Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,909)

Search Parameters:
Keywords = l-glutathione

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4173 KiB  
Article
Visual Observation of Polystyrene Microplastics/Nanoplastics in Peanut Seedlings and Their Effects on Growth and the Antioxidant Defense System
by Yuyang Li, Xinyi Huang, Qiang Lv, Zhanqiang Ma, Minhua Zhang, Jing Liu, Liying Fan, Xuejiao Yan, Nianyuan Jiao, Aneela Younas, Muhammad Shaaban, Jiakai Gao, Yanfang Wang and Ling Liu
Agronomy 2025, 15(8), 1895; https://doi.org/10.3390/agronomy15081895 - 6 Aug 2025
Abstract
Peanut cultivation is widely practiced using plastic mulch film, resulting in the accumulation of microplastics/nanoplastics (MPs/NPs) in agricultural soils, potentially negatively affecting peanut growth. To investigate the effects of two polystyrene (PS) sizes (5 μm, 50 nm) and three concentrations (0, 10, and [...] Read more.
Peanut cultivation is widely practiced using plastic mulch film, resulting in the accumulation of microplastics/nanoplastics (MPs/NPs) in agricultural soils, potentially negatively affecting peanut growth. To investigate the effects of two polystyrene (PS) sizes (5 μm, 50 nm) and three concentrations (0, 10, and 100 mg L−1) on peanut growth, photosynthetic efficiency, and physiological characteristics, a 15-day hydroponic experiment was conducted using peanut seedlings as the experimental material. The results indicated that PS-MPs/NPs inhibited peanut growth, reduced soil and plant analyzer development (SPAD) values (6.7%), and increased levels of malondialdehyde (MDA, 22.0%), superoxide anion (O2, 3.8%) superoxide dismutase (SOD, 16.1%) and catalase (CAT, 12.1%) activity, and ascorbic acid (ASA, 12.6%) and glutathione (GSH, 9.1%) contents compared to the control. Moreover, high concentrations (100 mg L−1) of PS-MPs/NPs reduced the peanut shoot fresh weight (16.1%) and SPAD value (7.2%) and increased levels of MDA (17.1%), O2 (5.6%), SOD (10.6%), POD (27.2%), CAT (7.3%), ASA (12.3%), and GSH (6.8%) compared to low concentrations (10 mg L−1) of PS-MPs/NPs. Notably, under the same concentration, the impact of 50 nm PS-NPs was stronger than that of 5 μm PS-MPs. The peanut shoot fresh weight of PS-NPs was lower than that of PS-MPs by an average of 7.9%. Additionally, we found that with an increasing exposure time of PS-MPs/NPs, the inhibitory effect of low concentrations of PS-MPs/NPs on the fresh weight was decreased by 2.5%/9.9% (5 d) and then increased by 7.7%/2.7% (15 d). Conversely, high concentrations of PS-MPs/NPs consistently reduced the fresh weight. Correlation analysis revealed a clear positive correlation between peanut biomass and both the SPAD values as well as Fv/Fm, and a negative correlation with MDA, SOD, CAT, ASA, and GSH. Furthermore, the presence of PS-MPs/NPs in roots, stems, and leaves was confirmed using a confocal laser scanning microscope. The internalization of PS-MPs/NPs within peanut tissues negatively impacted peanut growth by increasing the MDA and O2 levels, reducing the SPAD values, and inhibiting the photosynthetic capacity. In conclusion, the study demonstrated that the effects of PS on peanuts were correlated with the PS size, concentration, and exposure time, highlighting the potential risk of 50 nm to 5 μm PS being absorbed by peanuts. Full article
(This article belongs to the Collection Crop Physiology and Stress)
15 pages, 920 KiB  
Article
Toxicity and Detoxification Enzyme Inhibition in the Two-Spotted Spider Mite (Tetranychus urticae Koch) by Artemisia annua L. Essential Oil and Its Major Monoterpenoids
by Fatemeh Nasr Azadani, Jalal Jalali Sendi, Asgar Ebadollahi, Roya Azizi and William N. Setzer
Insects 2025, 16(8), 811; https://doi.org/10.3390/insects16080811 - 5 Aug 2025
Abstract
The two-spotted spider mite, Tetranychus urticae, is one of the polyphagous pests of several crops and forestry, resistant to numerous conventional chemicals. Due to the negative side effects of harmful chemical pesticides, such as environmental pollution, and risks to human health, the [...] Read more.
The two-spotted spider mite, Tetranychus urticae, is one of the polyphagous pests of several crops and forestry, resistant to numerous conventional chemicals. Due to the negative side effects of harmful chemical pesticides, such as environmental pollution, and risks to human health, the introduction of effective and low-risk alternatives is essential. The promising pesticidal effects of essential oils (EOs) isolated from Artemisia annua have been documented in recent studies. In the present study, the acaricidal effects of an A. annua EO, along with its two dominant monoterpenoids, 1,8-cineole and camphor, were investigated against adults of T. urticae. Artemisia annua EO, 1,8-cineole, and camphor, with 24 h-LC50 values of 0.289, 0.533, and 0.64 µL/L air, respectively, had significant toxicity by fumigation against T. urticae adults. Along with lethality, A. annua EO and monoterpenoids had significant inhibitory effects on the activity of detoxifying enzymes, including α- and β-esterases, glutathione S-transferases, and cytochrome P-450 monooxygenase. According to the findings of the present study, A. annua EO and its two dominant monoterpenoids, 1,8-cineole and camphor, with significant toxicity and inhibitory effects on detoxifying enzymes, can be introduced as available, effective, and eco-friendly acaricides in the management of T. urticae. Full article
(This article belongs to the Special Issue Plant Essential Oils for the Control of Insects and Mites)
Show Figures

