Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = kink soliton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2926 KiB  
Article
Exact Solutions and Soliton Transmission in Relativistic Wave Phenomena of Klein–Fock–Gordon Equation via Subsequent Sine-Gordon Equation Method
by Muhammad Uzair, Ali H. Tedjani, Irfan Mahmood and Ejaz Hussain
Axioms 2025, 14(8), 590; https://doi.org/10.3390/axioms14080590 - 29 Jul 2025
Viewed by 355
Abstract
This study explores the (1+1)-dimensional Klein–Fock–Gordon equation, a distinct third-order nonlinear differential equation of significant theoretical interest. The Klein–Fock–Gordon equation (KFGE) plays a pivotal role in theoretical physics, modeling high-energy particles and providing a fundamental framework for simulating relativistic wave phenomena. To find [...] Read more.
This study explores the (1+1)-dimensional Klein–Fock–Gordon equation, a distinct third-order nonlinear differential equation of significant theoretical interest. The Klein–Fock–Gordon equation (KFGE) plays a pivotal role in theoretical physics, modeling high-energy particles and providing a fundamental framework for simulating relativistic wave phenomena. To find the exact solution of the proposed model, for this purpose, we utilized two effective techniques, including the sine-Gordon equation method and a new extended direct algebraic method. The novelty of these approaches lies in the form of different solutions such as hyperbolic, trigonometric, and rational functions, and their graphical representations demonstrate the different form of solitons like kink solitons, bright solitons, dark solitons, and periodic waves. To illustrate the characteristics of these solutions, we provide two-dimensional, three-dimensional, and contour plots that visualize the magnitude of the (1+1)-dimensional Klein–Fock–Gordon equation. By selecting suitable values for physical parameters, we demonstrate the diversity of soliton structures and their behaviors. The results highlighted the effectiveness and versatility of the sine-Gordon equation method and a new extended direct algebraic method, providing analytical solutions that deepen our insight into the dynamics of nonlinear models. These results contribute to the advancement of soliton theory in nonlinear optics and mathematical physics. Full article
(This article belongs to the Special Issue Applied Nonlinear Dynamical Systems in Mathematical Physics)
Show Figures

Figure 1

22 pages, 9048 KiB  
Article
Chirped Soliton Perturbation and Benjamin–Feir Instability of Chen–Lee–Liu Equation with Full Nonlinearity
by Khalil S. Al-Ghafri and Anjan Biswas
Mathematics 2025, 13(14), 2261; https://doi.org/10.3390/math13142261 - 12 Jul 2025
Viewed by 220
Abstract
The objective of the present study is to detect chirped optical solitons of the perturbed Chen–Lee–Liu equation with full nonlinearity. By virtue of the traveling wave hypothesis, the discussed model is reduced to a simple form known as an elliptic equation. The latter [...] Read more.
The objective of the present study is to detect chirped optical solitons of the perturbed Chen–Lee–Liu equation with full nonlinearity. By virtue of the traveling wave hypothesis, the discussed model is reduced to a simple form known as an elliptic equation. The latter equation, which is a second-order ordinary differential equation, is handled by the undetermined coefficient method of two forms expressed in terms of the hyperbolic secant and tangent functions. Additionally, the auxiliary equation method is applied to derive several miscellaneous solutions. Various types of chirped solitons are revealed such as W-shaped, bright, dark, gray, kink and anti-kink waves. Taking into consideration the existence conditions, the dynamical behaviors of optical solitons and their corresponding chirp are illustrated. The modulation instability of the perturbed CLL equation is examined by means of the linear stability analysis. It is found that all solutions are stable against small perturbations. These entirely new results, compared to previous works, can be employed to understand pulse propagation in optical fiber mediums and dynamic characteristics of waves in plasma. Full article
Show Figures

