A Novel Polysaccharide from Blackened Jujube: Structural Characterization and Immunoactivity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of BJP
2.3. Structure Analysis of BJP
2.3.1. Methylation Analysis
2.3.2. Nuclear Magnetic Analysis
2.3.3. Congo Red Analysis
2.4. In Vivo Immune Activity
2.4.1. Animal and Experimental Design
2.4.2. Body Weight and Organ Index
2.4.3. Histopathological Analysis
2.4.4. Determination of Inflammatory Factors in Mouse Serum
2.4.5. Determination of Immunoglobulin in Mouse Serum
2.4.6. Determination of Antioxidant Capacity of Liver
2.4.7. Determination of Short-Chain Fatty Acids
2.4.8. Statistical Analysis
3. Results
3.1. Structural Characterization of BJP
3.1.1. Methylation Analysis
3.1.2. Nuclear Magnetic Analysis
3.1.3. Congo Red Analysis
3.2. In Vivo Immunity
3.2.1. Measurement of Body Weight and Organ Index
3.2.2. Histopathological Analysis
3.2.3. Determination of Inflammatory Factors in Serum
3.2.4. Determination of Immunoglobulin in Serum
3.2.5. Determination of Antioxidant Capacity of Liver Tissue
3.2.6. Determination of Short-Chain Fatty Acid (SCFA) Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ríos-Ríos, K.L.; Montilla, A.; Olano, A.; Villamiel, M. Physicochemical changes and sensorial properties during black garlic elaboration: A review. Trends Food Sci. Technol. 2019, 88, 459–467. [Google Scholar] [CrossRef]
- Ruan, J.Y.; Yu, H.; Kennedy, J.F.; Jiang, H.Y.; Cao, H.N.; Zhang, Y.; Wang, T. A review on polysaccharides from jujube and their pharmacological activities. Carbohydr. Polym. Technol. Appl. 2022, 3, 100220. [Google Scholar] [CrossRef]
- Yang, Y.M.; Qiu, Z.C.; Li, L.Y.; Vidyarthi, S.K.; Zheng, Z.J.; Zhang, R.T. Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from Ziziphus jujuba cv. Hamidazao: A comparison. Carbohydr. Polym. 2021, 261, 117879. [Google Scholar] [CrossRef] [PubMed]
- Hoshyar, R.; Mohaghegh, Z.; Torabi, N.; Abolghasemi, A. Antitumor activity of aqueous extract of Ziziphus jujube fruit in breast cancer: An in vitro and in vivo study. Asian Pac. J. Reprod. 2015, 4, 116–122. [Google Scholar] [CrossRef]
- Ji, X.L.; Chen, J.; Li, Z.R.; Meng, Y.; Li, X.Q. Digestion characteristics of jujube polysaccharide and its regulatory effect on intestinal microbiota and metabolites during in vitro fermentation. LWT 2024, 210, 116869. [Google Scholar] [CrossRef]
- Yuan, L.L.; Qiu, Z.C.; Yang, Y.M.; Liu, C.; Zhang, R.T. Preparation, structural characterization and antioxidant activity of water-soluble polysaccharides and purified fractions from blackened jujube by an activity-oriented approach. Food Chem. 2022, 385, 132637. [Google Scholar] [CrossRef] [PubMed]
- Chuang, L.; Qiu, Z.C.; Gu, D.Y.; Wang, F.Z.; Zhang, R.T. A novel anti-inflammatory polysaccharide from blackened jujube: Structural features and protective effect on dextran sulfate sodium-induced colitic mice. Food Chem. 2023, 405, 132637. [Google Scholar] [CrossRef]