Figure 1

23 pages, 4501 KiB  
Article
The Effect of SO2 Fumigation, Acid Dipping, and SO2 Combined with Acid Dipping on Metabolite Profile of ‘Heiye’ Litchi (Litchi chinensis Sonn.) Pericarp
by Feilong Yin, Zhuoran Li, Tingting Lai, Libing Long, Yunfen Liu, Dongmei Han, Zhenxian Wu, Liang Shuai and Tao Luo
Horticulturae 2025, 11(8), 923; https://doi.org/10.3390/horticulturae11080923 (registering DOI) - 5 Aug 2025
Abstract
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green [...] Read more.
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green pericarp by up-regulating lightness (L*), b*, C*, and but down-regulating total anthocyanin content (TAC) and a*, while HAT resulted in a reddish coloration by up-regulating a*, b*, and C* but down-regulating L*, h°, and TAC. SF+HAT recovered reddish color with similar L*, C* to SF but a*, b*, h°, and TAC between SF and HAT. Differential accumulated metabolites (DAMs) detected in HAT (vs. control) were more than those in SF (vs. control), but similar to those in SF+HAT (vs. control). SF specifically down-regulated the content of cyanidin-3-O-rutinoside, sinapinaldehyde, salicylic acid, and tyrosol, but up-regulated 6 flavonoids (luteolin, kaempferol-3-O-(6″-malonyl)galactoside, hesperetin-7-O-glucoside, etc.). Five pathways (biosynthesis of phenylpropanoids, flavonoid biosynthesis, biosynthesis of secondary metabolites, glutathione metabolism, and cysteine and methionine metabolism) were commonly enriched among the three treatments, which significantly up-regulated sulfur-containing metabolites (mainly glutathione, methionine, and homocystine) and down-regulated substrates for browning (mainly procyanidin B2, C1, and coniferyl alcohol). These results provide metabolic evidence for the effect of three treatments on coloration and storability of litchi. Full article
Show Figures

Figure 1

15 pages, 1527 KiB  
Article
Marine-Inspired Ovothiol Analogs Inhibit Membrane-Bound Gamma-Glutamyl-Transpeptidase and Modulate Reactive Oxygen Species and Glutathione Levels in Human Leukemic Cells
by Annalisa Zuccarotto, Maria Russo, Annamaria Di Giacomo, Alessandra Casale, Aleksandra Mitrić, Serena Leone, Gian Luigi Russo and Immacolata Castellano
Mar. Drugs 2025, 23(8), 308; https://doi.org/10.3390/md23080308 - 30 Jul 2025
Viewed by 232
Abstract
The enzyme γ-glutamyl transpeptidase (GGT), located on the surface of cellular membranes, hydrolyzes extracellular glutathione (GSH) to guarantee the recycling of cysteine and maintain intracellular redox homeostasis. High expression levels of GGT on tumor cells are associated with increased cell proliferation and resistance [...] Read more.
The enzyme γ-glutamyl transpeptidase (GGT), located on the surface of cellular membranes, hydrolyzes extracellular glutathione (GSH) to guarantee the recycling of cysteine and maintain intracellular redox homeostasis. High expression levels of GGT on tumor cells are associated with increased cell proliferation and resistance against chemotherapy. Therefore, GGT inhibitors have potential as adjuvants in treating GGT-positive tumors; however, most have been abandoned during clinical trials due to toxicity. Recent studies indicate marine-derived ovothiols as more potent non-competitive GGT inhibitors, inducing a mixed cell-death phenotype of apoptosis and autophagy in GGT-overexpressing cell lines, such as the chronic B leukemic cell HG-3, while displaying no toxicity towards non-proliferative cells. In this work, we characterize the activity of two synthetic ovothiol analogs, L-5-sulfanylhistidine and iso-ovothiol A, in GGT-positive cells, such as HG-3 and HL-60 cells derived from acute promyelocytic leukemia. The two compounds inhibit the activity of membrane-bound GGT, without altering cell vitality nor inducing cytotoxic autophagy in HG-3 cells. We provide evidence that a portion of L-5-sulfanylhistidine enters HG-3 cells and acts as a redox regulator, contributing to the increase in intracellular GSH. On the other hand, ovothiol A, which is mostly sequestered by external membrane-bound GGT, induces intracellular ROS increase and the consequent autophagic pathways. These findings provide the basis for developing ovothiol derivatives as adjuvants in treating GGT-positive tumors’ chemoresistance. Full article
(This article belongs to the Special Issue Marine-Derived Novel Antioxidants)
Show Figures