Figure 1

19 pages, 2744 KiB  
Article
Chaotic Behaviour, Sensitivity Assessment, and New Analytical Investigation to Find Novel Optical Soliton Solutions of M-Fractional Kuralay-II Equation
by J. R. M. Borhan, E. I. Hassan, Arafa Dawood, Khaled Aldwoah, Amani Idris A. Sayed, Ahmad Albaity and M. Mamun Miah
Mathematics 2025, 13(13), 2207; https://doi.org/10.3390/math13132207 - 6 Jul 2025
Viewed by 376
Abstract
The implementation of chaotic behavior and a sensitivity assessment of the newly developed M-fractional Kuralay-II equation are the foremost objectives of the present study. This equation has significant possibilities in control systems, electrical circuits, seismic wave propagation, economic dynamics, groundwater flow, image and [...] Read more.
The implementation of chaotic behavior and a sensitivity assessment of the newly developed M-fractional Kuralay-II equation are the foremost objectives of the present study. This equation has significant possibilities in control systems, electrical circuits, seismic wave propagation, economic dynamics, groundwater flow, image and signal denoising, complex biological systems, optical fibers, plasma physics, population dynamics, and modern technology. These applications demonstrate the versatility and advantageousness of the stated model for complex systems in various scientific and engineering disciplines. One more essential objective of the present research is to find closed-form wave solutions of the assumed equation based on the (GG+G+A)-expansion approach. The results achieved are in exponential, rational, and trigonometric function forms. Our findings are more novel and also have an exclusive feature in comparison with the existing results. These discoveries substantially expand our understanding of nonlinear wave dynamics in various physical contexts in industry. By simply selecting suitable values of the parameters, three-dimensional (3D), contour, and two-dimensional (2D) illustrations are produced displaying the diagrammatic propagation of the constructed wave solutions that yield the singular periodic, anti-kink, kink, and singular kink-shape solitons. Future improvements to the model may also benefit from what has been obtained as well. The various assortments of solutions are provided by the described procedure. Finally, the framework proposed in this investigation addresses additional fractional nonlinear partial differential equations in mathematical physics and engineering with excellent reliability, quality of effectiveness, and ease of application. Full article
Show Figures

Figure 1

27 pages, 2813 KiB  
Article
Study of Optical Solitons and Quasi-Periodic Behaviour for the Fractional Cubic Quintic Nonlinear Pulse Propagation Model
by Lotfi Jlali, Syed T. R. Rizvi, Sana Shabbir and Aly R. Seadawy
Mathematics 2025, 13(13), 2117; https://doi.org/10.3390/math13132117 - 28 Jun 2025
Cited by 1 | Viewed by 247
Abstract
This study explores analytical soliton solutions for the cubic–quintic time-fractional nonlinear non-paraxial pulse transmission model. This versatile model finds numerous uses in fiber optic communication, nonlinear optics, and optical signal processing. The strength of the quintic and cubic nonlinear components plays a crucial [...] Read more.
This study explores analytical soliton solutions for the cubic–quintic time-fractional nonlinear non-paraxial pulse transmission model. This versatile model finds numerous uses in fiber optic communication, nonlinear optics, and optical signal processing. The strength of the quintic and cubic nonlinear components plays a crucial role in nonlinear processes, such as self-phase modulation, self-focusing, and wave combining. The fractional nonlinear Schrödinger equation (FNLSE) facilitates precise control over the dynamic properties of optical solitons. Exact and methodical solutions include those involving trigonometric functions, Jacobian elliptical functions (JEFs), and the transformation of JEFs into solitary wave (SW) solutions. This study reveals that various soliton solutions, such as periodic, rational, kink, and SW solitons, are identified using the complete discrimination polynomial methods (CDSPM). The concepts of chaos and bifurcation serve as the framework for investigating the system qualitatively. We explore various techniques for detecting chaos, including three-dimensional and two-dimensional graphs, time-series analysis, and Poincarè maps. A sensitivity analysis is performed utilizing a variety of initial conditions. Full article
Show Figures

