Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = landau damping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1934 KiB  
Review
A Library of 77 Multibody Solar and Extrasolar Subsystems—A Review of Their Dynamical Properties, Global Mean-Motion Resonances, and the Landau-Damped Mean Tidal Fields
by Dimitris M. Christodoulou, Silas G. T. Laycock and Demosthenes Kazanas
Astronomy 2025, 4(3), 11; https://doi.org/10.3390/astronomy4030011 - 23 Jun 2025
Viewed by 477
Abstract
We revisit 77 relaxed (extra)solar multibody (sub)systems containing 2–9 bodies orbiting about gravitationally dominant central bodies. The listings are complete down to (sub)systems with 5 orbiting bodies and additionally contain 33 smaller systems with 2–4 orbiting bodies. Most of the multiplanet systems (68) [...] Read more.
We revisit 77 relaxed (extra)solar multibody (sub)systems containing 2–9 bodies orbiting about gravitationally dominant central bodies. The listings are complete down to (sub)systems with 5 orbiting bodies and additionally contain 33 smaller systems with 2–4 orbiting bodies. Most of the multiplanet systems (68) have been observed outside of our solar system, and very few of them (5) exhibit classical Laplace resonances (LRs). The remaining 9 subsystems have been found in our solar system; they include 7 well-known satellite groups in addition to the four gaseous giant planets and the four terrestrial planets, and they exhibit only one classical Laplace resonant chain, the famous Galilean LR. The orbiting bodies (planets, dwarfs, or satellites) appear to be locked in/near global mean-motion resonances (MMRs), as these are determined in reference to the orbital period of the most massive (most inert) body in each (sub)system. We present a library of these 77 multibody subsystems for future use and reference. The library listings of dynamical properties also include regular spacings of the orbital semimajor axes. Regularities in the spatial configurations of the bodies were determined from patterns that had existed in the mean tidal field that drove multibody migrations toward MMRs, well before the tidal field was erased by the process of `gravitational Landau damping’ which concluded its work when all major bodies had finally settled in/near the global MMRs presently observed. Finally, detailed comparisons of results help us discern the longest commonly-occurring MMR chains, distinguish the most important groups of triple MMRs, and identify a new criterion for the absence of librations in triple MMRs. Full article
Show Figures

Figure 1

11 pages, 277 KiB  
Article
On the Theory of Nonlinear Landau Damping
by Leon Kos, Ivona Vasileska and Davy D. Tskhakaya
Symmetry 2025, 17(6), 809; https://doi.org/10.3390/sym17060809 - 22 May 2025
Viewed by 263
Abstract
An exact solution of the collisionless time-dependent Vlasov equation is found. For the first time in a century, an analytical solution to the one-dimensional time-dependent Vlasov–Boltzmann equation has been found. It has been found that instead of the widely discussed damping, waves are [...] Read more.
An exact solution of the collisionless time-dependent Vlasov equation is found. For the first time in a century, an analytical solution to the one-dimensional time-dependent Vlasov–Boltzmann equation has been found. It has been found that instead of the widely discussed damping, waves are subject to instability. By means of this solution, the behavior of the Langmuir waves in the nonlinear stage is considered. A symmetry method is found that allows us to establish the dependence on time of the desired quantity based on the dependence on the previous time. The analysis is restricted by the consideration of the first nonlinear approximation—keeping the second power of the electric strength. It is shown that in general the waves with finite amplitudes are not subjected to the damping. Conditions have been found under which waves can be unstable. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

28 pages, 658 KiB  
Article
Landau Tidal Damping and Major-Body Clustering in Solar and Extrasolar Subsystems
by Dimitris M. Christodoulou and Demosthenes Kazanas
Astronomy 2024, 3(2), 139-166; https://doi.org/10.3390/astronomy3020010 - 4 Jun 2024
Cited by 1 | Viewed by 1454
Abstract
Major (exo)planetary and satellite bodies seem to concentrate at intermediate areas of the radial distributions of all the objects orbiting in each (sub)system. We show that angular-momentum transport during secular evolution of (exo)planets and satellites necessarily results in the observed intermediate accumulation of [...] Read more.
Major (exo)planetary and satellite bodies seem to concentrate at intermediate areas of the radial distributions of all the objects orbiting in each (sub)system. We show that angular-momentum transport during secular evolution of (exo)planets and satellites necessarily results in the observed intermediate accumulation of the massive objects. We quantify the ‘middle’ as the mean of mean motions (orbital angular velocities) when three or more massive objects are involved. Radial evolution of the orbits is expected to be halted when the survivors settle near mean-motion resonances and angular-momentum transfer between them ceases (gravitational Landau damping). This dynamical behavior is opposite in direction to what has been theorized for viscous and magnetized accretion disks, in which gas spreads out and away from either side of any conceivable intermediate area. We present angular momentum transfer calculations in few-body systems, and we also calculate the tidal dissipation timescales and the physical properties of the mean tidal field in planetary and satellite (sub)systems. Full article
Show Figures