Graphical abstract

33 pages, 3764 KiB  
Article
Cu2+ and Zn2+ Ions Affecting Biochemical Paths and DNA Methylation of Rye (Secale cereale L.) Anther Culture Influencing Plant Regeneration Efficiency
by Wioletta Monika Dynkowska, Renata Orłowska, Piotr Waligórski and Piotr Tomasz Bednarek
Cells 2025, 14(15), 1167; https://doi.org/10.3390/cells14151167 - 29 Jul 2025
Viewed by 160
Abstract
Rye regeneration in anther cultures is problematic and affected by albino plants. DNA methylation changes linked to Cu2+ ions in the induction medium affect reprogramming microspores from gametophytic to sporophytic path. Alternations in S-adenosyl-L-methionine (SAM), glutathione (GSH), or β-glucans and changes in [...] Read more.
Rye regeneration in anther cultures is problematic and affected by albino plants. DNA methylation changes linked to Cu2+ ions in the induction medium affect reprogramming microspores from gametophytic to sporophytic path. Alternations in S-adenosyl-L-methionine (SAM), glutathione (GSH), or β-glucans and changes in DNA methylation in regenerants obtained under different in vitro culture conditions suggest a crucial role of biochemical pathways. Thus, understanding epigenetic and biochemical changes arising from the action of Cu2+ and Zn2+ that participate in enzymatic complexes may stimulate progress in rye doubled haploid plant regeneration. The Methylation-Sensitive Amplified Fragment Length Polymorphism approach was implemented to identify markers related to DNA methylation and sequence changes following the quantification of variation types, including symmetric and asymmetric sequence contexts. Reverse-Phase High-Pressure Liquid Chromatography (RP-HPLC) connected with mass spectrometry was utilized to determine SAM, GSH, and glutathione disulfide, as well as phytohormones, and RP-HPLC with a fluorescence detector to study polyamines changes originating in rye regenerants due to Cu2+ or Zn2+ presence in the induction medium. Multivariate and regression analysis revealed that regenerants derived from two lines treated with Cu2+ and those treated with Zn2+ formed distinct groups based on DNA sequence and methylation markers. Zn2+ treated and control samples formed separate groups. Also, Cu2+ discriminated between controls and treated samples, but the separation was less apparent. Principal coordinate analysis explained 85% of the total variance based on sequence variation and 69% of the variance based on DNA methylation changes. Significant differences in DNA methylation characteristics were confirmed, with demethylation in the CG context explaining up to 89% of the variance across genotypes. Biochemical profiles also demonstrated differences between controls and treated samples. The changes had different effects on green and albino plant regeneration efficiency, with cadaverine (Cad) and SAM affecting regeneration parameters the most. Analyses of the enzymes depend on the Cu2+ or Zn2+ ions and are implemented in the synthesis of Cad, or SAM, which showed that some of them could be candidates for genome editing. Alternatively, manipulating SAM, GSH, and Cad may improve green plant regeneration efficiency in rye. Full article
Show Figures