Figure 1

18 pages, 15087 KiB  
Article
Dynamical Systems with Fractional Derivatives: Focus on Phase Portraits and Plasma Wave Propagation Using Lakshmanan–Porsezian–Daniel Model
by Abdul Ghaffar Khan, Muhammad Muddassar, Sultan Shoaib, Zia Ur Rehman and Muhammad Zahid
Axioms 2025, 14(6), 405; https://doi.org/10.3390/axioms14060405 - 27 May 2025
Viewed by 377
Abstract
In this research, we investigate the phenomenon of multistability and complex dynamic behaviors in plasma waves by utilizing advanced mathematical techniques. We examine how fractional-order derivatives influence plasma wave stability by applying the fractional diffusion–reaction model, the framework of nonlinear dynamical systems, and [...] Read more.
In this research, we investigate the phenomenon of multistability and complex dynamic behaviors in plasma waves by utilizing advanced mathematical techniques. We examine how fractional-order derivatives influence plasma wave stability by applying the fractional diffusion–reaction model, the framework of nonlinear dynamical systems, and the (GG2) method. The principal direction of our work is associated with different forms of oscillations in the plasma wave: non-linear periodic, solitons, and kink waves. This leads to the study of small amplitude pulses and solitary waves, which are significant in plasma activities. Using bifurcation analysis, we discuss how these waves appear and develop under different conditions, as well as determine which conditions generate the chaotic behavior or highly complex patterns of waves. We study the details of transitions between waves and their chaotic behavior to characterize the laws that govern their plasma environment. Moreover, we have used non-linear modeling and numerical simulations to understand in detail the complex patterns and the factors of stability underlying the phenomena of plasma waves. In addition, our study also investigates the correspondence between non-linearity, multi-stability, and the birth of complex structures such as solitons and kink waves. The solutions of the dynamical system produced by the proposed nonlinear model generate different patterns of response based on system parameter variation. These patterns include oscillations and decay behaviors. Research results about system stability and solution convergence under various parameter settings provide an extended performance evaluation of the proposed method through a better understanding of system dynamics. They increase our understanding of chaotic behavior in plasma systems and pave the way for applications in plasma physics and energy systems, as well as advanced technologies. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

25 pages, 13071 KiB  
Article
Optimizing Optical Fiber Communications: Bifurcation Analysis and Soliton Dynamics in the Quintic Kundu–Eckhaus Model
by Abdelhamid Mohammed Djaouti, Md. Mamunur Roshid, Harun-Or Roshid and Ashraf Al-Quran
Fractal Fract. 2025, 9(6), 334; https://doi.org/10.3390/fractalfract9060334 - 23 May 2025
Viewed by 506
Abstract
This paper investigates the bifurcation dynamics and optical soliton solutions of the integrable quintic Kundu–Eckhaus (QKE) equation with an M-fractional derivative. By adding quintic nonlinearity and higher-order dispersion, this model expands on the nonlinear Schrödinger equation, which makes it especially applicable in explaining [...] Read more.
This paper investigates the bifurcation dynamics and optical soliton solutions of the integrable quintic Kundu–Eckhaus (QKE) equation with an M-fractional derivative. By adding quintic nonlinearity and higher-order dispersion, this model expands on the nonlinear Schrödinger equation, which makes it especially applicable in explaining the propagation of high-power optical waves in fiber optics. To comprehend the behavior of the connected dynamical system, we categorize its equilibrium points, determine and analyze its Hamiltonian structure, and look at phase diagrams. Moreover, integrating along periodic trajectories yields soliton solutions. We achieve this by using the simplest equation approach and the modified extended Tanh method, which allow for a thorough investigation of soliton structures in the fractional QKE model. The model provides useful implications for reducing internet traffic congestion by including fractional temporal dynamics, which enables directed flow control to avoid bottlenecks. Periodic breather waves, bright and dark kinky periodic waves, periodic lump solitons, brilliant-dark double periodic waves, and multi-kink-shaped waves are among the several soliton solutions that are revealed by the analysis. The establishment of crucial parameter restrictions for soliton existence further demonstrates the usefulness of these solutions in optimizing optical communication systems. The theoretical results are confirmed by numerical simulations, highlighting their importance for practical uses. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

