Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = kinin B1 receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 787 KiB  
Review
Bradykinin Receptors in Metabolic Disorders: A Comprehensive Review
by Jéssica Branquinho, Raquel Leão Neves, Michael Bader and João Bosco Pesquero
Drugs Drug Candidates 2025, 4(3), 37; https://doi.org/10.3390/ddc4030037 - 5 Aug 2025
Abstract
The kallikrein–kinin system and its B1 and B2 receptors are key regulators in metabolic disorders such as obesity, diabetes, and insulin resistance. Obesity, a chronic and multifactorial condition often associated with comorbidities like type 2 diabetes and dyslipidemia, remains poorly understood at the [...] Read more.
The kallikrein–kinin system and its B1 and B2 receptors are key regulators in metabolic disorders such as obesity, diabetes, and insulin resistance. Obesity, a chronic and multifactorial condition often associated with comorbidities like type 2 diabetes and dyslipidemia, remains poorly understood at the metabolic level. The kinin B2 receptor (B2R) is involved in blood pressure regulation and glucose metabolism, promoting glucose uptake in skeletal muscle via bradykinin. Studies in B2R-KO mice demonstrate that the absence of this receptor predisposes animals to glucose intolerance under a high-fat diet and impairs adaptive thermogenesis, indicating a protective role for B2R in metabolic homeostasis and insulin sensitivity. In contrast, the kinin B1 receptor (B1R) is inducible under pathological conditions and is activated by kinin metabolites. Mouse models lacking B1R exhibit improved metabolic profiles, including protection against high-fat diet-induced obesity and insulin resistance, enhanced energy expenditure, and increased leptin sensitivity. B1R inactivation in adipocytes enhances insulin responsiveness and glucose tolerance, supporting its role in the development of insulin resistance. Moreover, B1R deficiency improves energy metabolism and thermogenic responses to adrenergic and cold stimuli, promoting the activation of brown adipose tissue and the browning of white adipose tissue. Collectively, these findings suggest that B1R and B2R represent promising therapeutic targets for the treatment of metabolic disorders. Full article
(This article belongs to the Special Issue Drugs of the Kallikrein-Kinin System)
Show Figures

Figure 1

23 pages, 8153 KiB  
Article
SARS-Cov-2 Replication in a Blood–Brain Barrier Model Established with Human Brain Microvascular Endothelial Cells Induces Permeability and Disables ACE2-Dependent Regulation of Bradykinin B1 Receptor
by Sharton Vinicius Antunes Coelho, Gabriela Lisboa e Souza, Bruno Braz Bezerra, Luan Rocha Lima, Isadora Alonso Correa, Dalziza Victalina de Almeida, Rodrigo Pacheco da Silva-Aguiar, Ana Acácia S. Pinheiro, Pierre Sirois, Celso Caruso-Neves, Luciana Jesus da Costa, Julio Scharfstein and Luciana Barros de Arruda
Int. J. Mol. Sci. 2025, 26(12), 5540; https://doi.org/10.3390/ijms26125540 - 10 Jun 2025
Viewed by 771
Abstract
Endothelial dysfunction plays a central role in COVID-19 pathogenesis, by affecting vascular homeostasis and worsening thromboinflammation. This imbalance may contribute to blood–brain barrier (BBB) disruption, which has been reported in long COVID-19 patients with neurological sequelae. The kallikrein–kinin system (KKS) generates bradykinin (BK), [...] Read more.
Endothelial dysfunction plays a central role in COVID-19 pathogenesis, by affecting vascular homeostasis and worsening thromboinflammation. This imbalance may contribute to blood–brain barrier (BBB) disruption, which has been reported in long COVID-19 patients with neurological sequelae. The kallikrein–kinin system (KKS) generates bradykinin (BK), a proinflammatory peptide that induces microvascular leakage via B2R. Under inflammatory conditions, BK is converted to Des-Arg-BK (DABK), which activates B1R, a receptor upregulated in inflamed tissues. DABK is degraded by ACE2, the main SARS-CoV-2 receptor; thus, viral binding and ACE2 downregulation may lead to DABK/B1R imbalance. Here, we investigated these interactions using human brain microvascular endothelial cells (HBMECs), as a model of the BBB. Since endothelial cell lines express low levels of ACE2, HBMECs were modified with an ACE2-carrying pseudovirus. SARS-CoV-2 replication was confirmed by RNA, protein expression, and infectious particles release. Infection upregulated cytokines and endothelial permeability, enhancing viral and leukocyte transmigration. Additionally, viral replication impaired ACE2 function in HBMECs, amplifying the response to DABK, increasing nitric oxide (NO) production, and further disrupting endothelial integrity. Our findings reveal a mechanism by which SARS-CoV-2 impacts the BBB and highlights the ACE2/KKS/B1R axis as a potential contributor to long COVID-19 neurological symptoms. Full article
Show Figures

