driven activities that can evolve into recognized NbSs over time. To explore this concept, experiences related to wildfire prevention in the Biobío region of Chile were analyzed through primary and secondary source reviews. The analysis identified three initiatives qualifying as green/blue initiatives: (1) goat grazing in Santa Juana to reduce fuel loads, (2) a restoration prevention farm model in Florida called Faro de Restauración Mahuidanche and (3) the Conservation Landscape Strategy in Nonguén. They were examined in detail using data collected from site visits and interviews. In contrast to Chile’s prevailing wildfire policies, which focus on costly, large-scale fire suppression efforts, these initiatives emphasize the importance of reframing wildfire as a manageable ecological process. Lastly, the challenges and enabling factors for adopting green/blue initiatives are discussed, highlighting their potential to pave the way for future NbS implementation in central Chile. Full article
(This article belongs to the Special Issue Nature-Based Solutions to Extreme Wildfires)
Show Figures

Figure 1

24 pages, 10417 KiB  
Article
Landscape Ecological Risk Assessment of Peri-Urban Villages in the Yangtze River Delta Based on Ecosystem Service Values
by Yao Xiong, Yueling Li and Yunfeng Yang
Sustainability 2025, 17(15), 7014; https://doi.org/10.3390/su17157014 - 1 Aug 2025
Viewed by 219
Abstract
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies [...] Read more.
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies is therefore imperative. Using rural areas of Jiangning District, Nanjing as a case study, this research proposes an optimized dual-dimensional coupling assessment framework that integrates ecosystem service value (ESV) and ecological risk probability. The spatiotemporal evolution of LER in 2000, 2010, and 2020 and its key driving factors were further studied by using spatial autocorrelation analysis and geodetector methods. The results show the following: (1) From 2000 to 2020, cultivated land remained dominant, but its proportion decreased by 10.87%, while construction land increased by 26.52%, with minimal changes in other land use types. (2) The total ESV increased by CNY 1.67 × 109, with regulating services accounting for over 82%, among which water bodies contributed the most. (3) LER showed an overall increasing trend, with medium- to highest-risk areas expanding by 55.37%, lowest-risk areas increasing by 10.10%, and lower-risk areas decreasing by 65.48%. (4) Key driving factors include landscape vulnerability, vegetation coverage, and ecological land connectivity, with the influence of distance to road becoming increasingly significant. This study reveals the spatiotemporal evolution characteristics of LER in typical peri-urban villages. Based on the LERA results, combined with terrain features and ecological pressure intensity, the study area was divided into three ecological management zones: ecological conservation, ecological restoration, and ecological enhancement. Corresponding zoning strategies were proposed to guide rural ecological governance and support regional sustainable development. Full article
Show Figures

Figure 1

22 pages, 1013 KiB  
Review
Genomic Alterations and Microbiota Crosstalk in Hepatic Cancers: The Gut–Liver Axis in Tumorigenesis and Therapy
by Yuanji Fu, Jenny Bonifacio-Mundaca, Christophe Desterke, Íñigo Casafont and Jorge Mata-Garrido
Genes 2025, 16(8), 920; https://doi.org/10.3390/genes16080920 - 30 Jul 2025
Viewed by 246
Abstract
Background/Objectives: Hepatic cancers, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are major global health concerns due to rising incidence and limited therapeutic success. While traditional risk factors include chronic liver disease and environmental exposures, recent evidence underscores the significance of genetic alterations and [...] Read more.
Background/Objectives: Hepatic cancers, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are major global health concerns due to rising incidence and limited therapeutic success. While traditional risk factors include chronic liver disease and environmental exposures, recent evidence underscores the significance of genetic alterations and gut microbiota in liver cancer development and progression. This review aims to integrate emerging knowledge on the interplay between host genomic changes and gut microbial dynamics in the pathogenesis and treatment of hepatic cancers. Methods: We conducted a comprehensive review of current literature on genetic and epigenetic drivers of HCC and CCA, focusing on commonly mutated genes such as TP53, CTNNB1, TERT, IDH1/2, and FGFR2. In parallel, we evaluated studies addressing the gut–liver axis, including the roles of dysbiosis, microbial metabolites, and immune modulation. Key clinical and preclinical findings were synthesized to explore how host–microbe interactions influence tumorigenesis and therapeutic response. Results: HCC and CCA exhibit distinct but overlapping genomic landscapes marked by recurrent mutations and epigenetic reprogramming. Alterations in the gut microbiota contribute to hepatic inflammation, genomic instability, and immune evasion, potentially enhancing oncogenic signaling pathways. Furthermore, microbiota composition appears to affect responses to immune checkpoint inhibitors. Emerging therapeutic strategies such as probiotics, fecal microbiota transplantation, and precision oncology based on mutational profiling demonstrate potential for personalized interventions. Conclusions: The integration of host genomics with microbial ecology provides a promising paradigm for advancing diagnostics and therapies in liver cancer. Targeting the gut–liver axis may complement genome-informed strategies to improve outcomes for patients with HCC and CCA. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics and Genomics)
Show Figures