31 pages, 3063 KiB  
Article
Exploring Solitary Wave Solutions of the Generalized Integrable Kadomtsev–Petviashvili Equation via Lie Symmetry and Hirota’s Bilinear Method
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Symmetry 2025, 17(5), 710; https://doi.org/10.3390/sym17050710 - 6 May 2025
Cited by 2 | Viewed by 463
Abstract
This study sought to deepen our understanding of the dynamical properties of the newly extended (3+1)-dimensional integrable Kadomtsev–Petviashvili (KP) equation, which models the behavior of ion acoustic waves in plasmas and nonlinear optics. This paper aimed to perform [...] Read more.
This study sought to deepen our understanding of the dynamical properties of the newly extended (3+1)-dimensional integrable Kadomtsev–Petviashvili (KP) equation, which models the behavior of ion acoustic waves in plasmas and nonlinear optics. This paper aimed to perform Lie symmetry analysis and derive lump, breather, and soliton solutions using the extended hyperbolic function method and the generalized logistic equation method. It also analyzed the dynamical system using chaos detection techniques such as the Lyapunov exponent, return maps, and the fractal dimension. Initially, we focused on constructing lump and breather soliton solutions by employing Hirota’s bilinear method. Secondly, employing Lie symmetry analysis, symmetry generators were utilized to satisfy the Lie invariance conditions. This approach revealed a seven-dimensional Lie algebra for the extended (3+1)-dimensional integrable KP equation, incorporating translational symmetry (including dilation or scaling) as well as translations in space and time, which were linked to the conservation of energy. The analysis demonstrated that this formed an optimal sub-algebraic system via similarity reductions. Subsequently, a wave transformation method was applied to reduce the governing system to ordinary differential equations, yielding a wide array of exact solitary wave solutions. The extended hyperbolic function method and the generalized logistic equation method were employed to solve the ordinary differential equations and explore closed-form analytical solitary wave solutions for the diffusive system under consideration. Among the results obtained were various soliton solutions. When plotting the results of all the solutions, we obtained bright, dark, kink, anti-kink, peak, and periodic wave structures. The outcomes are illustrated using 2D, 3D, and contour plots. Finally, upon introducing the perturbation term, the system’s behavior was analyzed using chaos detection techniques such as the Lyapunov exponent, return maps, and the fractal dimension. The results contribute to a deeper understanding of the dynamic properties of the extended KP equation in fluid mechanics. Full article
(This article belongs to the Special Issue Advances in Nonlinear Systems and Symmetry/Asymmetry)
Show Figures

Figure 1

15 pages, 4808 KiB  
Article
Unveiling the Transformative Power: Exploring the Nonlocal Potential Approach in the (3 + 1)-Dimensional Yu–Toda–Sasa–Fukuyama Equation
by Enas Y. Abu El Seoud, Ahmed S. Rashed and Samah M. Mabrouk
Axioms 2025, 14(4), 298; https://doi.org/10.3390/axioms14040298 - 15 Apr 2025
Viewed by 304
Abstract
This paper focuses on the investigation of the Yu–Toda–Sasa–Fukuyama (YTSF) equation in its three-dimensional form. Based on the well-known Euler operator, a set of seven non-singular local multipliers is explored. Using these seven non-singular multipliers, the corresponding local conservation laws are derived. Additionally, [...] Read more.
This paper focuses on the investigation of the Yu–Toda–Sasa–Fukuyama (YTSF) equation in its three-dimensional form. Based on the well-known Euler operator, a set of seven non-singular local multipliers is explored. Using these seven non-singular multipliers, the corresponding local conservation laws are derived. Additionally, an auxiliary potential-related system of partial differential equations (PDEs) is constructed. This study delves into nonlocal systems, which reveal numerous intriguing exact solutions of the YTSF equation. The nonlinear systems exhibit stable structures such as kink solitons, representing transitions, and breather or multi-solitons, modeling localized energy packets and complex interactions. These are employed in materials science, optics, communications, and plasma. Additionally, patterns such as parabolic backgrounds with ripples inform designs involving structured or varying media such as waveguides. Full article
(This article belongs to the Special Issue Difference, Functional, and Related Equations, 2nd Edition)
Show Figures

