Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (856)

Search Parameters:
Keywords = land value zones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 (registering DOI) - 3 Aug 2025
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

26 pages, 1886 KiB  
Article
Landscape Ecological Risk Assessment of Peri-Urban Villages in the Yangtze River Delta Based on Ecosystem Service Values
by Yao Xiong, Yueling Li and Yunfeng Yang
Sustainability 2025, 17(15), 7014; https://doi.org/10.3390/su17157014 (registering DOI) - 1 Aug 2025
Abstract
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies [...] Read more.
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies is therefore imperative. Using rural areas of Jiangning District, Nanjing as a case study, this research proposes an optimized dual-dimensional coupling assessment framework that integrates ecosystem service value (ESV) and ecological risk probability. The spatiotemporal evolution of LER in 2000, 2010, and 2020 and its key driving factors were further studied by using spatial autocorrelation analysis and geodetector methods. The results show the following: (1) From 2000 to 2020, cultivated land remained dominant, but its proportion decreased by 10.87%, while construction land increased by 26.52%, with minimal changes in other land use types. (2) The total ESV increased by CNY 1.67 × 109, with regulating services accounting for over 82%, among which water bodies contributed the most. (3) LER showed an overall increasing trend, with medium- to highest-risk areas expanding by 55.37%, lowest-risk areas increasing by 10.10%, and lower-risk areas decreasing by 65.48%. (4) Key driving factors include landscape vulnerability, vegetation coverage, and ecological land connectivity, with the influence of distance to road becoming increasingly significant. This study reveals the spatiotemporal evolution characteristics of LER in typical peri-urban villages. Based on the LERA results, combined with terrain features and ecological pressure intensity, the study area was divided into three ecological management zones: ecological conservation, ecological restoration, and ecological enhancement. Corresponding zoning strategies were proposed to guide rural ecological governance and support regional sustainable development. Full article
13 pages, 3980 KiB  
Article
Simulation–Driven Design of Ankle–Foot Orthoses Using DoE Optimization and 4D Visualization
by Marta Carvalho and João Milho
Biomechanics 2025, 5(3), 55; https://doi.org/10.3390/biomechanics5030055 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: The simulation of human movement offers transformative potential for the design of medical devices, particularly in understanding the cause–effect dynamics in individuals with neurological or musculoskeletal impairments. This study presents a simulation-driven framework to determine the optimal ankle–foot orthosis (AFO) stiffness [...] Read more.
Background/Objectives: The simulation of human movement offers transformative potential for the design of medical devices, particularly in understanding the cause–effect dynamics in individuals with neurological or musculoskeletal impairments. This study presents a simulation-driven framework to determine the optimal ankle–foot orthosis (AFO) stiffness for mitigating the risk of ankle sprains due to excessive subtalar inversion during high-impact activities, such as landing from a free fall. Methods: We employed biomechanical simulations to assess the influence of translational stiffness on subtalar inversion control, given that inversion angles exceeding 25 degrees are strongly correlated with injury risk. Simulations were conducted using a musculoskeletal model with and without a passive AFO; the stiffness varied in three anatomical directions. A Design of Experiments (DoE) approach was utilized to capture nonlinear interactions among stiffness parameters. Results: The results indicated that increased translational stiffness significantly reduced inversion angles to safer levels, though direction–dependent effects were noted. Based on these insights, we developed a 4D visualization tool that integrates simulation data with an interactive color–coded interface to depict ”safe design” zones for various AFO stiffness configurations. This tool supports clinicians in selecting stiffness values that optimize both safety and functional performance. Conclusions: The proposed framework enhances clinical decision-making and engineering processes by enabling more accurate and individualized AFO designs. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

