Chaotic Behaviour, Sensitivity Assessment, and New Analytical Investigation to Find Novel Optical Soliton Solutions of M-Fractional Kuralay-II Equation
Abstract
1. Introduction
2. Notion of Truncated M-Fractional Derivative and Its Properties
- .
- .
- .
- —in this case is a constant.
- .
3. Fundamental Discussion of the Expansion Procedure
4. Specification of the Model Equation
4.1. The M-Fractional Kuralay-IIA Equation
4.2. The M-Fractional Kuralay-IIB Equation
5. Implementation of the Relevant Technique
5.1. The KIIA Equation
5.2. The KIIB Equation
6. Some Analyses of the Model Equations
6.1. Chaotic Nature of KIIA Equation
6.2. Sensitivity Analysis of KIIA Equation
- and
- and
- and
- and .
6.3. Chaotic Nature of KIIB Equation
6.4. Sensitivity Analysis of KIIB Equation
- and
- and
- and
- and .
7. Graphs of Soliton Solutions with Their Physical Interpretation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, X.L.; Hashemi, M.S.; Samei, M.E.; Akgül, A.; El Din, S.M. Analytical treatment on the nonlinear Schrödinger equation with the parabolic law. Results Phys. 2023, 49, 106544. [Google Scholar] [CrossRef]
- Mirzazadeh, M.; Sharif, A.; Hashemi, M.S.; Akgül, A.; El Din, S.M. Optical solitons with an extended (3 + 1)-dimensional nonlinear conformable Schrödinger equation including cubic–quintic nonlinearity. Results Phys. 2023, 49, 106521. [Google Scholar] [CrossRef]
- Borhan, J.R.M.; Ganie, A.H.; Miah, M.M.; Iqbal, M.A.; Seadawy, A.R.; Mishra, N.K. A highly effective analytical approach to innovate the novel closed form soliton solutions of the Kadomtsev–Petviashivili equations with applications. Opt. Quantum Electron. 2024, 56, 938. [Google Scholar] [CrossRef]
- Faridi, W.A.; Asjad, M.I.; Eldin, S.M. Exact Fractional Solution by Nuccis Reduction Approach and New Analytical Propagating Optical Soliton Structures in Fiber-Optics. Fractal Fract. 2022, 6, 654. [Google Scholar] [CrossRef]
- Butt, A.R.; Zaka, J.; Akgül, A.; Eldin, S.M. New structures for exact solution of nonlinear fractional Sharma–Tasso–Olver equation by conformable fractional derivative. Results Phys. 2023, 50, 106541. [Google Scholar] [CrossRef]
- Altalbe, A.; Taishiyeva, A.; Myrzakulov, R.; Bekir, A.; Zaagan, A.A. Effect of truncated M-fractional derivative on the new exact solitons to the Shynaray-IIA equation and stability analysis. Results Phys. 2024, 57, 107422. [Google Scholar] [CrossRef]
- Aniqa, A.; Ahmad, J. Soliton solution of fractional Sharma-Tasso-Olever equation via an efficient (G′/G)-expansion method. Ain Shams Eng. J. 2022, 13, 101528. [Google Scholar] [CrossRef]
- Borhan, J.R.M.; Miah, M.M.; Alsharif, F.; Kanan, M. Abundant Closed-Form Soliton Solutions to the Fractional Stochastic Kraenkel–Manna–Merle System with Bifurcation, Chaotic, Sensitivity, and Modulation Instability Analysis. Fractal Fract. 2024, 8, 327. [Google Scholar] [CrossRef]
- Waheed, A.; Awais, M.; Raja, M.; Malik, M.; Alqahtani, A. Peakon and solitary wave solutions of the LAX equation: Neuro computing procedure. Int. Commun. Heat Mass Transf. 2024, 152, 107321. [Google Scholar] [CrossRef]
- Shihab, M.A.; Taha, W.M.; Hameed, R.A.; Jameel, A.; Sulaiman, I.M. Implementation of variational iteration method for various types of linear and nonlinear partial differential equations. Int. J. Electr. Comput. Eng. 2023, 13, 2131. [Google Scholar] [CrossRef]