Figure 1

11 pages, 412 KiB  
Article
Kink Soliton Solutions in the Logarithmic Schrödinger Equation
by Tony C. Scott and M. Lawrence Glasser
Mathematics 2025, 13(5), 827; https://doi.org/10.3390/math13050827 - 1 Mar 2025
Viewed by 752
Abstract
We re-examine the mathematical properties of the kink and antikink soliton solutions to the Logarithmic Schrödinger Equation (LogSE), a nonlinear logarithmic version of the Schrödinger Equation incorporating Everett–Hirschman entropy. We devise successive approximations with increasing accuracy. From the most successful forms, we formulate [...] Read more.
We re-examine the mathematical properties of the kink and antikink soliton solutions to the Logarithmic Schrödinger Equation (LogSE), a nonlinear logarithmic version of the Schrödinger Equation incorporating Everett–Hirschman entropy. We devise successive approximations with increasing accuracy. From the most successful forms, we formulate an analytical solution that provides a very accurate solution to the LogSE. Finally, we consider combinations of such solutions to mathematically model kink and antikink bound states, which can serve as a possible candidate for modeling dilatonic quantum gravity states. Full article
(This article belongs to the Section E4: Mathematical Physics)
Show Figures

Figure 1

26 pages, 13799 KiB  
Article
Analysis Modulation Instability and Parametric Effect on Soliton Solutions for M-Fractional Landau–Ginzburg–Higgs (LGH) Equation Through Two Analytic Methods
by Mohamed Abdalla, Md. Mamunur Roshid, Mahtab Uddin and Mohammad Safi Ullah
Fractal Fract. 2025, 9(3), 154; https://doi.org/10.3390/fractalfract9030154 - 28 Feb 2025
Cited by 6 | Viewed by 766
Abstract
This manuscript studies the M-fractional Landau–Ginzburg–Higgs (M-fLGH) equation in comprehending superconductivity and drift cyclotron waves in radially inhomogeneous plasmas, especially for coherent ion cyclotron wave propagation, aiming to explore the soliton solutions, the parameter’s effect, and modulation instability. Here, we propose a novel [...] Read more.
This manuscript studies the M-fractional Landau–Ginzburg–Higgs (M-fLGH) equation in comprehending superconductivity and drift cyclotron waves in radially inhomogeneous plasmas, especially for coherent ion cyclotron wave propagation, aiming to explore the soliton solutions, the parameter’s effect, and modulation instability. Here, we propose a novel approach, namely a newly improved Kudryashov’s method that integrates the combination of the unified method with the generalized Kudryashov’s method. By employing the modified F-expansion and the newly improved Kudryashov’s method, we investigate the soliton wave solutions for the M-fLGH model. The solutions are in trigonometric, rational, exponential, and hyperbolic forms. We present the effect of system parameters and fractional parameters. For special values of free parameters, we derive some novel phenomena such as kink wave, anti-kink wave, periodic lump wave with soliton, interaction of kink and periodic lump wave, interaction of anti-kink and periodic wave, periodic wave, solitonic wave, multi-lump wave in periodic form, and so on. The modulation instability criterion assesses the conditions that dictate the stability or instability of soliton solutions, highlighting the interplay between fractional order and system parameters. This study advances the theoretical understanding of fractional LGH models and provides valuable insights into practical applications in plasma physics, optical communication, and fluid dynamics. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