25 pages, 2717 KiB  
Article
A Hybrid Model for Land Value Capture in Sustainable Urban Land Management: The Case of Türkiye
by Nida Celik Simsek, Bura Adem Atasoy and Semih Uzun
Land 2025, 14(8), 1570; https://doi.org/10.3390/land14081570 - 31 Jul 2025
Viewed by 38
Abstract
Like in many countries, the transfer of increased land value created by public actions without landowner contributions back to the public is under debate in Türkiye. Although various Land Value Capture (LVC) mechanisms are employed worldwide to finance infrastructure investments, no comprehensive system [...] Read more.
Like in many countries, the transfer of increased land value created by public actions without landowner contributions back to the public is under debate in Türkiye. Although various Land Value Capture (LVC) mechanisms are employed worldwide to finance infrastructure investments, no comprehensive system has been established in Türkiye for this purpose. In this study, an improved LVC model that integrates land value and development rights is proposed. This model, termed Hybrid Land Readjustment (hLR), is designed to ensure that land value increases triggered by public investments are returned to the public. To this end, existing Turkish value capture instruments with potential are examined. Under the proposed hLR framework, equal basic development rights are granted to cadastral parcels, parcel and building-block value maps are utilized, basic rights are adjusted according to land-value changes, and a portion of additional development rights is transferred to the public. A practical application scenario is provided to illustrate the model’s operation. The system is configured for seamless integration into Türkiye’s existing legal and planning framework, offering a sustainable mechanism for financing infrastructure and implementing zoning plans. Full article
Show Figures

Figure 1

17 pages, 5557 KiB  
Article
Optimal Spatial Configuration for Energy and Solar Use in Alpine-Frigid Resettlement Communities
by Bo Liu, Wei Song, Yu Liu, Chuanming Wang and Jie Song
Buildings 2025, 15(15), 2691; https://doi.org/10.3390/buildings15152691 - 30 Jul 2025
Viewed by 157
Abstract
Resettlement communities in Qinghai are located in cold, high-altitude regions with dry climates and strong solar radiation. Although not extremely cold, the moderate heating demand aligns well with high solar availability, making passive design highly effective for reducing energy use. This study investigates [...] Read more.
Resettlement communities in Qinghai are located in cold, high-altitude regions with dry climates and strong solar radiation. Although not extremely cold, the moderate heating demand aligns well with high solar availability, making passive design highly effective for reducing energy use. This study investigates solar-optimized spatial configurations that enhance passive energy performance while addressing functional settlement needs. Through parametric modeling and climate-responsive simulations, four key spatial parameters are examined: building spacing, courtyard depth, density, and volumetric ratio. The findings highlight the dominant role of front–rear spacing in solar access, with optimal values at 3–4 m for single-story and 5–10 m for two-story buildings, balancing radiation gain and land use efficiency. Courtyard depths under 2.7 m significantly limit south façade exposure due to shading from the opposite courtyard wall under low-angle winter sun. This reduction results in the south façade attaining only 55.7–79.6% of the solar radiation acquisition by an unobstructed south façade (the baseline). Meanwhile, clustered orientations reduce inter-building shading losses by 38–42% compared to dispersed layouts. A three-tiered design framework is proposed: (1) macro-scale solar orientation zoning, (2) meso-scale spacing tailored to building height, and (3) micro-scale courtyard modulation for low-angle winter radiation. Together, these strategies provide practical, scalable guidelines for energy-efficient, climate-responsive settlement design in the alpine regions of Qinghai. Full article
Show Figures