Figure 1

28 pages, 6962 KiB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Viewed by 482
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

20 pages, 7143 KiB  
Article
Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China
by Lang Huang, Weihao Yao, Xu Xiao, Yang Zhang, Rui Chen, Yanbing Yang and Zhi Li
Plants 2025, 14(15), 2268; https://doi.org/10.3390/plants14152268 - 23 Jul 2025
Viewed by 278
Abstract
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current [...] Read more.
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current distribution and the key environmental factors influencing its habitat suitability remains limited. In this study, we employed the MaxEnt model, integrated with geographic information systems (ArcGIS), to predict the potential distribution of Syndiclis under current and future climate scenarios, identify dominant bioclimatic drivers, and assess temporal and spatial shifts in habitat patterns. We also analyzed spatial displacement of habitat centroids to explore potential migration pathways. The model demonstrated excellent performance (AUC = 0.988), with current suitable habitats primarily located in Hainan, Taiwan, Southeastern Yunnan, and along the Yunnan–Guangxi border. Temperature seasonality (bio7) emerged as the most important predictor (67.00%), followed by precipitation of the driest quarter (bio17, 14.90%), while soil factors played a relatively minor role. Under future climate projections, Hainan and Taiwan are expected to serve as stable climatic refugia, whereas the overall suitable habitat area is projected to decline significantly. Combined with topographic constraints, population decline, and limited dispersal ability, these changes elevate the risk of extinction for Syndiclis in the wild. Landscape pattern analysis revealed increased habitat fragmentation under warming conditions, with only 4.08% of suitable areas currently under effective protection. We recommend prioritizing conservation efforts in regions with habitat contraction (e.g., Guangxi and Yunnan) and stable refugia (e.g., Hainan and Taiwan). Conservation strategies should integrate targeted in situ and ex situ actions, guided by dominant environmental variables and projected migration routes, to ensure the long-term persistence of Syndiclis populations and support evidence-based conservation planning. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

20 pages, 4598 KiB  
Article
Risk Evaluation of Agricultural Non-Point Source Pollution in Typical Hilly and Mountainous Areas: A Case Study of Yongchuan District, Chongqing City, China
by Yanrong Lu, Guoying Dong, Rongjin Yang, Meiying Sun, Le Zhang, Yuying Zhang, Yitong Yin and Xiuhong Li
Remote Sens. 2025, 17(14), 2525; https://doi.org/10.3390/rs17142525 - 20 Jul 2025
Viewed by 314
Abstract
While significant progress has been made in controlling point source pollution, agricultural non-point source pollution (AGNPSP) has emerged as a major contributor to global water pollution, posing a severe threat to ecological quality. According to China’s Second National Pollution Source Census, AGNPSP constitutes [...] Read more.
While significant progress has been made in controlling point source pollution, agricultural non-point source pollution (AGNPSP) has emerged as a major contributor to global water pollution, posing a severe threat to ecological quality. According to China’s Second National Pollution Source Census, AGNPSP constitutes a substantial proportion of water pollution, making its mitigation a critical challenge. Identifying AGNPSP risk zones is essential for targeted management and effective intervention. This study focuses on Yongchuan District, a representative hilly–mountainous area in the Yangtze River Basin. Applying the landscape ecology “source–sink” theory, we selected seven natural factors influencing AGNPSP and constructed a minimum cumulative resistance model using remote sensing post-processing data. An attempt was made to classify the “source” and “sink” landscapes, and ultimately conduct a risk assessment of AGNPSP in Yongchuan District, identifying the key areas for AGNPSP control. Key findings include: 1. Vegetation coverage is the most significant natural factor affecting AGNPSP. 2. Extremely high- and high-risk zones cover 90% of Yongchuan, primarily concentrated in the central and southern regions, indicating severe AGNPSP pressure that demands urgent management. 3. The levels of ammonia nitrogen and total phosphorus in the typical sections are related to the risk levels of the corresponding sections. Consequently, the risk level of AGNPSP directly correlates with the pollutant concentrations measured in the sections. This study provides a robust scientific basis for AGNPSP risk assessment and targeted control strategies, offering valuable insights for pollution management in Yongchuan and similar regions. Full article
Show Figures