Figure A1

19 pages, 6480 KiB  
Article
Ferroelectric Thin Films and Composites Based on Polyvinylidene Fluoride and Graphene Layers: Molecular Dynamics Study
by Vladimir Bystrov, Ekaterina Paramonova, Xiangjian Meng, Hong Shen, Jianlu Wang, Tie Lin and Vladimir Fridkin
Coatings 2024, 14(3), 356; https://doi.org/10.3390/coatings14030356 - 18 Mar 2024
Cited by 2 | Viewed by 2007
Abstract
This work is devoted to the study of nanosized polymer polyvinylidene fluoride (PVDF) thin ferroelectric films (two-dimensional ferroelectrics) and their composites with graphene layers, using molecular dynamics methods to (1) study and calculate the polarization switching time depending on the electric field and [...] Read more.
This work is devoted to the study of nanosized polymer polyvinylidene fluoride (PVDF) thin ferroelectric films (two-dimensional ferroelectrics) and their composites with graphene layers, using molecular dynamics methods to (1) study and calculate the polarization switching time depending on the electric field and film thickness, (2) study and calculate the polarization switching time depending on changes of the PVDF in PVDF-TrFE film, and (3) study the polarization switching time in PVDF under the influence of graphene layers. All calculations at each MD run step were carried out using the semi-empirical quantum method PM3. A comparison and analysis of the results of these calculations and the kinetics of polarization switching within the framework of the Landau–Ginzburg–Devonshire theory for homogeneous switching in ferroelectric polymer films is carried out. The study of the composite heterostructures of the “graphene-PVDF” type, and calculations of their polarization switching times, are presented. It is shown that replacing PVDF with PVDF-TrFE significantly changes the polarization switching times in these thin polymer films, and that introducing various graphene layers into the PVDF layered structure leads to both an increase and a decrease in the polarization switching time. It is shown that everything here depends on the position and displacement of the coercive field depending on the damping parameters of the system. These phenomena are very important for various ferroelectric coatings. Full article
Show Figures

Figure 1

23 pages, 16196 KiB  
Article
Nonlocal Hydrodynamic Model with Viscosive Damping and Generalized Drude–Lorentz Term
by Milan Burda and Ivan Richter
Photonics 2023, 10(8), 913; https://doi.org/10.3390/photonics10080913 - 9 Aug 2023
Cited by 1 | Viewed by 1672
Abstract
The response of plasmonic metal particles to an electromagnetic wave produces significant features at the nanoscale level. Different properties of the internal composition of a metal, such as its ionic background and the free electron gas, begin to manifest more prominently. As the [...] Read more.
The response of plasmonic metal particles to an electromagnetic wave produces significant features at the nanoscale level. Different properties of the internal composition of a metal, such as its ionic background and the free electron gas, begin to manifest more prominently. As the dimensions of the nanostructures decrease, the classical local theory gradually becomes inadequate. Therefore, Maxwell’s equations need to be supplemented with a relationship determining the dynamics of current density which is the essence of nonlocal plasmonic models. In this field of physics, the standard (linearized) hydrodynamic model (HDM) has been widely adopted with great success, serving as the basis for a variety of simulation methods. However, ongoing efforts are also being made to expand and refine it. Recently, the GNOR (general nonlocal optical response) modification of the HDM has been used, with the intention of incorporating the influence of electron gas diffusion. Clearly, from the classical description of fluid dynamics, a close relationship between viscosive damping and diffusion arises. This offers a relevant motivation for introducing the GNOR modification in an alternative manner. The standard HDM and its existing GNOR modification also do not include the influence of interband electron transitions in the conduction band and other phenomena that are part of many refining modifications of the Drude–Lorentz and other models of metal permittivity. In this article, we present a modified version of GNOR-HDM that incorporates the viscosive damping of the electron gas and a generalized Drude–Lorentz term. In the selected simulations, we also introduce Landau damping, which corrects the magnitude of the standard damping constant of the electron gas based on the size of the nanoparticle. We have chosen a spherical particle as a suitable object for testing and comparing HD models and their modifications because it allows the calculation of precise analytical solutions for the interactions and, simultaneously, it is a relatively easily fabricated nanostructure in practice. Our contribution also includes our own analytical method for solving the HDM interaction of a plane wave with a spherical particle. This method forms the core of calculations of the characteristic quantities, such as the extinction cross-sections and the corresponding components of electric fields and current densities. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