- Joosten, L.; Moorlag, S.J.C.F.M.; Matzaraki, V.; van Puffelen, J.H.; van der Heijden, C.; Keating, S.; Groh, L.; Röring, R.J.; Bakker, O.B.; Mourits, V.P.; et al. An integrative genomics approach identifies KDM4 as a modulator of trained immunity. Eur. J. Immunol. 2021, 52, 431–446. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.; Glozier, N.; Dale, R.; Guastella, A.J. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder. Neurosci. Bull. 2017, 33, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Griseri, T.; Arnold, I.C.; Pearson, C.; Krausgruber, T.; Schiering, C.; Franchini, F.; Schulthess, J.; Mckenzie, B.S.; Crocker, P.R.; Powrie, F. Granulocyte Macrophage Colony-Stimulating Factor-Activated Eosinophils Promote Interleukin-23 Driven Chronic Colitis. Immunity 2015, 43, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Erkelens, M.N.; Goverse, G.; Konijn, T.; Molenaar, R.; Beijer, M.R.; Van den Bossche, J.; de Goede, K.E.; Verberk, S.G.S.; de Jonge, W.J.; den Haan, J.M.M.; et al. Intestinal Macrophages Balance Inflammatory Expression Profiles via Vitamin A and Dectin-1-Mediated Signaling. Front. Immunol. 2020, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Sun-Waterhouse, D.; Cui, C. Hypoglycemic polysaccharides from Auricularia auricula and Auricularia polytricha inhibit oxidative stress, NF-κB signaling and proinflammatory cytokine production in streptozotocin-induced diabetic mice. Food Sci. Hum. Wellness 2020, 10, 87–93. [Google Scholar] [CrossRef]
- Li, M.Z.; Huang, X.J.; Wen, J.J.; Chen, S.K.; Wu, X.C.; Ma, W.N.; Cui, S.W.; Xie, M.Y.; Nie, S.P. Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response. Carbohydr. Polym. 2023, 305, 120533. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Ding, R.X.; Sun, J.; Liu, J.; Kan, J.; Jin, C.H. The impacts of natural polysaccharides on intestinal microbiota and immune responses—A review. Food Funct. 2019, 10, 2290–2312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.Y.; Dong, Y.H.; Chen, G.T.; Hu, Q.H. Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2009, 80, 783–789. [Google Scholar] [CrossRef]
- Song, F.F.; Ning, F.; Feng, Y.Y.; Zhang, Y.J.; Gong, F.; Ning, C.B.; Yu, Y.; Zhang, R.; Han, R.; Qi, Y.L.; et al. The polysaccharides from blackened jujube with ultrasonic assistance extraction: Optimization of extraction conditions, antioxidant activity and structural analysis. LWT 2024, 213, 117077. [Google Scholar] [CrossRef]
- Hong, Y.W.; Ying, T.J. Isolation, molecular characterization and antioxidant activity of a water-soluble polysaccharide extracted from the fruiting body of Termitornyces albuminosus (Berk.) Heim. Int. J. Biol. Macromol. 2018, 122, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, M.L.; Jiao, F.R.; Ge, W.X.; Liu, R.; Zhi, Z.J.; Wu, T.; Sui, W.J.; Zhang, M. Soluble dietary fibers from solid-state fermentation of wheat bran by the fungus Cordyceps cicadae and their effects on colitis mice. Food Funct. 2024, 15, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Q.; Wang, D.G.; Yan, T.X.; Jiang, W.F.; Han, X.Y.; Yan, J.F.; Guo, Y.R. Nanostructures assembly and the property of polysaccharide extracted from Tremella Fuciformis fruiting body. Int. J. Bio.l Macromol. 2019, 137, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Chen, S.; Liu, H.J.; Xie, J.; Hasan, K.M.F.; Zeng, Q.B.; Wei, S.F.; Luo, P. Structural properties and anti-inflammatory activity of purified polysaccharides from Hen-of-the-woods mushrooms (Grifola frondosa). Front. Nutr. 2023, 10, 1078868. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.G.; Ye, L.; Tang, Y.P.; Zheng, J.W.; Tian, X.X.; Yang, Y.X.; Yang, Z. Preparation and purification of an immunoregulatory peptide from Stolephorus chinensis of the East Sea of China. Process Biochem. 2020, 98, 151–159. [Google Scholar] [CrossRef]