Figure 1

15 pages, 1238 KiB  
Article
Assessment of Environmental Dynamics and Ecosystem Services of Guadua amplexifolia J. Presl in San Jorge River Basin, Colombia
by Yiniva Camargo-Caicedo, Jorge Augusto Montoya Arango and Fredy Tovar-Bernal
Resources 2025, 14(7), 115; https://doi.org/10.3390/resources14070115 - 18 Jul 2025
Viewed by 383
Abstract
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services [...] Read more.
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services remain poorly understood. This study (1) quantifies spatial and temporal land use/cover changes in the municipality of Montelíbano between 2002 and 2022 and (2) evaluates the ecosystem services that local communities derive from in 2002, 2012, and 2022, and they were classified in QGIS using G. amplexifolia. We applied a supervised classification of Landsat imagery (2002, 2012, 2022) in QGIS, achieving 85% overall accuracy and a Cohen’s Kappa of 0.82 (n = 45 reference points). For the social assessment, we held participatory workshops and conducted semi-structured interviews with artisans, fishers, authorities, and NGO representatives; responses were manually coded to extract key themes. The results show a 12% decline in total vegetated area from 2002 to 2012, followed by an 8% recovery by 2022, with bamboo-dominated stands following a similar pattern. Communities identified raw material provision (87% of mentions), climate regulation (82%), and cultural–recreational benefits (58%) as the most important services provided by G. amplexifolia. This is the first integrated assessment of G. amplexifolia’s landscape dynamics and community-valued services in the San Jorge basin, highlighting its dual function as a renewable resource and a natural safeguard against environmental risks. Our findings offer targeted recommendations for management practices and land use policies to support the species’ conservation and sustainable utilization. Full article
Show Figures

Figure 1

33 pages, 11613 KiB  
Article
Assessing and Mapping Forest Fire Vulnerability in Romania Using Maximum Entropy and eXtreme Gradient Boosting
by Adrian Lorenț, Marius Petrila, Bogdan Apostol, Florin Capalb, Șerban Chivulescu, Cătălin Șamșodan, Cristiana Marcu and Ovidiu Badea
Forests 2025, 16(7), 1156; https://doi.org/10.3390/f16071156 - 13 Jul 2025
Viewed by 606
Abstract
Understanding and mapping forest fire vulnerability is essential for informed landscape management and disaster risk reduction, especially in the context of increasing anthropogenic and climatic pressures. This study aims to model and spatially predict forest fire vulnerability across Romania using two machine learning [...] Read more.
Understanding and mapping forest fire vulnerability is essential for informed landscape management and disaster risk reduction, especially in the context of increasing anthropogenic and climatic pressures. This study aims to model and spatially predict forest fire vulnerability across Romania using two machine learning algorithms: MaxEnt and XGBoost. We integrated forest fire occurrence data from 2006 to 2024 with a suite of climatic, topographic, ecological, and anthropogenic predictors at a 250 m spatial resolution. MaxEnt, based on presence-only data, achieved moderate predictive performance (AUC = 0.758), while XGBoost, trained on presence–absence data, delivered higher classification accuracy (AUC = 0.988). Both models revealed that the impact of environmental variables on forest fire occurrence is complex and heterogeneous, with the most influential predictors being the Fire Weather Index, forest fuel type, elevation, and distance to human proximity features. The resulting vulnerability and uncertainty maps revealed hotspots in Sub-Carpathian and lowland regions, especially in Mehedinți, Gorj, Dolj, and Olt counties. These patterns reflect historical fire data and highlight the role of transitional agro-forested landscapes. This study delivers a replicable, data-driven approach to wildfire risk modelling, supporting proactive management and emphasising the importance of integrating vulnerability assessments into planning and climate adaptation strategies. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