Figure 1

34 pages, 56730 KiB  
Article
Land Consolidation Potential Assessment by Using the Production–Living–Ecological Space Framework in the Guanzhong Plain, China
by Ziyi Xie, Siying Wu, Xin Liu, Hejia Shi, Mintong Hao, Weiwei Zhao, Xin Fu and Yepeng Liu
Sustainability 2025, 17(15), 6887; https://doi.org/10.3390/su17156887 - 29 Jul 2025
Viewed by 187
Abstract
Land consolidation (LC) is a sustainability-oriented policy tool designed to address land fragmentation, inefficient spatial organization, and ecological degradation in rural areas. This research proposes a Production–Living–Ecological (PLE) spatial utilization efficiency evaluation system, based on an integrated methodological framework combining Principal Component Analysis [...] Read more.
Land consolidation (LC) is a sustainability-oriented policy tool designed to address land fragmentation, inefficient spatial organization, and ecological degradation in rural areas. This research proposes a Production–Living–Ecological (PLE) spatial utilization efficiency evaluation system, based on an integrated methodological framework combining Principal Component Analysis (PCA), Entropy Weight Method (EWM), Attribute-Weighting Method (AWM), Linear Weighted Sum Method (LWSM), Threshold-Verification Coefficient Method (TVCM), Jenks Natural Breaks (JNB) classification, and the Obstacle Degree Model (ODM). The framework is applied to Qian County, located in the Guanzhong Plain in Shaanxi Province. The results reveal three key findings: (1) PLE efficiency exhibits significant spatial heterogeneity. Production efficiency shows a spatial pattern characterized by high values in the central region that gradually decrease toward the surrounding areas. In contrast, the living efficiency demonstrates higher values in the eastern and western regions, while remaining relatively low in the central area. Moreover, ecological efficiency shows a marked advantage in the northern region, indicating a distinct south–north gradient. (2) Integrated efficiency consolidation potential zones present distinct spatial distributions. Preliminary consolidation zones are primarily located in the western region; priority zones are concentrated in the south; and intensive consolidation zones are clustered in the central and southeastern areas, with sporadic distributions in the west and north. (3) Five primary obstacle factors hinder land use efficiency: intensive utilization of production land (PC1), agricultural land reutilization intensity (PC2), livability of living spaces (PC4), ecological space security (PC7), and ecological space fragmentation (PC8). These findings provide theoretical insights and practical guidance for formulating tar-gated LC strategies, optimizing rural spatial structures, and advancing sustainable development in similar regions. Full article
Show Figures

Figure 1

36 pages, 25831 KiB  
Article
Identification of Cultural Landscapes and Spatial Distribution Characteristics in Traditional Villages of Three Gorges Reservoir Area
by Jia Jiang, Zhiliang Yu and Ende Yang
Buildings 2025, 15(15), 2663; https://doi.org/10.3390/buildings15152663 - 28 Jul 2025
Viewed by 275
Abstract
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and [...] Read more.
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and development under the impact of modernisation and ecological pressure. This study takes 112 traditional villages in the TGRA that have been included in the protection list as the research objects, aiming to construct a cultural landscape identification framework for the traditional villages in the TGRA. Through field surveys, landscape feature assessments, GIS spatial analysis, and multi-source data analysis, we systematically analyse their cultural landscape type systems and spatial differentiation characteristics, and then reveal their cultural landscape types and spatial differentiation patterns. (1) The results of the study show that the spatial distribution of traditional villages exhibits significant altitude gradient differentiation—the low-altitude area is dominated by traffic and trade villages, the middle-altitude area is dominated by patriarchal manor villages and mountain farming villages, and the high-altitude area is dominated by ethno-cultural and ecologically dependent villages. (2) Slope and direction analyses further reveal that the gently sloping areas are conducive to the development of commercial and agricultural settlements, while the steeply sloping areas strengthen the function of ethnic and cultural defence. The results indicate that topographic conditions drive the synergistic evolution of the human–land system in traditional villages through the mechanisms of agricultural optimisation, trade networks, cultural defence, and ecological adaptation. The study provides a paradigm of “nature–humanities” interaction analysis for the conservation and development of traditional villages in mountainous areas, which is of practical value in coordinating the construction of ecological barriers and the revitalisation of villages in the reservoir area. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 2696 KiB  
Article
Evaluation of Multiple Ecosystem Service Values and Identification of Driving Factors for Sustainable Development in the Mu Us Sandy Land
by Chunjun Shi, Yao Yao, Yuyi Gao and Jingpeng Guo
Diversity 2025, 17(8), 516; https://doi.org/10.3390/d17080516 - 26 Jul 2025
Viewed by 233
Abstract
Exploring the evolution of ecosystem services value (ESV) and its drivers is pivotal for optimizing the land-use structure and improving the value of ecosystem services. Using the 1980–2020 land-use/land-cover (LULC) dataset of the Mu Us Sandy Land, this study quantitatively evaluated ESV through [...] Read more.
Exploring the evolution of ecosystem services value (ESV) and its drivers is pivotal for optimizing the land-use structure and improving the value of ecosystem services. Using the 1980–2020 land-use/land-cover (LULC) dataset of the Mu Us Sandy Land, this study quantitatively evaluated ESV through LULC change, analyzing the spatiotemporal evolution characteristics of ESV and its driving forces. The results showed that (1) the LULC changes were stable from 1980 to 2020, and the ESV showed a slight downward trend in general. Grassland and water ecosystem services predominantly influenced ecosystem service function value fluctuations across the study area. (2) ESV demonstrated strong positive spatial autocorrelation, with high-value areas concentrated primarily in Red Alkali Nur, Dawa Nur, Batu Bay, and Ulanmulun Lake and low-value areas mainly distributed in unused land and certain agricultural zones. (3) The land-use degree and human activity intensity index were the main factors leading to the differentiation of ESV. The synergistic effects of human activities, landscape pattern changes, and natural factors led to the spatial differentiation of ESV in the study area. Beyond artificial ecological restoration projects, policies for ecosystem service management should pay more attention to the role of geodiversity in service provision. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