17 pages, 1944 KiB  
Article
Abundant Elliptic, Trigonometric, and Hyperbolic Stochastic Solutions for the Stochastic Wu–Zhang System in Quantum Mechanics
by Wael W. Mohammed, Ekram E. Ali, Athar I. Ahmed and Marwa Ennaceur
Mathematics 2025, 13(5), 714; https://doi.org/10.3390/math13050714 - 22 Feb 2025
Cited by 1 | Viewed by 744
Abstract
In this article, we look at the stochastic Wu–Zhang system (SWZS) forced by multiplicative Brownian motion in the Itô sense. The mapping method, which is an effective analytical method, is employed to investigate the exact wave solutions of the aforementioned equation. The proposed [...] Read more.
In this article, we look at the stochastic Wu–Zhang system (SWZS) forced by multiplicative Brownian motion in the Itô sense. The mapping method, which is an effective analytical method, is employed to investigate the exact wave solutions of the aforementioned equation. The proposed scheme provides new types of exact solutions including periodic solitons, kink solitons, singular solitons and so on, to describe the wave propagation in quantum mechanics and analyze a wide range of essential physical phenomena. In the absence of noise, we obtain some previously found solutions of SWZS. Additionally, using the MATLAB program, the impacts of the noise term on the analytical solution of the SWZS were demonstrated. Full article
Show Figures

Figure 1

12 pages, 2095 KiB  
Article
Phase Portraits and Abundant Soliton Solutions of a Hirota Equation with Higher-Order Dispersion
by Fengxia Wu, Nauman Raza, Younes Chahlaoui, Asma Rashid Butt and Haci Mehmet Baskonus
Symmetry 2024, 16(11), 1554; https://doi.org/10.3390/sym16111554 - 20 Nov 2024
Cited by 2 | Viewed by 971
Abstract
The Hirota equation, an advanced variant of the nonlinear Schrödinger equation with cubic nonlinearity, incorporates time-delay adjustments and higher-order dispersion terms, offering an enhanced approximation for wave propagation in optical fibers and oceanic systems. By utilizing the traveling wave transformation generated from Lie [...] Read more.
The Hirota equation, an advanced variant of the nonlinear Schrödinger equation with cubic nonlinearity, incorporates time-delay adjustments and higher-order dispersion terms, offering an enhanced approximation for wave propagation in optical fibers and oceanic systems. By utilizing the traveling wave transformation generated from Lie point symmetry analysis with the combination of generalized exponential differential rational function and modified Bernoulli sub-ODE techniques, several traveling wave solutions, such as periodic, singular-periodic, and kink solitons, emerge. To examine the solutions visually, parametric values are adjusted to create 3D, contour, and 2D illustrations. Additionally, the dynamic properties of the model are explored through bifurcation analysis. The exact results demonstrate that both techniques are practical and robust. Full article
Show Figures

Figure 1

15 pages, 3454 KiB  
Article
Soliton Solutions and Chaotic Dynamics of the Ion-Acoustic Plasma Governed by a (3+1)-Dimensional Generalized Korteweg–de Vries–Zakharov–Kuznetsov Equation
by Amjad E. Hamza, Mohammed Nour A. Rabih, Amer Alsulami, Alaa Mustafa, Khaled Aldwoah and Hicham Saber
Fractal Fract. 2024, 8(11), 673; https://doi.org/10.3390/fractalfract8110673 - 19 Nov 2024
Cited by 5 | Viewed by 980
Abstract
This study explores the novel dynamics of the (3+1)-dimensional generalized Korteweg–de Vries–Zakharov–Kuznetsov (KdV-ZK) equation. A Galilean transformation is employed to derive the associated system of equations. Perturbing this system allows us to investigate the presence and characteristics of chaotic behavior, including return maps, [...] Read more.
This study explores the novel dynamics of the (3+1)-dimensional generalized Korteweg–de Vries–Zakharov–Kuznetsov (KdV-ZK) equation. A Galilean transformation is employed to derive the associated system of equations. Perturbing this system allows us to investigate the presence and characteristics of chaotic behavior, including return maps, fractal dimension, power spectrum, recurrence plots, and strange attractors, supported by 2D and time-dependent phase portraits. A sensitivity analysis is demonstrated to show how the system behaves when there are small changes in initial values. Finally, the planar dynamical system method is used to derive anti-kink, dark soliton, and kink soliton solutions, advancing our understanding of the range of solutions admitted by the model. Full article
Show Figures