24 pages, 5886 KiB  
Article
GIS-Driven Multi-Criteria Assessment of Rural Settlement Patterns and Attributes in Rwanda’s Western Highlands (Central Africa)
by Athanase Niyogakiza and Qibo Liu
Sustainability 2025, 17(14), 6406; https://doi.org/10.3390/su17146406 - 13 Jul 2025
Viewed by 480
Abstract
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, [...] Read more.
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, a Digital Elevation Model (DEM), and comprehensive geospatial datasets to analyze settlement distribution, using Thiessen polygons for influence zones and Kernel Density Estimation (KDE) for spatial clustering. The Analytic Hierarchy Process (AHP) was integrated with the GeoDetector model to objectively weight criteria and analyze settlement pattern drivers, using population density as a proxy for human pressure. The analysis revealed significant spatial heterogeneity in settlement distribution, with both clustered and dispersed forms exhibiting distinct exposure levels to environmental hazards. Natural factors, particularly slope gradient and proximity to rivers, emerged as dominant determinants. Furthermore, significant synergistic interactions were observed between environmental attributes and infrastructure accessibility (roads and urban centers), collectively shaping settlement resilience. This integrative geospatial approach enhances understanding of complex rural settlement dynamics in ecologically sensitive mountainous regions. The empirically grounded insights offer a robust decision-support framework for climate adaptation and disaster risk reduction, contributing to more resilient rural planning strategies in Rwanda and similar Central African highland regions. Full article
Show Figures

Figure 1

28 pages, 3641 KiB  
Article
Identifying Priority Bird Habitats Through Seasonal Dynamics: An Integrated Habitat Suitability–Risk–Quality Framework
by Junqing Wei, Yasi Tian, Chun Li, Yan Zhang, Hongzhou Yuan and Yanfang Liu
Sustainability 2025, 17(13), 6078; https://doi.org/10.3390/su17136078 - 2 Jul 2025
Viewed by 581
Abstract
A key challenge is how to effectively conserve habitats and biodiversity amid widespread habitat fragmentation and loss caused by global urbanization. Despite growing attention to this issue, knowledge of the seasonal dynamics of habitats remains limited, and conservation gaps are still inadequately identified. [...] Read more.
A key challenge is how to effectively conserve habitats and biodiversity amid widespread habitat fragmentation and loss caused by global urbanization. Despite growing attention to this issue, knowledge of the seasonal dynamics of habitats remains limited, and conservation gaps are still inadequately identified. This study proposes a novel integrated framework, “Habitat Suitability–Risk–Quality”, to improve the assessment of the seasonal bird habitat quality and to identify priority conservation habitats in urban landscapes. The framework was implemented in Wuhan, China, a critical stopover site along the East Asian–Australasian Flyway. It combines the Maximum Entropy (MaxEnt) model to predict the seasonal habitat suitability, the Habitat Risk Assessment (HRA) model to quantify habitat sensitivity to multiple anthropogenic threats, and a refined Habitat Quality (HQ) model to evaluate the seasonal habitat quality. K-means clustering was then applied to group habitats based on seasonal quality dynamics, enabling the identification of priority areas and the development of differentiated conservation strategies. The results show significant seasonal variation in habitat suitability and quality. Wetlands provided the highest-quality habitats in autumn and winter, grasslands exhibited moderate seasonal quality, and forests showed the least seasonal fluctuation. The spatial analysis revealed that high-quality wetland habitats form an ecological belt along the urban–suburban fringe. Four habitat clusters with distinct seasonal characteristics were then identified. However, spatial mismatches were found between existing protected areas and habitats of high ecological value. Notably, Cluster 1 maintained high habitat quality year round, spanning 99.38 km2, yet only 46.51% of its area is currently protected. The remaining 53.16 km2, mostly situated in urban–suburban transitional zones, remain unprotected. This study provides valuable insights for identifying priority habitats and developing season-specific conservation strategies in rapidly urbanizing regions, thereby supporting the sustainable management of urban biodiversity and the development of resilient ecological systems. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