- Suzuki, A.; Leland, P.; Joshi, B.H.; Puri, R.K. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015, 75, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.X.; Shen, M.Y.; Wu, T.; Yu, Y.; Yu, Q.; Chen, Y.; Xie, J.H. Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways. Int. J. Biol. Macromol. 2020, 152, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Huang, T.; Hammarström, L.; Zhao, Y. The Immunoglobulins: New Insights, Implications, and Applications. Annu. Rev. Anim. Biosci. 2020, 8, 145–169. [Google Scholar] [CrossRef] [PubMed]
- Evidarsson, G.; Edekkers, G.; Erispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Chang, C.; Gershwin, M.E. IgA deficiency and autoimmunity. Autoimmun. Rev. 2014, 13, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Hüttemann, M. Energy crisis: The role of oxidative phosphorylation in acute inflammation and sepsis. Biochim. Biophys. Acta. 2014, 1842, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: A comprehensive review. Int. J. Biol. Macromol. 2024, 260, 129374. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, T.D.; Murray, I.A.; Nichols, R.G.; Cassel, K.; Podolsky, M.; Kuzu, G.; Tian, Y.; Smith, P.; Kennett, M.J.; Patterson, A.D.; et al. Dietary broccoli impacts microbial community structure and attenuates chemically induced colitis in mice in an Ah receptor dependent manner. J. Funct. Foods. 2017, 37, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; Vadder, F.D.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Wrzosek, L.; Miquel, S.; Noordine, M.L.; Bouet, S.; Joncquel Chevalier-Curt, M.; Robert, V.; Philippe, C.; Bridonneau, C.; Cherbuy, C.; Robbe-Masselot, C.; et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 2013, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Al-Lahham, S.H.; Peppelenbosch, M.P.; Roelofsen, H.; Vonk, R.J.; Venema, K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim. Biophys. Acta. 2010, 1801, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Laparra, J.M.; Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res. 2009, 61, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kayama, H.; Okumura, R.; Takeda, K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu. Rev. Immunol. 2020, 38, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.C.; Bueno, A.A.; de Souza, R.G.; Mota, J.F. Gut microbiota, probiotics and diabetes. Nutr. J. 2014, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Bao, K.S.; Song, M.Y.; Wang, S.S.; Li, T.D.; Wang, J.W.; Cheng, X.L.; Wang, L.Y.; Wang, S.Q.; Wen, T.C.; Zhu, Z.Y. Isolation, purification, characterization and immunomodulatory effects of polysaccharides from Dictyophora rubrovalvata waste. Ind. Crops Prod. 2023, 206, 117754. [Google Scholar] [CrossRef]