Figure 1

14 pages, 1145 KiB  
Article
Superposition and Interaction Dynamics of Complexitons, Breathers, and Rogue Waves in a Landau–Ginzburg–Higgs Model for Drift Cyclotron Waves in Superconductors
by Hicham Saber, Muntasir Suhail, Amer Alsulami, Khaled Aldwoah, Alaa Mustafa and Mohammed Hassan
Axioms 2024, 13(11), 763; https://doi.org/10.3390/axioms13110763 - 4 Nov 2024
Cited by 3 | Viewed by 1066
Abstract
This article implements the Hirota bilinear (HB) transformation technique to the Landau–Ginzburg–Higgs (LGH) model to explore the nonlinear evolution behavior of the equation, which describes drift cyclotron waves in superconductivity. Utilizing the Cole–Hopf transform, the HB equation is derived, and symbolic manipulation combined [...] Read more.
This article implements the Hirota bilinear (HB) transformation technique to the Landau–Ginzburg–Higgs (LGH) model to explore the nonlinear evolution behavior of the equation, which describes drift cyclotron waves in superconductivity. Utilizing the Cole–Hopf transform, the HB equation is derived, and symbolic manipulation combined with various auxiliary functions (AFs) are employed to uncover a diverse set of analytical solutions. The study reveals novel results, including multi-wave complexitons, breather waves, rogue waves, periodic lump solutions, and their interaction phenomena. Additionally, a range of traveling wave solutions, such as dark, bright, periodic waves, and kink soliton solutions, are developed using an efficient expansion technique. The nonlinear dynamics of these solutions are illustrated through 3D and contour maps, accompanied by detailed explanations of their physical characteristics. Full article
Show Figures

Figure 1

29 pages, 1251 KiB  
Article
Exploring Kink Solitons in the Context of Klein–Gordon Equations via the Extended Direct Algebraic Method
by Saleh Alshammari, Othman Abdullah Almatroud, Mohammad Alshammari, Hamzeh Zureigat and M. Mossa Al-Sawalha
Mathematics 2024, 12(21), 3433; https://doi.org/10.3390/math12213433 - 2 Nov 2024
Viewed by 1351
Abstract
This work employs the Extended Direct Algebraic Method (EDAM) to solve quadratic and cubic nonlinear Klein–Gordon Equations (KGEs), which are standard models in particle and quantum physics that describe the dynamics of scaler particles with spin zero in the framework of Einstein’s theory [...] Read more.
This work employs the Extended Direct Algebraic Method (EDAM) to solve quadratic and cubic nonlinear Klein–Gordon Equations (KGEs), which are standard models in particle and quantum physics that describe the dynamics of scaler particles with spin zero in the framework of Einstein’s theory of relativity. By applying variables-based wave transformations, the targeted KGEs are converted into Nonlinear Ordinary Differential Equations (NODEs). The resultant NODEs are subsequently reduced to a set of nonlinear algebraic equations through the assumption of series-based solutions for them. New families of soliton solutions are obtained in the form of hyperbolic, trigonometric, exponential and rational functions when these systems are solved using Maple. A few soliton solutions are considered for certain values of the given parameters with the help of contour and 3D plots, which indicate that the solitons exist in the form of dark kink, hump kink, lump-like kink, bright kink and cuspon kink solitons. These soliton solutions are relevant to actual physics, for instance, in the context of particle physics and theories of quantum fields. These solutions are useful also for the enhancement of our understanding of the basic particle interactions and wave dynamics at all levels of physics, including but not limited to cosmology, compact matter physics and nonlinear optics. Full article
(This article belongs to the Topic AI and Data-Driven Advancements in Industry 4.0)
Show Figures

Figure 1

Back to TopTop