17 pages, 2182 KiB  
Article
Wildlife-Vehicle Collisions as a Threat to Vertebrate Conservation in a Southeastern Mexico Road Network
by Diana L. Buitrago-Torres, Gilberto Pozo-Montuy, Brandon Brand Buitrago-Marulanda, José Roberto Frías-Aguilar and Mauricio Antonio Mayo Merodio
Wild 2025, 2(3), 24; https://doi.org/10.3390/wild2030024 - 30 Jun 2025
Viewed by 1362
Abstract
Wildlife-vehicle collisions (WVCs) threaten biodiversity, particularly in the Gulf of Mexico, where road expansion increases habitat fragmentation. This research analyzes WVC patterns in southeastern Mexico, estimating collision rates across road types and assessing environmental factors influencing roadkill frequency. Field monitoring in 2016 and [...] Read more.
Wildlife-vehicle collisions (WVCs) threaten biodiversity, particularly in the Gulf of Mexico, where road expansion increases habitat fragmentation. This research analyzes WVC patterns in southeastern Mexico, estimating collision rates across road types and assessing environmental factors influencing roadkill frequency. Field monitoring in 2016 and 2023 recorded vertebrate roadkills along roads in Campeche, Chiapas, and Tabasco. Principal Component Analysis (PCA) and Generalized Additive Models (GAM) evaluated landscape influences on WVC occurrences. A total of 354 roadkill incidents involving 73 species of vertebrates were recorded, with mammals accounting for the highest mortality rate. Hotspots were identified along Federal Highway 259 and State Highways Balancán, Frontera-Jonuta, and Salto de Agua. Road type showed no significant effect. Land cover influenced WVCs, with cultivated forests, grasslands, and savannas showing the highest incidences. PCA identified temperature and elevation as key environmental drivers, while GAM suggested elevation had a weak but notable effect. These findings highlight the risks of road expansion in biodiversity-rich areas, where habitat fragmentation and increasing traffic intensify WVCs. Without targeted mitigation strategies, such as wildlife corridors, underpasses, and road signs, expanding infrastructure could further threaten wildlife populations by increasing roadkill rates and fragmenting habitats, particularly in ecologically sensitive landscapes like wetlands, forests, and coastal areas. Full article
Show Figures

Graphical abstract

21 pages, 2875 KiB  
Article
A Study on the Optimization of Ecological Spatial Structure Based on Landscape Risk Assessment: A Case Study of Wensu County, Xinjiang, China
by Qian Li, Junjie Yan, Junhui Cheng, Yan Xu, Yincheng Gong, Guangpeng Zhang, Hongbo Ling and Ruyi Pan
Land 2025, 14(7), 1323; https://doi.org/10.3390/land14071323 - 21 Jun 2025
Viewed by 453
Abstract
Ecological network construction has been widely accepted and applied to guide regional ecological conservation and restoration. For arid regions, ecological networks proposed based on ecological risk assessments are better aligned with the sensitive and fragile characteristics of local ecosystems. This study assesses landscape [...] Read more.
Ecological network construction has been widely accepted and applied to guide regional ecological conservation and restoration. For arid regions, ecological networks proposed based on ecological risk assessments are better aligned with the sensitive and fragile characteristics of local ecosystems. This study assesses landscape ecological risk in Wensu County, located on the southern slope of the Tianshan Mountains in the arid region of northwestern China, and it further proposes an optimized ecological network. A multidimensional framework composed of the natural environment, human society, and landscape patterns was employed to construct an ecological risk assessment system. Spatial principal component analysis (SPCA) was applied to identify the spatial pattern of ecological risk. Morphological spatial pattern analysis (MSPA) and a minimum cumulative resistance (MCR) model integrated with circuit theory were used to extract the ecological sources and delineate the ecological corridors. The results reveal significant spatial heterogeneity in terms of ecological risk: Low-risk zones (16.26%) are concentrated in the southwestern forest and water areas. In comparison, high-risk zones (28.27%) are mainly distributed in the northern mountainous mining region. A total of 24 ecological source patches (4105.24 km2), 44 ecological corridors (313.6 km), 39 ecological pinch points, and 38 ecological barriers were identified. Following optimization, the Integral Index of Connectivity (IIC) increased by 89.04%, and the Landscape Coherence Probability (LCP) rose by 105.23%, indicating markedly enhanced ecological connectivity. The current ecological network exhibits weak connectivity in the south and fragmentation in the central region. Targeted restoration of critical nodes, optimization of corridor configurations, and expansion of ecological sources are recommended to improve landscape connectivity and promote biodiversity conservation. Full article
Show Figures