21 pages, 10551 KiB  
Article
Squeeze Film Effect in Surface Micromachined Nano Ultrasonic Sensor for Different Diaphragm Displacement Profiles
by Avik Ghosh Dastidar, Reshmi Maity, Ramesh Chandra Tiwari, Dejan Vidojevic, Tijana S. Kevkic, Vojkan Nikolic, Subhajit Das and Niladri Pratap Maity
Sensors 2023, 23(10), 4665; https://doi.org/10.3390/s23104665 - 11 May 2023
Cited by 7 | Viewed by 2166
Abstract
In the present paper, we have analytically explored the small variations of the local pressure in the trapped air film of both sides of the clamped circular capacitive micromachined ultrasonic transducer (CMUT), which consists of a thin movable membrane of silicon nitride (Si [...] Read more.
In the present paper, we have analytically explored the small variations of the local pressure in the trapped air film of both sides of the clamped circular capacitive micromachined ultrasonic transducer (CMUT), which consists of a thin movable membrane of silicon nitride (Si3N4). This time-independent pressure profile has been investigated thoroughly by solving the associated linear Reynold’s equation in the framework of three analytical models, viz. membrane model, plate model, and non-local plate model. The solution involves Bessel functions of the first kind. The Landau–Lifschitz fringing technique has been assimilated to engrave the edge effects in estimation of the capacitance of CMUT, which should be considered in the micrometer or lesser dimension. To divulge the dimension-based efficacy of the considered analytical models, various statistical methods have been employed. Our use of contour plots of absolute quadratic deviation revealed a very satisfactory solution in this direction. Though the analytical expression of the pressure profile is very cumbersome in various models, the analysis of these outputs exhibits that the pressure profile follows the displacement profile in all the cases indicating no viscous damping. A finite element model (FEM) has been used to validate the systematic analyses of displacement profiles for several radii and thicknesses of the CMUT’s diaphragm. The FEM result is further corroborated by published experimental results bearing excellent outcome. Full article
Show Figures

Figure 1

13 pages, 1764 KiB  
Article
Phase Resolved Simulation of the Landau–Alber Stability Bifurcation
by Agissilaos G. Athanassoulis
Fluids 2023, 8(1), 13; https://doi.org/10.3390/fluids8010013 - 30 Dec 2022
Cited by 1 | Viewed by 1782
Abstract
It has long been known that plane wave solutions of the cubic nonlinear Schrödinger Equation (NLS) are linearly unstable. This fact is widely known as modulation instability (MI), and sometimes referred to as Benjamin–Feir instability in the context of water waves. In 1978, [...] Read more.
It has long been known that plane wave solutions of the cubic nonlinear Schrödinger Equation (NLS) are linearly unstable. This fact is widely known as modulation instability (MI), and sometimes referred to as Benjamin–Feir instability in the context of water waves. In 1978, I.E. Alber introduced a methodology to perform an analogous linear stability analysis around a sea state with a known power spectrum, instead of around a plane wave. This analysis applies to second moments, and yields a stability criterion for power spectra. Asymptotically, it predicts that sufficiently narrow and high-intensity spectra are unstable, while sufficiently broad and low-intensity spectra are stable, which is consistent with empirical observations. The bifurcation between unstable and stable behaviour has no counterpart in the classical MI (where all plane waves are unstable), and we call it Landau–Alber bifurcation because the stable regime has been shown to be a case of Landau damping. In this paper, we work with the realistic power spectra of ocean waves, and for the first time, we produce clear, direct evidence for an abrupt bifurcation as the spectrum becomes narrow/intense enough. A fundamental ingredient of this work was to look directly at the nonlinear evolution of small, localised inhomogeneities, and whether these can grow dramatically. Indeed, one of the issues affecting previous investigations of this bifurcation seem to have been that they mostly looked for the indirect evidence of instability, such as an increase in overall extreme events. It is also found that a sufficiently large computational domain is crucial for the bifurcation to manifest. Full article
(This article belongs to the Special Issue Nonlinear Wave Hydrodynamics, Volume II)
Show Figures