- Yasmin, H.; Alshehry, A.S.; Ganie, A.H.; Shafee, A.; Shah, R. Noise effect on soliton phenomena in fractional stochastic Kraenkel-Manna-Merle system arising in ferromagnetic materials. Sci. Rep. 2024, 14, 1810. [Google Scholar] [CrossRef]
- Qin, C.Y.; Zhang, R.F.; Li, Y.H. Various exact solutions of the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli-like equation by using bilinear neural network method. Chaos Solitons Fractals 2024, 187, 115438. [Google Scholar] [CrossRef]
- Wu, X.S.; Liu, J.G. Solving the variable coefficient nonlinear partial differential equations based on the bilinear residual network method. Nonlinear Dyn. 2024, 112, 8329–8340. [Google Scholar] [CrossRef]
- Senol, M.; Akinyemi, L.; Nkansah, H.; Adel, W. New solutions for four novel generalized nonlinear fractional fifth-order equations. J. Ocean. Eng. Sci. 2024, 9, 59–65. [Google Scholar]
- Soradi-Zeid, S.; Alipour, M. A collocation method using generalized Laguerre polynomials for solving nonlinear optimal control problems governed by integro-differential equations. J. Comput. Appl. Math. 2024, 436, 115410. [Google Scholar] [CrossRef]
- Gebril, E.; El-Azab, M.; Sameeh, M. Chebyshev collocation method for fractional Newell-Whitehead-Segel equation. Alex. Eng. J. 2024, 87, 39–46. [Google Scholar] [CrossRef]
- Hussain, A.; Kara, A.H.; Zaman, F. An invariance analysis of the Vakhnenko–Parkes equation. Chaos Solitons Fractals 2023, 171, 113423. [Google Scholar] [CrossRef]
- Awadalla, M.; Taishiyeva, A.; Myrzakulov, R.; Alahmadi, J.; Zaagan, A.A.; Bekir, A. Exact analytical soliton solutions of the M-fractional Akbota equation. Sci. Rep. 2024, 14, 13360. [Google Scholar] [CrossRef]
- Mamun, A.A.; Lu, C.; Ananna, S.N.; Uddin, M.M. Dynamical behavior of water wave phenomena for the 3D fractional WBBM equations using rational sine-Gordon expansion method. Sci. Rep. 2024, 14, 6455. [Google Scholar] [CrossRef]
- Mawa, H.; Islam, S.R.; Bashar, M.H.; Roshid, M.M.; Islam, J.; Akhter, S. Soliton Solutions to the BA Model and (3 + 1)-Dimensional KP Equation Using Advanced exp (−ϕ(ξ))-Expansion Scheme in Mathematical Physics. Math. Probl. Eng. 2023, 2023, 5564509. [Google Scholar] [CrossRef]
- Ur Rehman, H.; Iqbal, I.; Mirzazadeh, M.; Hashemi, M.; Awan, A.U.; Hassan, A.M. Optical solitons of new extended (3+ 1)-dimensional nonlinear Kudryashov’s equation via ϕ6-model expansion method. Opt. Quantum Electron. 2024, 56, 279. [Google Scholar] [CrossRef]
- Turq, S.M.; Nuruddeen, R.; Nawaz, R. Recent advances in employing the Laplace homotopy analysis method to nonlinear fractional models for evolution equations and heat-typed problems. Int. J. Thermofluids 2024, 22, 100681. [Google Scholar] [CrossRef]
- Rani, M.; Ahmed, N.; Dragomir, S.S. New exact solutions for nonlinear fourth-order Ablowitz–Kaup–Newell–Segur water wave equation by the improved tanh(φ(ξ)/2)-expansion method. Int. J. Mod. Phys. B 2023, 37, 2350044. [Google Scholar] [CrossRef]
- Hosseini, K.; Alizadeh, F.; Hinçal, E.; Ilie, M.; Osman, M. Bilinear Bäcklund transformation, Lax pair, Painlevé integrability, and different wave structures of a 3D generalized KdV equation. Nonlinear Dyn. 2024, 112, 18397–18411. [Google Scholar] [CrossRef]