- Zhang, W.X.; Li, P.; Song, D.; Niu, H.; Shi, S.S.; Wang, S.C.; Duan, J.Y. Structural characterization and biological activities of two α-glucans from Radix Paeoniae Alba. Glycoconj. J. 2016, 33, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.X.; Hu, Y.H.; Zhao, J.Z.; Zhang, Y.P.; Guo, D.D.; Gao, C.Y.; Duan, J.Y.; Li, P. Immunoregulation and antioxidant activities of a novel acidic polysaccharide from Radix Paeoniae Alba. Glycoconj. J. 2020, 37, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Xue, N.X.; Svensson, B.; Bai, Y.X. Structure, function and enzymatic synthesis of glucosaccharides assembled mainly by α1 → 6 linkages—A review. Carbohydr. Polym. 2022, 275, 118705. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.P.; Jiao, K.P.; Luo, L.; Xiang, J.L.; Fan, J.L.; Zhang, X.Y.; Yi, J.P.; Zhu, W.X. Characterization and macrophage immunomodulatory activity of two polysaccharides from the flowers of Paeonia suffruticosa Andr. Int. J. Biol. Macromol. 2019, 124, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Horii, T.; Yoshinaga, K.; Kobayashi, N.; Seto, K.; Orikawa, Y.; Okamoto, M.; Eta, R.; Ohira, Y.; Katsunuma, K.; Hori, Y.; et al. Z-100, an Immunomodulatory Extract of Mycobacterium tuberculosis Strain Aoyama B, Prevents Spontaneous Lymphatic Metastasis of B16-BL6 Melanoma. Biol. Pharm. Bull. 2014, 37, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Oka, H.; Sasaki, H.; Shiraishi, Y.; Emori, Y.; Yoshinaga, K.; Takei, M. Z-100, an Immunomodulatory Arabinomannan Extracted from Mycobacterium tuberculosis Strain Aoyama B, Augments Anti-tumor Activities of X-Ray Irradiation against B16 Melanoma in Association with the Improvement of Type 1T Cell Responses. Biol. Pharm. Bull. 2004, 27, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.Y.; Ma, J.M.; Huang, C.X.; Lai, C.H.; Ling, Z.; Yong, Q. The immunomodulatory activity of degradation products of Sesbania cannabina galactomannan with different molecular weights. Int. J. Biol. Macromol. 2022, 205, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.H.; Wang, T.; Huang, C.X.; Lai, C.H.; Ling, Z.; Yong, Q. Effects of seleno-Sesbania canabina galactomannan on anti-oxidative and immune function of macrophage. Carbohydr. Polym. 2021, 261, 117833. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, Q.H.; Sun, Y.P.; Yang, B.Y.; Wang, Z.B.; Chai, G.F.; Guan, Y.Z.; Zhu, W.G.; Shu, Z.P.; Lei, X.; et al. Purification, characterization and immunomodulatory effects of Plantago depressa polysaccharides. Carbohydr. Polym. 2014, 112, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.L.; Li, Q.Y.; Wang, N.; Liu, Y.Y.; Wang, L.L.; Wang, J.R.; Liu, M.J.; Zhao, Z.H. Primary acetylated polysaccharides from jujube regulated the immune response and intestinal microbiota in immunosuppressive mice. J. Funct. Foods 2023, 109, 105790. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhou, H.L.; Zhao, J.L.; Sun, J.Q.; Li, M.; Sun, X.S. Microwave-assisted extraction, characterization and immunomodulatory activity on RAW264.7 cells of polysaccharides from Trichosanthes kirilowii Maxim seeds. Int. J. Biol. Macromol. 2020, 164, 2861–2872. [Google Scholar] [CrossRef] [PubMed]
- Thambiraj, S.R.; Phillios, M.; Koyyalamudi, S.R.; Reddy, N. Yellow lupin (Lupinus luteus L.) polysaccharides: Antioxidant, immunomodulatory and prebiotic activities and their structural characterisation. Food Chem. 2018, 267, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.J.; Yu, A.Q.; Wang, Z.B.; Meng, Y.; Kuang, H.X.; Wang, M. Genus Paeonia polysaccharides: A review on their extractions, purifications, structural characteristics, biological activities, structure-activity relationships and applications. Int. J. Biol. Macromol. 2024, 282, 137089. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.H.; Wang, T.; Lai, C.H.; Ling, Z.; Zhou, Y.M.; Yong, Q. The in vitro and in vivo Antioxidant and Immunomodulatory Activity of Incomplete Degradation Products of Hemicellulosic Polysaccharide (Galactomannan) From Sesbania cannabina. Front. Bioeng. Biotechnol. 2021, 9, 679558. [Google Scholar] [CrossRef] [PubMed]