Figure 1

17 pages, 9212 KiB  
Article
Urbanization Impacts on Wetland Ecosystems in Northern Municipalities of Lomé (Togo): A Study of Flora, Urban Landscape Dynamics and Environmental Risks
by Lamboni Payéne, Kalimawou Gnamederama, Folega Fousseni, Kanda Madjouma, Yampoadeb Gountante Pikabe, Valerie Graw, Eve Bohnett, Marra Dourma, Wala Kperkouma and Batawila Komlan
Conservation 2025, 5(3), 28; https://doi.org/10.3390/conservation5030028 - 20 Jun 2025
Viewed by 1073
Abstract
Climate change and anthropogenic activities, which are central to landscape-related concerns, affect both the well-being of populations and the structure of semi-urban and urban landscapes worldwide. This article aims to assess the environmental impact of landscape modifications across Togo as perceived through the [...] Read more.
Climate change and anthropogenic activities, which are central to landscape-related concerns, affect both the well-being of populations and the structure of semi-urban and urban landscapes worldwide. This article aims to assess the environmental impact of landscape modifications across Togo as perceived through the lens of urban ecology. In conjunction with Landsat 8 satellite imagery, data were gathered via questionnaires distributed to stakeholders in urban space development. Four land use classifications are discernible from analyzing the Agoè-Nyivé northern municipalities’ cartography: vegetation, development areas/artificial surfaces, crops and fallows, meadows, and wetlands. Between 2014 and 2022, meadows and wetlands decreased by 57.14%, vegetation cover decreased by 27.77%, and fields and fallows decreased by 15.38%. Development areas/artificial surfaces increased by 40.47% due to perpetual expansion, displacing natural habitats, including wetlands and meadows, where rapid growth results in the construction of flood-prone areas. In wetland ecosystems, 91 plant species were identified and classified into 84 genera and 37 families using a floristic inventory. Typical species included Mitragyna inermis (Willd.) Kuntze; Nymphaea lotus L.; Typha australis Schumach; Ludwigia erecta (L.); Ipomoea aquatica Forssk; Hygrophila auriculata (Schumach.) Heine. This concerning observation could serve as an incentive for policymakers to advocate for incorporating urban ecology into municipal development strategies, with the aim of mitigating the environmental risks associated with rapid urbanization. Full article
Show Figures

Figure 1

25 pages, 3836 KiB  
Article
Detecting and Predicting the Multiscale Geographical and Endogenous Relationship in Regional Economic–Ecological Imbalances
by Ke Wang, Shuang Ma, Shuangjin Li and Jue Wang
Sustainability 2025, 17(12), 5589; https://doi.org/10.3390/su17125589 - 18 Jun 2025
Viewed by 435
Abstract
Addressing the economic–ecological imbalance within urban agglomeration integration and sustainable development is crucial, particularly in the context of achieving the Sustainable Development Goals of sustainable cities and communities. This study examines this imbalance using a unique ecosystem services (ESs) balance index that evaluates [...] Read more.
Addressing the economic–ecological imbalance within urban agglomeration integration and sustainable development is crucial, particularly in the context of achieving the Sustainable Development Goals of sustainable cities and communities. This study examines this imbalance using a unique ecosystem services (ESs) balance index that evaluates “supply” and “demand” tradeoffs. It emphasizes localization, mobility, and cooperation as regionalization strategies, utilizing multisource datasets. To address gaps from endogeneity and heterogeneity, the study regresses these strategies on ESs balance values, incorporating landscape patterns as endogenous variables across 214 YRDCA counties or districts in 2020, using a multilevel geographically weighted instrumental variable regression model. Employing the patch-generating land use simulation method, three scenarios were explored: non-intervened development (ND), mobility priority (MD), and localization priority (LP). These scenarios were assessed for their 2025 mitigation effects and health benefits to optimize balanced development strategies. Key findings include (1) a severe ecological–economic imbalance in supply and demand patterns; (2) localization boosts economic development, mobility enhances ecological development, and cooperation promotes both; and (3) LP and MP strategies, compared to ND, show promising potential to reduce the imbalance and generate health benefits, although the extent of the impact may depend on the implementation scale and regional context. By promoting inclusive urbanization and participatory and integrated planning, and enhancing urban resilience through targeted risk-reduction strategies, this study provides insights into fostering balanced development among cities. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Figure 1

Back to TopTop