- Ali, M.H.; Ahmed, H.M.; El-Owaidy, H.M.; El-Deeb, A.A.; Samir, I. New analytic wave solutions to (2+1)-dimensional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation using the modified extended mapping method. Opt. Quantum Electron. 2024, 56, 320. [Google Scholar] [CrossRef]
- Zafar, A.; Ashraf, M.; Saboor, A.; Bekir, A. M-Fractional soliton solutions of fifth order generalized nonlinear fractional differential equation via (G′/G2)-expansion method. Phys. Scr. 2024, 99, 025242. [Google Scholar] [CrossRef]
- Sarwar, A.; Gang, T.; Arshad, M.; Ahmed, I.; Ahmad, M. Abundant solitary wave solutions for space-time fractional unstable nonlinear Schrödinger equations and their applications. Ain Shams Eng. J. 2023, 14, 101839. [Google Scholar] [CrossRef]
- Hussain, A.; Ibrahim, T.F.; Birkea, F.O.; Alotaibi, A.M.; Al-Sinan, B.R.; Mukalazi, H. Exact solutions for the Cahn–Hilliard equation in terms of Weierstrass-elliptic and Jacobi-elliptic functions. Sci. Rep. 2024, 14, 13100. [Google Scholar] [CrossRef]
- Rehman, H.U.; Awan, A.U.; Tag-ElDin, E.M.; Alhazmi, S.E.; Yassen, M.F.; Haider, R. Extended hyperbolic function method for the (2+1)-dimensional nonlinear soliton equation. Results Phys. 2022, 40, 105802. [Google Scholar] [CrossRef]
- Eslami, M.; Heidari, S.; Jedi Abduridha, S.A.; Asghari, Y. Generalized exponential rational function method for solving nonlinear conformable time-fractional Hybrid-Lattice equation. Opt. Quantum Electron. 2024, 56, 725. [Google Scholar] [CrossRef]
- Arnous, A.H.; Hashemi, M.S.; Nisar, K.S.; Shakeel, M.; Ahmad, J.; Ahmad, I.; Jan, R.; Ali, A.; Kapoor, M.; Shah, N.A. Investigating solitary wave solutions with enhanced algebraic method for new extended Sakovich equations in fluid dynamics. Results Phys. 2024, 57, 107369. [Google Scholar] [CrossRef]
- Chu, J.; Liu, Y. Coupling model of a generalized second grade fluid flow and fractional Cattaneo heat transfer with magnetic field and radiation. Results Phys. 2024, 57, 107409. [Google Scholar] [CrossRef]
- Fahad, A.; Boulaaras, S.M.; Rehman, H.U.; Iqbal, I.; Saleem, M.S.; Chou, D. Analysing soliton dynamics and a comparative study of fractional derivatives in the nonlinear fractional Kudryashov’s equation. Results Phys. 2023, 55, 107114. [Google Scholar] [CrossRef]
- Malomed, B.A. Basic fractional nonlinear-wave models and solitons. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 022102. [Google Scholar] [CrossRef]
- Hong, B.; Chen, W.; Zhang, S.; Xub, J. The (G′/G′+G+A)-expansion method for two types of nonlinear Schrödinger equations. J. Math. Phys 2019, 31, 1155–1156. [Google Scholar]
- Mia, R.; Miah, M.M.; Osman, M. A new implementation of a novel analytical method for finding the analytical solutions of the (2+1)-dimensional KP-BBM equation. Heliyon 2023, 9, e15690. [Google Scholar] [CrossRef]
- Khaliq, S.; Ahmad, S.; Ullah, A.; Ahmad, H.; Saifullah, S.; Nofal, T.A. New waves solutions of the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation using a novel expansion method. Results Phys. 2023, 50, 106450. [Google Scholar] [CrossRef]