Figure 1

16 pages, 1501 KiB  
Article
Effects of Modified Attapulgite on Daily Weight Gain, Serum Indexes and Serum Metabolites in Fattening Beef Cattle
by Jiajie Wang, Hanfang Zeng, Hantong Weng, Haomiao Chang, Yunfei Zhai, Zhihui Huang, Chenchen Chu, Haihui Wang and Zhaoyu Han
Animals 2025, 15(15), 2167; https://doi.org/10.3390/ani15152167 - 23 Jul 2025
Viewed by 252
Abstract
In this study, we investigated the effects of dietary supplementation with thermally modified attapulgite on the daily weight gain, serum biochemical indices, and serum metabolites of Simmental fattening cattle. A total of 30 healthy Simmental fattening beef calves of similar age (8 to [...] Read more.
In this study, we investigated the effects of dietary supplementation with thermally modified attapulgite on the daily weight gain, serum biochemical indices, and serum metabolites of Simmental fattening cattle. A total of 30 healthy Simmental fattening beef calves of similar age (8 to 9 months old) and body weight (370 ± 10 kg) were randomly divided into two groups, each containing 15 animals. A control group was fed the basal diet, and a treatment group was fed the same basal diet with the addition of 4 g/kg of thermally modified attapulgite. After 75 days of formal experiment, the calves in the two groups were weighed, and blood samples were collected by tail vein blood sampling for determinations of the serum biochemical indices and serum metabolites using liquid chromatography–mass spectrometry (LC-MS) analysis. The results indicated that the addition of thermally modified attapulgite to the diet had no significant effects on the daily weight gain of fattening beef cattle. After feeding with modified attapulgite, the glutathione peroxidase and superoxide dismutase activities in the serum of the experimental group were 55.02% (257.26 U·mL−1 to 165.95 U·mL−1, p < 0.05) and 13.11% (18.98 U·mL−1 to 16.78 U·mL−1, p < 0.05) higher than that in the control group. Compared with the control group, the tumor necrosis factor-alpha content was reduced by 14.50% (31.27 pg·mL−1 to 36.57 pg·mL−1, p < 0.01), and the concentration of interleukin-6 and lipopolysaccharide decreased by 17.00% (34.33 pg·mL−1 to 41.36 pg·mL−1, p < 0.001) and 23.05% (51.34 EU·L−1 to 66.72 EU·L−1, p < 0.001) in the serum of the experimental group. Contrastingly, the thermally modified attapulgite had no significant effects on the levels of serum total protein, albumin, or globulin in Simmental fattening cattle (p > 0.05). Furthermore, the results of serum metabolomic analyses revealed that there were a total of 98 differential metabolites, which were mainly enriched with respect to glycerophospholipid metabolism, Th1 and Th2 cell differentiation, autophagy-other, retrograde endogenous cannabinoid signaling, and the NF-κB signaling pathway. Overall, thermally modified attapulgite was found to effectively increase the activity of antioxidant enzymes, reduce serum inflammatory mediators, may suppress oxidative damage, enhance immunity, and have a positive influence on the health of Simmental fattening beef calves. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

29 pages, 4742 KiB  
Article
Sustainable Tea Cultivation with a Rhizobacterial Consortium: A Microbiome-Driven Alternative to Chemical Fertilizers
by Silpi Sorongpong, Sourav Debnath, Praveen Rahi, Biswajit Bera and Piyush Pandey
Microorganisms 2025, 13(8), 1715; https://doi.org/10.3390/microorganisms13081715 - 22 Jul 2025
Viewed by 967
Abstract
The excessive use of chemical fertilizers in tea cultivation threatens soil health, environmental sustainability, and long-term crop productivity. This study explores the application of plant growth-promoting bacteria (PGPB) as an eco-friendly alternative to conventional fertilizers. A bacterial consortium was developed using selected rhizobacterial [...] Read more.
The excessive use of chemical fertilizers in tea cultivation threatens soil health, environmental sustainability, and long-term crop productivity. This study explores the application of plant growth-promoting bacteria (PGPB) as an eco-friendly alternative to conventional fertilizers. A bacterial consortium was developed using selected rhizobacterial isolates—Lysinibacillus fusiformis, five strains of Serratia marcescens, and two Bacillus spp.—based on their phosphate and zinc solubilization abilities and production of ACC deaminase, indole-3-acetic acid, and siderophores. The consortium was tested in both pot and field conditions using two tea clones, S3A3 and TS491, and compared with a chemical fertilizer treatment. Plants treated with the consortium showed enhanced growth, biomass, and antioxidant activity. The total phenolic contents increased to 1643.6 mg GAE/mL (S3A3) and 1646.93 mg GAE/mL (TS491), with higher catalase (458.17–458.74 U/g/min), glutathione (34.67–42.67 µmol/gfw), and superoxide dismutase (679.85–552.28 units/gfw/s) activities. A soil metagenomic analysis revealed increased microbial diversity and the enrichment of phyla, including Acidobacteria, Proteobacteria, Actinobacteria, Chloroflexi, and Firmicutes. Functional gene analysis showed the increased abundance of genes for siderophore biosynthesis, glutathione and nitrogen metabolism, and indole alkaloid biosynthesis. This study recommends the potential of a PGPB consortium as a sustainable alternative to chemical fertilizers, enhancing both the tea plant performance and soil microbial health. Full article
Show Figures