21 pages, 13413 KiB  
Article
Three-Dimensional Modeling of Soil Organic Carbon Stocks in Forest Ecosystems of Northeastern China Under Future Climate Warming Scenarios
by Shuai Wang, Shouyuan Bian, Zicheng Wang, Zijiao Yang, Chen Li, Xingyu Zhang, Di Shi and Hongbin Liu
Forests 2025, 16(8), 1209; https://doi.org/10.3390/f16081209 - 23 Jul 2025
Viewed by 209
Abstract
Understanding the detailed spatiotemporal variations in soil organic carbon (SOC) stocks is essential for assessing soil carbon sequestration potential. However, most existing studies predominantly focus on topsoil SOC stocks, leaving significant knowledge gaps regarding critical zones, depth-dependent variations, and key influencing factors associated [...] Read more.
Understanding the detailed spatiotemporal variations in soil organic carbon (SOC) stocks is essential for assessing soil carbon sequestration potential. However, most existing studies predominantly focus on topsoil SOC stocks, leaving significant knowledge gaps regarding critical zones, depth-dependent variations, and key influencing factors associated with deeper SOC stock dynamics. This study adopted a comprehensive methodology that integrates random forest modeling, equal-area soil profile analysis, and space-for-time substitution to predict depth-specific SOC stock dynamics under climate warming in Northeast China’s forest ecosystems. By combining these techniques, the approach effectively addresses existing research limitations and provides robust projections of soil carbon changes across various depth intervals. The analysis utilized 63 comprehensive soil profiles and 12 environmental predictors encompassing climatic, topographic, biological, and soil property variables. The model’s predictive accuracy was assessed using 10-fold cross-validation with four evaluation metrics: MAE, RMSE, R2, and LCCC, ensuring comprehensive performance evaluation. Validation results demonstrated the model’s robust predictive capability across all soil layers, achieving high accuracy with minimized MAE and RMSE values while maintaining elevated R2 and LCCC scores. Three-dimensional spatial projections revealed distinct SOC distribution patterns, with higher stocks concentrated in central regions and lower stocks prevalent in northern areas. Under simulated warming conditions (1.5 °C, 2 °C, and 4 °C increases), both topsoil (0–30 cm) and deep-layer (100 cm) SOC stocks exhibited consistent declining trends, with the most pronounced reductions observed under the 4 °C warming scenario. Additionally, the study identified mean annual temperature (MAT) and normalized difference vegetation index (NDVI) as dominant environmental drivers controlling three-dimensional SOC spatial variability. These findings underscore the importance of depth-resolved SOC stock assessments and suggest that precise three-dimensional mapping of SOC distribution under various climate change projections can inform more effective land management strategies, ultimately enhancing regional soil carbon storage capacity in forest ecosystems. Full article
(This article belongs to the Special Issue Carbon Dynamics of Forest Soils Under Climate Change)
Show Figures