- Tripathy, A.; Sahoo, S. Exact solutions for the ion sound Langmuir wave model by using two novel analytical methods. Results Phys. 2020, 19, 103494. [Google Scholar] [CrossRef]
- Borhan, J.R.M.; Mamun Miah, M.; Duraihem, F.Z.; Iqbal, M.A.; Ma, W.X. New Optical Soliton Structures, Bifurcation Properties, Chaotic Phenomena, and Sensitivity Analysis of Two Nonlinear Partial Differential Equations. Int. J. Theor. Phys. 2024, 63, 183. [Google Scholar] [CrossRef]
- Sagidullayeva, Z.; Nugmanova, G.; Myrzakulov, R.; Serikbayev, N. Integrable Kuralay equations: Geometry, solutions and generalizations. Symmetry 2022, 14, 1374. [Google Scholar] [CrossRef]
- Zafar, A.; Raheel, M.; Ali, M.R.; Myrzakulova, Z.; Bekir, A.; Myrzakulov, R. Exact solutions of M-fractional Kuralay equation via three analytical schemes. Symmetry 2023, 15, 1862. [Google Scholar] [CrossRef]
- Faridi, W.A.; Bakar, M.A.; Myrzakulova, Z.; Myrzakulov, R.; Akgül, A.; El Din, S.M. The formation of solitary wave solutions and their propagation for Kuralay equation. Results Phys. 2023, 52, 106774. [Google Scholar] [CrossRef]
- Arafat, S.Y.; Islam, S.R. Bifurcation analysis and soliton structures of the truncated M-fractional Kuralay-II equation with two analytical techniques. Alex. Eng. J. 2024, 105, 70–87. [Google Scholar] [CrossRef]
- Mathanaranjan, T. Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation. Optik 2023, 290, 171266. [Google Scholar] [CrossRef]
- Farooq, A.; Ma, W.X.; Khan, M.I. Exploring exact solitary wave solutions of Kuralay-II equation based on the truncated M-fractional derivative using the Jacobi Elliptic function expansion method. Opt. Quantum Electron. 2024, 56, 1105. [Google Scholar] [CrossRef]
- Tang, L. Bifurcation studies, chaotic pattern, phase diagrams and multiple optical solitons for the (2 + 1)-dimensional stochastic coupled nonlinear Schrödinger system with multiplicative white noise via Itô calculus. Results Phys. 2023, 52, 106765. [Google Scholar] [CrossRef]
- Rafiq, M.H.; Raza, N.; Jhangeer, A. Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability. Chaos Solitons Fractals 2023, 171, 113436. [Google Scholar] [CrossRef]
- Miah, M.M.; Alsharif, F.; Iqbal, M.A.; Borhan, J.; Kanan, M. Chaotic Phenomena, Sensitivity Analysis, Bifurcation Analysis, and New Abundant Solitary Wave Structures of The Two Nonlinear Dynamical Models in Industrial Optimization. Mathematics 2024, 12, 1959. [Google Scholar] [CrossRef]
- ur Rahman, M.; Sun, M.; Boulaaras, S.; Baleanu, D. Bifurcations, chaotic behavior, sensitivity analysis, and various soliton solutions for the extended nonlinear Schrödinger equation. Bound. Value Probl. 2024, 2024, 15. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Sousa, J.; de Oliveira, E.C. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. arXiv 2017, arXiv:1704.08187. [Google Scholar]
- Rashedi, K.A.; Almusawa, M.Y.; Almusawa, H.; Alshammari, T.S.; Almarashi, A. Applications of Riccati–Bernoulli and Bäcklund Methods to the Kuralay-II System in Nonlinear Sciences. Mathematics 2024, 13, 84. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Yel, G.; Bulut, H. M-fractional solitons and periodic wave solutions to the Hirota–Maccari system. Mod. Phys. Lett. B 2019, 33, 1950052. [Google Scholar] [CrossRef]