Figure 1

19 pages, 4583 KiB  
Article
Glutathione and Magnetic Nanoparticle-Modified Nanochannels for the Detection of Cadmium (II) in Cereal Grains
by Wei Hu, Xinyue Xiang, Donglei Jiang, Na Zhang and Lifeng Wang
Magnetochemistry 2025, 11(7), 61; https://doi.org/10.3390/magnetochemistry11070061 - 21 Jul 2025
Viewed by 249
Abstract
We developed a novel and portable magnetic nanochannel electrochemical sensor for the sensitive detection of cadmium ions (Cd2+), which pose serious risks to food safety and human health. The sensor was fabricated by co-modifying an anodic aluminum oxide (AAO) nanochannel membrane [...] Read more.
We developed a novel and portable magnetic nanochannel electrochemical sensor for the sensitive detection of cadmium ions (Cd2+), which pose serious risks to food safety and human health. The sensor was fabricated by co-modifying an anodic aluminum oxide (AAO) nanochannel membrane with a composite of glutathione (GSH) and ferric oxide nanoparticles (Fe3O4), denoted as GSH@Fe3O4. This modified membrane was then integrated with a screen-printed carbon electrode (SPCE) to construct the GSH@Fe3O4/GSH@AAO/SPCE sensing platform. The performance of the sensor was evaluated using differential pulse voltammetry (DPV), which demonstrated a strong linear correlation between the peak current response and the concentration of Cd2+ in the range of 5–120 μg/L. The calibration equation was IDPV(μA) = −0.31 + 0.98·CCd2+(μg/L), with an excellent correlation coefficient (R2 = 0.999, n = 3). The calculated limit of detection (LOD) was as low as 0.1 μg/L, indicating the high sensitivity of the system. These results confirm the successful construction of the GSH@Fe3O4/GSH@AAO/SPCE portable nanochannel sensor. This innovative sensing platform provides a rapid, sensitive, and user-friendly approach for the on-site monitoring of heavy metal contamination in agricultural products, especially grains. Full article
Show Figures

Figure 1

21 pages, 7147 KiB  
Article
A Novel Polysaccharide from Blackened Jujube: Structural Characterization and Immunoactivity
by Meng Meng, Fang Ning, Xiaoyang He, Huihui Li, Yinyin Feng, Yanlong Qi and Huiqing Sun
Foods 2025, 14(14), 2531; https://doi.org/10.3390/foods14142531 - 19 Jul 2025
Viewed by 401
Abstract
Previously, research adopted an ultrasound-assisted extraction method to isolate crude polysaccharide from blackened jujube, followed by preliminary structural identification of the purified polysaccharide (BJP). This manuscript analyzed the accurate structure and immunomodulatory activity of BJP. Further structural identification indicated that BJP was mainly [...] Read more.
Previously, research adopted an ultrasound-assisted extraction method to isolate crude polysaccharide from blackened jujube, followed by preliminary structural identification of the purified polysaccharide (BJP). This manuscript analyzed the accurate structure and immunomodulatory activity of BJP. Further structural identification indicated that BJP was mainly composed of →3)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →3)-β-D-GalpA-(1→, →2,4)-β-D-Galp-(1→, →4)-β-D-GalpA-(1→, →3)-α-L-Rhap-(1→ and →3,4)-α-L-Rhap-(1→. The immunomodulatory effects of BJP were examined using a mouse model with immunosuppression induced by cyclophosphamide. The findings suggested that BJP could relieve the condition of immunosuppressed mice. BJP could inhibit decreases in the body weight and organ index of mice, and HE staining showed that BJP could alleviate the harm to spleen and thymus tissues. BJP enhanced the secretion of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), interleukin-6 (IL-6), immunoglobulin A (IgA), and immunoglobulin G (IgG) in serum. It also reduced liver oxidative stress by increasing superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities, while lowering malondialdehyde (MDA) levels. Moreover, BJP contributed to the maintenance of gut homeostasis by stimulating the generation of short-chain fatty acids in the cecal contents. The study aims to establish a solid basis for the comprehensive development of blackened jujube and furnish a theoretical framework for its polysaccharides’ role in immune modulation. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