Figure 1

15 pages, 1238 KiB  
Article
Assessment of Environmental Dynamics and Ecosystem Services of Guadua amplexifolia J. Presl in San Jorge River Basin, Colombia
by Yiniva Camargo-Caicedo, Jorge Augusto Montoya Arango and Fredy Tovar-Bernal
Resources 2025, 14(7), 115; https://doi.org/10.3390/resources14070115 - 18 Jul 2025
Viewed by 334
Abstract
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services [...] Read more.
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services remain poorly understood. This study (1) quantifies spatial and temporal land use/cover changes in the municipality of Montelíbano between 2002 and 2022 and (2) evaluates the ecosystem services that local communities derive from in 2002, 2012, and 2022, and they were classified in QGIS using G. amplexifolia. We applied a supervised classification of Landsat imagery (2002, 2012, 2022) in QGIS, achieving 85% overall accuracy and a Cohen’s Kappa of 0.82 (n = 45 reference points). For the social assessment, we held participatory workshops and conducted semi-structured interviews with artisans, fishers, authorities, and NGO representatives; responses were manually coded to extract key themes. The results show a 12% decline in total vegetated area from 2002 to 2012, followed by an 8% recovery by 2022, with bamboo-dominated stands following a similar pattern. Communities identified raw material provision (87% of mentions), climate regulation (82%), and cultural–recreational benefits (58%) as the most important services provided by G. amplexifolia. This is the first integrated assessment of G. amplexifolia’s landscape dynamics and community-valued services in the San Jorge basin, highlighting its dual function as a renewable resource and a natural safeguard against environmental risks. Our findings offer targeted recommendations for management practices and land use policies to support the species’ conservation and sustainable utilization. Full article
Show Figures

Figure 1

25 pages, 147691 KiB  
Article
Optimizing Landscape Patterns for Tea Plantation Agroecosystems: A Case Study of an Important Agricultural Heritage System in Enshi, China
by Jiaqian Wu, Chunyang Li and Tong Wang
Land 2025, 14(7), 1491; https://doi.org/10.3390/land14071491 - 18 Jul 2025
Viewed by 378
Abstract
The agroecosystems of tea plantations play a significant role in regional ecosystem services, with some recognized as Important Agricultural Heritage Systems. Despite notable progress in conserving these unique agricultural landscapes, systematic approaches to delineating the core conservation zone and establishing robust ecological networks [...] Read more.
The agroecosystems of tea plantations play a significant role in regional ecosystem services, with some recognized as Important Agricultural Heritage Systems. Despite notable progress in conserving these unique agricultural landscapes, systematic approaches to delineating the core conservation zone and establishing robust ecological networks for agricultural heritage systems remain insufficient. This study employed the Enshi Yulu Tea Agricultural Heritage System as a case study, integrating the MaxEnt model, InVEST model, and circuit theory to quantitatively assess landscape connectivity and prioritize conservation efforts. The analysis delineated a core conservation zone of 718.04 km2 for tea plantations, identified 77 ecological corridors, and pinpointed 104 critical ecological nodes. The results indicate 43.96 km2 of synergistic areas between tea plantations and ecological sources, demonstrating that the agroecosystems of tea plantations provide higher ESs values compared to monoculture plantations and farmlands. In addition, an ecological optimization framework featuring a “four belts and four zones” spatial configuration was proposed, aimed at enhancing connectivity and promoting the sustainable development of tea plantation agricultural heritage. The proposed framework can provide evidence-based references for future policy formulation, and deliver actionable insights for land-use planning, habitat restoration, and infrastructure mitigation. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