Retention Time/min. | Methylated Sugar Residues | Connection Key Type | Main Mass Fragments (m/z) | Relative Molar Ratio |
---|---|---|---|---|
4.118 | 1,3,4-tri-O-Ac3-2,5-di-O-Me2-arabinitol | →3)-Araf-(1→ | 43.1, 71.1, 85, 117, 149, 162.9 | 0.63 |
6.751 | 1,3,4,5-tetra-O-Ac4-2-O-Me-arabinitol | →3,5)-Araf-(1→ | 57, 76.1, 93, 103.9, 131.9, 148.9, 167, 223.1, 280.8 | 3.56 |
4.118 | 1,3,5-tri-O-Ac3-2,4,6-di-O-Me3-galactitol | →3)-GalpA-(1→ | 43, 72.9, 84.9, 107.9, 128.9, 163, 223.1, 281 | 1.08 |
5.021 | 1,2,4,5-tetra-O-Ac4-3,6-di-O-Me2-galactitol | →2,4)-Galp-(1→ | 43.1, 74.9, 91, 102.9, 117, 130.9, 148.8, 159.1, 206.9, 280.8 | 1.71 |
7.722 | 1,4,5-tri-O-Ac3-2,3,6-di-O-Me3-galactitol | →4)-GalpA-(1→ | 41, 57, 76, 104.1, 124.9, 148.9, 164.9, 223, 280.8 | 1.00 |
4.032 | 1,3,5-tri-O-Ac3-6-deoxy-2,4-di-O-Me2-mannitol | →3)-Rhap-(1→ | 43, 59.1, 72.9, 86, 110.9, 126.9, 148.7, 167.9, 182.8, 242.8 | 0.67 |
4.736 | 1,3,4,5-tetra-O-Ac4-6-deoxy-2-O-Me-mannitol | →3,4)-Rhap(1→ | 43.1, 60, 74.9, 87.9, 106.9, 126.9, 149, 184, 205.8 | 0.64 |
Serial Number | Monosaccharide Residues | Chemical Shift (δ, ppm) | ||||||
---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | |||
H1 | H2 | H3 | H4 | H5 | H6 | |||
A | →3)-α-L-Araf-(1→ | C | 108.36 | 78.81 | 78.24 | 75.15 | 69.78 | - |
H | 5.38 | 4.56 | 4.12 | 3.91 | 3.81 | - | ||
B | →3,5)-α-L-Araf-(1→ | C | 109.38 | 80.18 | 78.92 | 74.87 | 72.57 | - |
H | 5.13 | 3.68 | 3.51 | 3.77 | 3.60 | - | ||
C | →3)-β-D-GalpA-(1→ | C | 107.16 | 83.81 | 76.12 | 74.38 | 70.34 | 170.90 |
H | 5.23 | 3.98 | 3.88 | 3.70 | 3.65 | - | ||
D | →2,4)-β-D-Galp-(1→ | C | 107.23 | 87.03 | 79.21 | 78.21 | 72.24 | 69.89 |
H | 5.10 | 4.10 | 4.01 | 3.86 | 3.72 | 3.58 | ||
E | →4)-β-D-GalpA-(1→ | C | 107.52 | 82.37 | 73.34 | 71.37 | 74.87 | 175.31 |
H | 5.07 | 4.18 | 3.84 | 3.72 | 3.63 | - | ||
F | →3)-α-L-Rhap-(1→ | C | 98.52 | 81.44 | 79.42 | 70.77 | 69.45 | 16.84 |
H | 5.18 | 4.08 | 3.97 | 3.85 | 3.74 | 1.19 | ||
G | →3,4)-α-L-Rhap-(1→ | C | 99.15 | 85.44 | 76.54 | 76.31 | 68.25 | 16.36 |
H | 5.05 | 4.25 | 4.05 | 3.95 | 3.84 | 1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, M.; Ning, F.; He, X.; Li, H.; Feng, Y.; Qi, Y.; Sun, H. A Novel Polysaccharide from Blackened Jujube: Structural Characterization and Immunoactivity. Foods 2025, 14, 2531. https://doi.org/10.3390/foods14142531
Meng M, Ning F, He X, Li H, Feng Y, Qi Y, Sun H. A Novel Polysaccharide from Blackened Jujube: Structural Characterization and Immunoactivity. Foods. 2025; 14(14):2531. https://doi.org/10.3390/foods14142531
Chicago/Turabian StyleMeng, Meng, Fang Ning, Xiaoyang He, Huihui Li, Yinyin Feng, Yanlong Qi, and Huiqing Sun. 2025. "A Novel Polysaccharide from Blackened Jujube: Structural Characterization and Immunoactivity" Foods 14, no. 14: 2531. https://doi.org/10.3390/foods14142531
APA StyleMeng, M., Ning, F., He, X., Li, H., Feng, Y., Qi, Y., & Sun, H. (2025). A Novel Polysaccharide from Blackened Jujube: Structural Characterization and Immunoactivity. Foods, 14(14), 2531. https://doi.org/10.3390/foods14142531