20 pages, 1903 KiB  
Article
Study on the Regulatory Effect of Water Extract of Artemisia annua L. on Antioxidant Function of Mutton Sheep via the Keap1/Nrf2 Signaling Pathway
by Gen Gang, Ruiheng Gao, Ruizhen Li, Xiao Jin, Yuanyuan Xing, Sumei Yan, Yuanqing Xu and Binlin Shi
Antioxidants 2025, 14(7), 885; https://doi.org/10.3390/antiox14070885 - 18 Jul 2025
Viewed by 363
Abstract
This study was conducted through in vivo and in vitro experiments and aimed to reveal the regulatory effect of water extract of Artemisia annua L. (WEAA) on the antioxidant function of mutton sheep and the underlying mechanism. In the in vivo experiment, 32 [...] Read more.
This study was conducted through in vivo and in vitro experiments and aimed to reveal the regulatory effect of water extract of Artemisia annua L. (WEAA) on the antioxidant function of mutton sheep and the underlying mechanism. In the in vivo experiment, 32 Dorper × Han female sheep (3 months old; avg. body weight: 24 ± 0.09 kg) were allocated to four groups (eight lambs/group) and fed a diet containing 0, 500, 1000, and 1500 mg/kg WEAA, respectively. In the in vitro experiments, peripheral blood lymphocytes (PBLs) were cultured with different doses of WEAA (0, 25, 50, 100, 200, 400 µg/mL) to determine the optimal concentration, followed by a 2 × 2 factorial experiment with four treatment groups (six replicates per treatment group): the ML385(−)/WEAA(−) group, the ML385(−)/WEAA(+) group, the ML385(+)/WEAA(−) group, and the ML385(+)/WEAA(+) group. The results showed that WEAA supplementation dose-dependently increased serum, liver and spleen tissue total antioxidant capacity, glutathione peroxidase (GSH-Px), and catalase (CAT) activity while reducing malondialdehyde level (p < 0.05). Moreover, WEAA supplementation significantly upregulated the liver and spleen expression of nuclear factor erythroid 2-related factor 2, superoxide dismutase 2, GSH-Px, CAT and NAD(P)H quinone dehydrogenase 1 (p < 0.05) while significantly downregulating the kelch-like ECH associated protein 1 expression in a dose-dependent manner (p < 0.05), thereby activating the Keap1/Nrf2 pathway with the peak effect observed in the 1000 mg/kg WEAA group. Additionally, supplementation with 100 µg/mL of WEAA had significant antioxidation activity in the culture medium of PBLs. Its action mechanism involved the Keap1/Nrf2 pathway; specifically, WEAA exerted its antioxidant effect by upregulating the gene expression related to the Keap1/Nrf2 pathway. In conclusion, WEAA enhances sheep’s antioxidant capacity by up-regulating Keap1/Nrf2 pathway genes and boosting antioxidant enzyme activity. The results provided experimental support for the potential application of WEAA in intensive mutton sheep farming. Full article
Show Figures

Figure 1

37 pages, 911 KiB  
Review
Expression of Free Radicals and Reactive Oxygen Species in Endometriosis: Current Knowledge and Its Implications
by Jeongmin Lee, Seung Geun Yeo, Jae Min Lee, Sung Soo Kim, Jin-Woo Lee, Namhyun Chung and Dong Choon Park
Antioxidants 2025, 14(7), 877; https://doi.org/10.3390/antiox14070877 - 17 Jul 2025
Viewed by 425
Abstract
This review explores the dual role of reactive oxygen species (ROS) and free radicals in the pathogenesis of endometriosis, aiming to deepen our understanding of these processes through a systematic literature review. To assess the induction and involvement of ROS in endometriosis, we [...] Read more.
This review explores the dual role of reactive oxygen species (ROS) and free radicals in the pathogenesis of endometriosis, aiming to deepen our understanding of these processes through a systematic literature review. To assess the induction and involvement of ROS in endometriosis, we conducted a comprehensive literature review using Cochrane Libraries, EMBASE, Google Scholar, PubMed, and SCOPUS databases. Of 30 qualifying papers ultimately reviewed, 28 reported a significant contribution of ROS to the pathogenesis of endometriosis, while two found no association. The presence of ROS in endometriosis is associated with infertility, irregular menstrual cycles, painful menstruation, and chronic pelvic discomfort. Among individual ROS types studied, hydrogen peroxide was most frequently investigated, followed by lipid peroxides and superoxide radicals. Notable polymorphisms associated with ROS in endometriosis include those for AT-rich interactive domain 1A (ARID1A) and quinone oxidoreductase 1 (NQO1) isoforms. Key enzymes for ROS scavenging and detoxification include superoxide dismutase, glutathione, and glutathione peroxidase. Effective inhibitors of ROS related to endometriosis are vitamins C and E, astaxanthin, fatty acid-binding protein 4, cerium oxide nanoparticles (nanoceria), osteopontin, sphingosine 1-phosphate, N-acetyl-L-cysteine, catalase, and a high-antioxidant diet. Elevated levels of ROS and free radicals are involved in the pathogenesis of endometriosis, suggesting that targeting these molecules could offer potential therapeutic strategies. Full article
Show Figures