16 pages, 3372 KiB  
Article
Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing
by Qing He, Hehe Liu, Lu Wei, Jing Ding, Heling Sun and Zhen Zhang
Appl. Sci. 2025, 15(14), 7991; https://doi.org/10.3390/app15147991 - 17 Jul 2025
Viewed by 283
Abstract
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution [...] Read more.
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution of land subsidence from 2018 to 2024. A total of 207 Sentinel-1 SAR images were first processed using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to generate high-resolution surface deformation time series. Subsequently, the seasonal-trend decomposition using the LOESS (STL) model was applied to extract annual cyclic deformation components from the InSAR-derived time series. To quantitatively assess the delayed response of land subsidence to groundwater level changes and subsurface strain evolution, time-lagged cross-correlation (TLCC) analysis was performed between surface deformation and both groundwater level data and distributed fiber-optic strain measurements within the 5–50 m depth interval. The strain data was collected using a borehole-based automated distributed fiber-optic sensing system. The results indicate that land subsidence is primarily concentrated in the urban core, with annual cyclic amplitudes ranging from 10 to 18 mm and peak values reaching 22 mm. The timing of surface rebound shows spatial variability, typically occurring in mid-February in residential areas and mid-May in agricultural zones. The analysis reveals that surface deformation lags behind groundwater fluctuations by approximately 2 to 3 months, depending on local hydrogeological conditions, while subsurface strain changes generally lead surface subsidence by about 3 months. These findings demonstrate the strong predictive potential of distributed fiber-optic sensing in capturing precursory deformation signals and underscore the importance of integrating InSAR, hydrological, and geotechnical data for advancing the understanding of subsidence mechanisms and improving monitoring and mitigation efforts. Full article
Show Figures

Figure 1

27 pages, 8650 KiB  
Article
Exploring the Impact of Architectural Landscape Characteristics of Urban Functional Areas in Xi’an City on the Thermal Environment in Summer Using Explainable Machine Learning
by Jiayue Xu, Le Xuan, Cong Li, Mengxue Zhang and Xuhui Wang
Sustainability 2025, 17(14), 6489; https://doi.org/10.3390/su17146489 - 16 Jul 2025
Viewed by 364
Abstract
Rapid urbanization has exacerbated the urban heat island effect, posing a significant threat to human health and urban ecosystems. While numerous studies have demonstrated that urban morphology significantly influences land surface temperatures (LSTs), few have systematically explored the impact and contribution of urban [...] Read more.
Rapid urbanization has exacerbated the urban heat island effect, posing a significant threat to human health and urban ecosystems. While numerous studies have demonstrated that urban morphology significantly influences land surface temperatures (LSTs), few have systematically explored the impact and contribution of urban morphology on LST across different functional zones. Therefore, this study takes Xi’an as a case and employs an interpretable CatBoost-SHAP machine learning model to evaluate the nonlinear influence of building landscape features on LST in different functional zones during summer. The results indicate the following: (1) The highest LST in the study area reached 52.68 °C, while the lowest was 21.68 °C. High-temperature areas were predominantly concentrated in the urban center and industrial zones with dense buildings, whereas areas around water bodies and green spaces exhibited relatively lower temperatures. (2) SHAP analysis revealed that landscape indicators exerted the most substantial impact across all functional zones, with green space zones contributing up to 62%. Among these, fractional vegetation coverage (FVC), as a core landscape factor, served as the primary cooling factor in all six functional zones and consistently demonstrated a negative effect. (3) Population density (POP) exhibited a generally high SHAP contribution across all functional zones, showing a positive correlation. Its effect was most pronounced in commercial zones, accounting for 16%. When POP ranged between 0 and 250 people, the warming effect was particularly prominent. (4) The mean building height (MBH) constituted a major influencing factor in most functional zones, especially in residential zones, where the SHAP value reached 0.7643. Within the range of 10–20 m, the SHAP value increased sharply, indicating a significant warming effect. (5) This study proposes targeted cooling strategies tailored to six functional zones, providing a scientific basis for formulating targeted mitigation strategies for different functional zones to alleviate the urban heat island effect. Full article
Show Figures