Figure 1

10 pages, 1174 KiB  
Article
Magnetic Interconnects Based on Composite Multiferroics
by Alexander Khitun
Micromachines 2022, 13(11), 1991; https://doi.org/10.3390/mi13111991 - 17 Nov 2022
Cited by 1 | Viewed by 1911
Abstract
The development of magnetic logic devices dictates a need for a novel type of interconnect for magnetic signal transmission. Fast signal damping is one of the problems which drastically differs from conventional electric technology. Here, we describe a magnetic interconnect based on a [...] Read more.
The development of magnetic logic devices dictates a need for a novel type of interconnect for magnetic signal transmission. Fast signal damping is one of the problems which drastically differs from conventional electric technology. Here, we describe a magnetic interconnect based on a composite multiferroic comprising piezoelectric and magnetostrictive materials. Internal signal amplification is the main reason for using multiferroic material, where a portion of energy can be transferred from electric to magnetic domains via stress-mediated coupling. The utilization of composite multiferroics consisting of piezoelectric and magnetostrictive materials offers flexibility for the separate adjustment of electric and magnetic characteristics. The structure of the proposed interconnect resembles a parallel plate capacitor filled with a piezoelectric, where one of the plates comprises a magnetoelastic material. An electric field applied across the plates of the capacitor produces stress, which, in turn, affects the magnetic properties of the magnetostrictive material. The charging of the capacitor from one edge results in the charge diffusion accompanied by the magnetization change in the magnetostrictive layer. This enables the amplitude of the magnetic signal to remain constant during the propagation. The operation of the proposed interconnects is illustrated by numerical modeling. The model is based on the Landau–Lifshitz–Gilbert equation with the electric field-dependent anisotropy term included. A variety of magnetic logic devices and architectures can benefit from the proposed interconnects, as they provide reliable and low-energy-consuming data transmission. According to the estimates, the group velocity of magnetic signals may be up to 105 m/s with energy dissipation less than 10−18 J per bit per 100 nm. The physical limits and practical challenges of the proposed approach are also discussed. Full article
(This article belongs to the Special Issue Magnetic and Spin Devices, Volume II)
Show Figures

Figure 1

9 pages, 1053 KiB  
Article
Influences of Anisotropic Equivalent Field and Magnetic Damping Coefficient on Giant Magnetoimpedance Effect of Cylindrical Alloy Fibers: Theoretical Magnetoimpedance Calculations
by Tao Wang, Yingjie Zhang, Jingtao Lei, Qiuyuan Wang, Jinbo Chen, Hengyu Li, Zhizheng Wu, Ze Cui, Mei Liu and Jinjun Rao
Metals 2022, 12(9), 1532; https://doi.org/10.3390/met12091532 - 16 Sep 2022
Cited by 2 | Viewed by 1633
Abstract
In this paper, the giant magneto-impedance (GMI) model of a cylindrical alloy fiber was established by the Maxwell equation and Landau–Lifshitz equation to simulate the influence of physical parameters of cylindrical alloy fiber on GMI under different control parameters. MATLAB was employed to [...] Read more.
In this paper, the giant magneto-impedance (GMI) model of a cylindrical alloy fiber was established by the Maxwell equation and Landau–Lifshitz equation to simulate the influence of physical parameters of cylindrical alloy fiber on GMI under different control parameters. MATLAB was employed to calculate the magneto-impedance of cylindrical fibers and draw its curves. We found that when the anisotropic equivalent field of the fiber changes from 10Oe to 50Oe, the peak position of the GMI ratio also moves from about 10Oe to 50Oe, and the peak value gradually increases from 100% to 300%. The GMI ratio increased rapidly with the decrease in the magnetization damping coefficient. Our findings could further guide the design of supersensitive micro GMI sensors by optimally regulating the magnetic damping coefficient, the angle between the external magnetic field and easy axis and the anisotropic equivalent field of cylindrical alloy fibers. Full article
(This article belongs to the Special Issue Development and Application of Microscale Metallic Fibers)
Show Figures