Figure 1

22 pages, 3313 KiB  
Article
Transcriptome Analysis and CFEM Gene Overexpression in Metschnikowia bicuspidata Under Hemocyte and Iron Ion Stress
by Bingnan Zuo, Xiaodong Li, Ji Zhang, Bingyu Li, Na Sun and Fang Liang
Pathogens 2025, 14(7), 691; https://doi.org/10.3390/pathogens14070691 - 14 Jul 2025
Viewed by 349
Abstract
The “milky disease” in Chinese mitten crabs (Eriocheir sinensis), caused by Metschnikowia bicuspidata, poses significant threats to aquaculture, though its pathogenic mechanisms remain poorly understood. This study employs transcriptomic sequencing to analyze gene expression changes in Metschnikowia bicuspidata under hemocyte [...] Read more.
The “milky disease” in Chinese mitten crabs (Eriocheir sinensis), caused by Metschnikowia bicuspidata, poses significant threats to aquaculture, though its pathogenic mechanisms remain poorly understood. This study employs transcriptomic sequencing to analyze gene expression changes in Metschnikowia bicuspidata under hemocyte challenge, iron overload (1 mmol/mL), and combined stress, with functional validation through Common in Fungal Extracellular Membrane (CFEMgene) overexpression strains. Key findings reveal that (1) hemocyte challenge activated base excision repair (−log10[P] = 7.58) and ribosome biogenesis pathways, indicating fungal adaptation through DNA repair and enhanced protein synthesis to counter host immune attacks (e.g., ROS-mediated damage). (2) Iron overload induced glutathione metabolism and pentose phosphate pathway enrichment, demonstrating mitigation of ferroptosis through NADPH/GSH antioxidant systems and autophagy/proteasome coordination. (3) Under combined stress, ribosome biogenesis (−log10[P] = 1.3) and non-homologous end-joining pathways coordinated DNA repair with stress protein synthesis, complemented by vacuolar V-ATPase-mediated iron compartmentalization. (4) CFEM genes showed significant upregulation under hemocyte stress, with overexpression strains exhibiting enhanced biofilm formation (35% increased MTT cytotoxicity) and infectivity (40% higher infection rate), confirming CFEM domains mediate pathogenesis through iron homeostasis and virulence factor production. This work elucidates how M. bicuspidata employs metabolic reprogramming, oxidative stress responses, and CFEM-mediated iron regulation to establish infection, providing critical insights for developing targeted control strategies against milky disease. Full article
Show Figures

Figure 1

12 pages, 730 KiB  
Article
Variation in Arterial Stiffness and Markers of Oxidative Stress in Patients with Type 2 Diabetes Mellitus from Different Ethnic Groups
by Karima Zitouni, Mia Steyn, Joanna Lewis, Frank J. Kelly, Paul Cook and Kenneth A. Earle
Antioxidants 2025, 14(7), 858; https://doi.org/10.3390/antiox14070858 - 14 Jul 2025
Viewed by 324
Abstract
Diabetes is the world’s leading cause of renal and premature cardiovascular disease. There are marked differences between groups of patients with different ethnicities in their susceptibility to diabetes and its renal and cardiovascular complications. Novel markers of developing diabetes complications are related to [...] Read more.
Diabetes is the world’s leading cause of renal and premature cardiovascular disease. There are marked differences between groups of patients with different ethnicities in their susceptibility to diabetes and its renal and cardiovascular complications. Novel markers of developing diabetes complications are related to disturbances in oxidative metabolism. In this cross-sectional study, we measured the arterial stiffness in patients of differing ethnicities with type 2 diabetes mellitus and assessed the relationship of their ethnicity with systemic markers of oxidative stress. Patients from black, African and Caribbean, and Asian minor ethnic groups were studied, with white patients with T2DM (n = 170) without evidence of cardiovascular disease (CVD). The vascular stiffness was measured by infrared finger-photoplethysmography. The oxidative stress burden was assessed by measuring the urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), activities of plasma glutathione peroxidase (GPx-3), superoxide dismutase (SOD) activities, and concentration of selenium. The vascular stiffness and 8-OHdG were higher in the white than in the Black patients (9.68 m/s vs. 9.26 m/s, p = 0.021 and 292.8 ng/mL vs. 200.9 ng/mL, p = 0.0027, respectively). Meanwhile, the GPx-3 and SOD activities and selenium were lower in the white than in the Black patients (283.3 U/L vs. 440.4 U/L, p < 0.0001; 37.5 U/L vs. 75.6 U/L, p = 0.0007; and 1.14 vs. 1.28 µmol/L, p = 0.0001, respectively). In regression modelling, the 8-OHdG/creatinine ratio was an independent predictor of vascular stiffness in the white patient group (β = 0.23 m/s per unit increase in ln(8-OHdG/creatinine) [95% CI, 0.03 to 0.42]; p = 0.021) but not in the Black patient group (p = 0.29). Increased vascular stiffness, lower endogenous antioxidant defense, and greater levels of oxidative damage were found in patients of white ethnicity, which could contribute to the higher incidence of CVD compared with patients from Black minor ethnic groups with diabetic renal disease. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