- Faridi, W.A.; Iqbal, M.; Ramzan, B.; AlQahtani, S.A.; Osman, M.; Akinyemi, L.; Mostafa, A.M. The formation of invariant optical soliton structures to electric-signal in the telegraph lines on basis of the tunnel diode and chaos visualization, conserved quantities: Lie point symmetry approach. Optik 2024, 305, 171785. [Google Scholar] [CrossRef]
- Hussain, A.; Hammad, M.; Rahimzai, A.A.; Koh, W.S.; Khan, I. Dynamical analysis and soliton solutions of the space–time fractional Kaup–Boussinesq system. Partial. Differ. Equ. Appl. Math. 2025, 14, 101205. [Google Scholar] [CrossRef]
- Hamza, A.E.; Rabih, M.N.A.; Alsulami, A.; Mustafa, A.; Aldwoah, K.; Saber, H. Soliton Solutions and Chaotic Dynamics of the Ion-Acoustic Plasma Governed by a (3 + 1)-Dimensional Generalized Korteweg–de Vries–Zakharov–Kuznetsov Equation. Fractal Fract. 2024, 8, 673. [Google Scholar] [CrossRef]
Equation | Outcome(s) |
---|---|
The M-fractional Kuralay-IIA equation | Kink-shape, and singular priodic-shape solitons |
The M-fractional Kuralay-IIB equation | Anti-kink-shape and singular kink-shape solitons |
Author(s) | Method(s) | Outcomes | Analyses |
---|---|---|---|
Arafat et al. [43] | The extended hyperbolic function method and the improved F-expansion method | Periodic soliton, kink soliton, bell soliton, and dark soliton | Bifurcation analysis |
Rashedi et al. [52] | The Riccati–Bernoulli sub-ODE method combined with the Bäcklund transformation | Periodic perturbation, persistent periodicity steady oscillations, and distant periodical peaks | None |
Zafar et al. [41] | The function, the extended sinh-Gordon equation expansion scheme, and the generalized Kudryashov schemes | Flat kink soliton and singular kink soliton | None |
Our research work | The -expansion approach | Anti-kink, singular periodic, kink, and singular kink-shape solitons | Chaotic analysis and sensitivity analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borhan, J.R.M.; Hassan, E.I.; Dawood, A.; Aldwoah, K.; Sayed, A.I.A.; Albaity, A.; Miah, M.M. Chaotic Behaviour, Sensitivity Assessment, and New Analytical Investigation to Find Novel Optical Soliton Solutions of M-Fractional Kuralay-II Equation. Mathematics 2025, 13, 2207. https://doi.org/10.3390/math13132207
Borhan JRM, Hassan EI, Dawood A, Aldwoah K, Sayed AIA, Albaity A, Miah MM. Chaotic Behaviour, Sensitivity Assessment, and New Analytical Investigation to Find Novel Optical Soliton Solutions of M-Fractional Kuralay-II Equation. Mathematics. 2025; 13(13):2207. https://doi.org/10.3390/math13132207
Chicago/Turabian StyleBorhan, J. R. M., E. I. Hassan, Arafa Dawood, Khaled Aldwoah, Amani Idris A. Sayed, Ahmad Albaity, and M. Mamun Miah. 2025. "Chaotic Behaviour, Sensitivity Assessment, and New Analytical Investigation to Find Novel Optical Soliton Solutions of M-Fractional Kuralay-II Equation" Mathematics 13, no. 13: 2207. https://doi.org/10.3390/math13132207
APA StyleBorhan, J. R. M., Hassan, E. I., Dawood, A., Aldwoah, K., Sayed, A. I. A., Albaity, A., & Miah, M. M. (2025). Chaotic Behaviour, Sensitivity Assessment, and New Analytical Investigation to Find Novel Optical Soliton Solutions of M-Fractional Kuralay-II Equation. Mathematics, 13(13), 2207. https://doi.org/10.3390/math13132207