Figure 1

24 pages, 7521 KiB  
Article
Developing a Remote Sensing-Based Approach for Agriculture Water Accounting in the Amman–Zarqa Basin
by Raya A. Al-Omoush, Jawad T. Al-Bakri, Qasem Abdelal, Muhammad Rasool Al-Kilani, Ibraheem Hamdan and Alia Aljarrah
Water 2025, 17(14), 2106; https://doi.org/10.3390/w17142106 - 15 Jul 2025
Viewed by 442
Abstract
In water-scarce regions such as Jordan, accurate tracking of water flows is critical for informed water management. This study applied the Water Accounting Plus (WA+) framework using open-source remote sensing data from the FAO WaPOR portal to develop agricultural water accounting (AWA) for [...] Read more.
In water-scarce regions such as Jordan, accurate tracking of water flows is critical for informed water management. This study applied the Water Accounting Plus (WA+) framework using open-source remote sensing data from the FAO WaPOR portal to develop agricultural water accounting (AWA) for the Amman–Zarqa Basin (AZB) during 2014–2022. Inflows, outflows, and water consumption were quantified using WaPOR and other open datasets. The results showed a strong correlation between WaPOR precipitation (P) and rainfall station data, while comparisons with other remote sensing sources were weaker. WaPOR evapotranspiration (ET) values were generally lower than those from alternative datasets. To improve classification accuracy, a correction of the WaPOR-derived land cover map was performed. The revised map achieved a producer’s accuracy of 15.9% and a user’s accuracy of 86.6% for irrigated areas. Additionally, ET values over irrigated zones were adjusted, resulting in a fivefold improvement in estimates. These corrections significantly enhanced the reliability of key AWA indicators such as basin closure, ET fraction, and managed fraction. The findings demonstrate that the accuracy of P and ET data strongly affects AWA outputs, particularly the estimation of percolation and beneficial water use. Therefore, calibrating remote sensing data is essential to ensure reliable water accounting, especially in agricultural settings where data uncertainty can lead to misleading conclusions. This study recommends the use of open-source datasets such as WaPOR—combined with field validation and calibration—to improve agricultural water resource assessments and support decision making at basin and national levels. Full article
Show Figures

Figure 1

25 pages, 7406 KiB  
Article
Landslide Susceptibility Level Mapping in Kozhikode, Kerala, Using Machine Learning-Based Random Forest, Remote Sensing, and GIS Techniques
by Pradeep Kumar Badapalli, Anusha Boya Nakkala, Raghu Babu Kottala, Sakram Gugulothu, Fahdah Falah Ben Hasher, Varun Narayan Mishra and Mohamed Zhran
Land 2025, 14(7), 1453; https://doi.org/10.3390/land14071453 - 12 Jul 2025
Viewed by 1082
Abstract
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random [...] Read more.
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random Forest (RF) model integrated with Geographic Information Systems (GIS). A total of 231 historical landslide locations obtained from the Bhukosh portal were used as reference data. Eight predictive factors—Stream Order, Drainage Density, Slope, Aspect, Geology, Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Moisture Stress Index (MSI)—were derived from remote sensing and ancillary datasets, preprocessed, and reclassified for model input. The RF model was trained and validated using a 50:50 split of landslide and non-landslide points, with variable importance values derived to weight each predictive factor of the raster layer in ArcGIS. The resulting Landslide Susceptibility Index (LSI) was reclassified into five susceptibility zones: Very Low, Low, Moderate, High, and Very High. Results indicate that approximately 17.82% of the study area falls under high to very high susceptibility, predominantly in the steep, weathered, and high rainfall zones of the Western Ghats. Validation using Area Under the Curve–Receiver Operating Characteristic (AUC-ROC) analysis yielded an accuracy of 0.890, demonstrating excellent model performance. The output LSM provides valuable spatial insights for planners, disaster managers, and policymakers, enabling targeted mitigation strategies and sustainable land-use planning in landslide-prone regions. Full article
Show Figures

Figure 1

Back to TopTop