27 pages, 1303 KiB  
Review
Nutrition and DNA Methylation: How Dietary Methyl Donors Affect Reproduction and Aging
by Fanny Cecília Dusa, Tibor Vellai and Miklós Sipos
Dietetics 2025, 4(3), 30; https://doi.org/10.3390/dietetics4030030 - 14 Jul 2025
Viewed by 593
Abstract
Methylation is a biochemical process involving the addition of methyl groups to proteins, lipids, and nucleic acids (both DNA and RNA). DNA methylation predominantly occurs on cytosine and adenine nucleobases, and the resulting products—most frequently 5-methylcytosine and N6-methyladenine epigenetic marks—can significantly [...] Read more.
Methylation is a biochemical process involving the addition of methyl groups to proteins, lipids, and nucleic acids (both DNA and RNA). DNA methylation predominantly occurs on cytosine and adenine nucleobases, and the resulting products—most frequently 5-methylcytosine and N6-methyladenine epigenetic marks—can significantly influence gene activity at the affected genomic sites without modifying the DNA sequence called nucleotide order. Various environmental factors can alter the DNA methylation pattern. Among these, methyl donor micronutrients, such as specific amino acids, choline, and several B vitamins (including folate, pyridoxine, thiamine, riboflavin, niacin, and cobalamin), primarily regulate one-carbon metabolism. This molecular pathway stimulates glutathione synthesis and recycles intracellular methionine. Glutathione plays a pivotal role during oocyte activation by protecting against oxidative stress, whereas methionine is crucial for the production of S-adenosyl-L-methionine, which serves as the universal direct methyl donor for cellular methylation reactions. Because local DNA methylation patterns at genes regulating fertility can be inherited by progeny for multiple generations even in the absence of the original disrupting factors to which the parent was exposed, and DNA methylation levels at specific genomic sites highly correlate with age and can also be passed to offspring, nutrition can influence reproduction and life span in a transgenerational manner. Full article
Show Figures

Figure 1

20 pages, 4343 KiB  
Article
Transcriptome Analysis of Resistant and Susceptible Sorghum Lines to the Sorghum Aphid (Melanaphis sacchari (Zehntner))
by Minghui Guan, Junli Du, Jieqin Li, Tonghan Wang, Lu Sun, Yongfei Wang and Degong Wu
Agriculture 2025, 15(14), 1502; https://doi.org/10.3390/agriculture15141502 - 12 Jul 2025
Viewed by 235
Abstract
The sorghum aphid (Melanaphis sacchari (Zehntner, 1897)), a globally destructive pest, severely compromises sorghum yield and quality. This study compared aphid-resistant (HX133) and aphid-susceptible (HX37) sorghum (Sorghum bicolor (L.) Moench) cultivars, revealing that HX133 significantly suppressed aphid proliferation through repellent and [...] Read more.
The sorghum aphid (Melanaphis sacchari (Zehntner, 1897)), a globally destructive pest, severely compromises sorghum yield and quality. This study compared aphid-resistant (HX133) and aphid-susceptible (HX37) sorghum (Sorghum bicolor (L.) Moench) cultivars, revealing that HX133 significantly suppressed aphid proliferation through repellent and antibiotic effects, while aphid populations increased continuously in HX37. Transcriptome analysis identified 2802 differentially expressed genes (DEGs, 45.9% upregulated) in HX133 at 24 h post-infestation, in contrast with only 732 DEGs (21% upregulated) in HX37. Pathway enrichment highlighted shikimate-mediated phenylpropanoid/flavonoid biosynthesis and glutathione metabolism as central to HX133’s defense response, alongside photosynthesis-related pathways common to both cultivars. qRT-PCR validation confirmed activation of the shikimate pathway in HX133, driving the synthesis of dhurrin—a cyanogenic glycoside critical for aphid resistance—and other tyrosine-derived metabolites (e.g., benzyl isoquinoline alkaloids, tocopherol). These findings demonstrate that HX133 employs multi-layered metabolic regulation, particularly dhurrin accumulation, to counteract aphid infestation, whereas susceptible cultivars exhibit limited defense induction. This work provides molecular targets for enhancing aphid resistance in sorghum breeding programs. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

Back to TopTop