Figure 1

13 pages, 501 KiB  
Article
The Longitudinal Plasma Modes of κ-Deformed Kaniadakis Distributed Plasmas Carrying Orbital Angular Momentum
by Ling Tan, Qiaoyun Yang, Hui Chen and Sanqiu Liu
Entropy 2022, 24(9), 1211; https://doi.org/10.3390/e24091211 - 29 Aug 2022
Cited by 5 | Viewed by 2077
Abstract
Based on plasma kinetic theory, the dispersion and Landau damping of Langmuir and ion-acoustic waves carrying finite orbital angular momentum (OAM) were investigated in the κ-deformed Kaniadakis distributed plasma system. The results showed that the peculiarities of the investigated subjects relied on [...] Read more.
Based on plasma kinetic theory, the dispersion and Landau damping of Langmuir and ion-acoustic waves carrying finite orbital angular momentum (OAM) were investigated in the κ-deformed Kaniadakis distributed plasma system. The results showed that the peculiarities of the investigated subjects relied on the deformation parameter κ and OAM parameter η. For both Langmuir and ion-acoustic waves, dispersion was enhanced with increased κ, while the Landau damping was suppressed. Conversely, both the dispersion and Landau damping were depressed by OAM. Moreover, the results coincided with the straight propagating plane waves in a Maxwellian plasma system when κ=0 and η. It was expected that the present results would give more insight into the trapping and transportation of plasma particles and energy. Full article
Show Figures

Figure 1

14 pages, 344 KiB  
Article
On the VHE Spectrum and Formation of the Teraelectronvolt Pulsed Emission of the Crab Pulsar
by Nino Chkheidze
Galaxies 2022, 10(2), 59; https://doi.org/10.3390/galaxies10020059 - 12 Apr 2022
Viewed by 2586
Abstract
In the present paper, a model for the pulsed γ-ray emission of the Crab pulsar from 0.01 GeV to 1 TeV in the context of synchrotron emission generated in the vicinity of a light cylinder is developed. The generation of such high [...] Read more.
In the present paper, a model for the pulsed γ-ray emission of the Crab pulsar from 0.01 GeV to 1 TeV in the context of synchrotron emission generated in the vicinity of a light cylinder is developed. The generation of such high energies through the synchrotron process requires the existence of very energetic plasma particles in pulsar magnetospheres. It is assumed that the emitting particles are ultra-relativistic primary beam electrons re-accelerated to very high energies due to the Landau damping process of a special type of parametrically driven Langmuir waves. This type of Langmuir wave carries energy released through the rotational slow-down of a pulsar and is very effective in supplying the resonant particles with energy from a natural reservoir. The model provides simultaneous generation of energetic γ-ray and low-frequency radio (0.1–1 GHz) emission in the same location of the pulsar magnetosphere. These two radiations processes are triggered by a single plasma process, namely excitation of the cyclotron instability. This provides a natural explanation for the observed coincidence of radio and γ-ray signals observed from the Crab pulsar. Full article
(This article belongs to the Special Issue Observations of Gamma-Ray Pulsars)
Show Figures

Figure 1

28 pages, 471 KiB  
Review
The Role of Longitudinal Polarizations in Horndeski and Macroscopic Gravity: Introducing Gravitational Plasmas
by Fabio Moretti, Flavio Bombacigno and Giovanni Montani
Universe 2021, 7(12), 496; https://doi.org/10.3390/universe7120496 - 15 Dec 2021
Cited by 9 | Viewed by 2571
Abstract
We discuss some general and relevant features of longitudinal gravitational modes in Horndeski gravity and their interaction with matter media. Adopting a gauge-invariant formulation, we clarify how massive scalar and vector fields can induce additional transverse and longitudinal excitations, resulting in breathing, vector, [...] Read more.
We discuss some general and relevant features of longitudinal gravitational modes in Horndeski gravity and their interaction with matter media. Adopting a gauge-invariant formulation, we clarify how massive scalar and vector fields can induce additional transverse and longitudinal excitations, resulting in breathing, vector, and longitudinal polarizations. We review, then, the interaction of standard gravitational waves with a molecular medium, outlining the emergence of effective massive gravitons, induced by the net quadrupole moment due to molecule deformation. Finally, we investigate the interaction of the massive mode in Horndeski gravity with a noncollisional medium, showing that Landau damping phenomenon can occur in the gravitational sector as well. That allows us to introduce the concept of “gravitational plasma”, where inertial forces associated with the background field play the role of cold ions in electromagnetic plasma. Full article
(This article belongs to the Special Issue Gravitational Waves in Modified Gravity)
Show Figures

Figure 1

15 pages, 307 KiB  
Article
Landau Damping of Langmuir Waves: An Alternative Derivation
by Andreas Shalchi
Physics 2021, 3(4), 940-954; https://doi.org/10.3390/physics3040059 - 29 Oct 2021
Viewed by 4264
Abstract
In this paper, a discussion of the Landau damping of Langmuir waves is presented together with a simple derivation which does not require the application of methods of complex analysis. A general dispersion relation is derived systematically which corresponds to a nonlinear equation. [...] Read more.
In this paper, a discussion of the Landau damping of Langmuir waves is presented together with a simple derivation which does not require the application of methods of complex analysis. A general dispersion relation is derived systematically which corresponds to a nonlinear equation. The latter equation is solved numerically but asymptotic limits are also discussed. Full article
Show Figures

Figure 1

8 pages, 256 KiB  
Communication
On the Heating of AGN Magnetospheres
by Zaza Osmanov and Swadesh Mahajan
Universe 2021, 7(4), 83; https://doi.org/10.3390/universe7040083 - 31 Mar 2021
Cited by 3 | Viewed by 1762
Abstract
The Langmuir–Landau-Centrifugal Drive (LLCD), which can effectively “convert” gravitational energy into particles, is explored as a driving mechanism responsible for the extreme thermal luminosity acquired by some active galactic nuclei (AGN). For this purpose, we consider equations governing the process of heating of [...] Read more.
The Langmuir–Landau-Centrifugal Drive (LLCD), which can effectively “convert” gravitational energy into particles, is explored as a driving mechanism responsible for the extreme thermal luminosity acquired by some active galactic nuclei (AGN). For this purpose, we consider equations governing the process of heating of AGN magnetospheres. In particular, we examine the Fourier components of the momentum equation, the continuity equation and the Poisson equation in the linear approximation and estimate the growth rate of the centrifugally excited electrostatic waves and the increment of the Langmuir collapse. It is shown that the process of energy pumping is composed of three stages: in the first stage the energy is efficiently transferred from rotation to the electrostatic modes. In due course of time, the second regime-the Langmuir collapse-occurs, when energy pumping is even more efficient. This process is terminated by the Landau damping, when enormous energy is released in the form of heat. We show that the magnetospheres of the supermassive black holes with luminosities of the order of 104546 erg/s can be heated up to 10610 K. Full article
(This article belongs to the Special Issue Panchromatic View of the Life-Cycle of AGN)
Show Figures

Figure 1

21 pages, 337 KiB  
Article
Thermodynamic Explanation of Landau Damping by Reduction to Hydrodynamics
by Michal Pavelka, Václav Klika and Miroslav Grmela
Entropy 2018, 20(6), 457; https://doi.org/10.3390/e20060457 - 12 Jun 2018
Cited by 5 | Viewed by 4618
Abstract
Landau damping is the tendency of solutions to the Vlasov equation towards spatially homogeneous distribution functions. The distribution functions, however, approach the spatially homogeneous manifold only weakly, and Boltzmann entropy is not changed by the Vlasov equation. On the other hand, density and [...] Read more.
Landau damping is the tendency of solutions to the Vlasov equation towards spatially homogeneous distribution functions. The distribution functions, however, approach the spatially homogeneous manifold only weakly, and Boltzmann entropy is not changed by the Vlasov equation. On the other hand, density and kinetic energy density, which are integrals of the distribution function, approach spatially homogeneous states strongly, which is accompanied by growth of the hydrodynamic entropy. Such a behavior can be seen when the Vlasov equation is reduced to the evolution equations for density and kinetic energy density by means of the Ehrenfest reduction. Full article
(This article belongs to the Special Issue Mesoscopic Thermodynamics and Dynamics)
Show Figures

Figure 1

Back to TopTop