Figure 1

13 pages, 6399 KiB  
Article
Pathophysiology of COVID-19: A Post Hoc Analysis of the ICAT-COVID Clinical Trial of the Bradykinin Antagonist Icatibant
by Pierre Malchair, Jordi Giol, Javier Jacob, Jesús Villoria, Thiago Carnaval and Sebastián Videla
Pathogens 2025, 14(6), 533; https://doi.org/10.3390/pathogens14060533 - 27 May 2025
Viewed by 581
Abstract
We used the data from a successful therapeutic assay that used icatibant in patients with hypoxemic COVID-19 pneumonia (the ICAT·COVID trial) to explore pathophysiological mechanisms. We performed concurrent-type, criterion-related validity analyses to assess the discriminative ability of a panel of nine potential serum [...] Read more.
We used the data from a successful therapeutic assay that used icatibant in patients with hypoxemic COVID-19 pneumonia (the ICAT·COVID trial) to explore pathophysiological mechanisms. We performed concurrent-type, criterion-related validity analyses to assess the discriminative ability of a panel of nine potential serum markers (interleukin 6, ferritin, lactate dehydrogenase, C reactive protein, fibrin fragment D (D-dimer), complement 1 esterase inhibitor (antigenic and functional), complement 4 factor, and lymphocyte count) to predict the clinical milestones. Consistent with previous research, we evidenced a significant relationship between interleukin 6, lactate dehydrogenase and the lymphocyte count, and the clinical events. Furthermore, exposure to icatibant, a bradykinin B2 receptor antagonist (which improved pneumonia and mortality in the aforementioned randomised trial), attenuated this relationship, although this effect faded over time. The results reinforce the key role that the angiotensin-converting enzyme 2 has on COVID-19 pathophysiology as a point of convergence between the renin–angiotensin and kallikrein–kinin systems. This was shown clinically by the successful blocking of inflammatory pathways by icatibant at the bradykinin effector loop level early during the acute hyperinflammatory stage of the disease. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

26 pages, 5853 KiB  
Article
Kinin B1 Receptor Agonist Enhances Blood-Brain Barrier Permeability in Healthy and Glioblastoma Environments
by Carolina Batista, João Victor Roza Cruz, Michele Siqueira, João Bosco Pesquero, Joice Stipursky and Fabio de Almeida Mendes
Pharmaceuticals 2025, 18(4), 591; https://doi.org/10.3390/ph18040591 - 18 Apr 2025
Viewed by 764
Abstract
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical [...] Read more.
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical animal models to enhance drug delivery to the brain. In this study, we investigated whether des-Arg9-bradykinin (DBK), a physiological agonist of kinin B1 receptor (B1R), acts as a brain drug delivery adjuvant by promoting the transient opening of the BBB. Methods: Human brain microvascular endothelial cells (HBMECs) were treated with DBK in the culture medium and in conditioned media from glioblastoma cell lines, namely T98G (CMT98G) and U87MG (CMU87). Immunofluorescence, RT-qPCR, in-cell Western assay, and proximity ligation assay (PLA) were performed to analyze BBB components, kinin receptors and TLR4, a receptor associated with the kinin pathway and inflammation. The effect of DBK on enhancing paracellular molecule transport was evaluated using Evans blue dye (EB) quantification in a cell culture insert assay and in an in vivo model, where mice with and without brain tumors were treated with DBK. To assess the functional impact of the transient BBB opening induced by DBK, the chemotherapeutic drug doxorubicin (DOX) was administered. Results: Treatment with DBK facilitates the presence of EB in the brain parenchyma by transiently disrupting the BBB, as further evidenced by the increased paracellular passage of the dye in an in vitro assay. B1R activation by DBK induces transient BBB opening lasting less than 48 h, enhancing the bioavailability of the DOX within the brain parenchyma and glioma tumor mass. The interaction between B1R and TLR4 is disrupted by the secreted factors released by glioblastoma cells, as conditioned media from T98G and U87 reduce TLR4 staining in endothelial cells without affecting B1R expression. Conclusions: These results further support the potential of B1R activation as a strategy to enhance targeted drug delivery to the brain. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

25 pages, 1429 KiB  
Review
Mechanistic Insights into the Interaction Between Kinin Receptors and Histamine H2 Receptor Pathways in Oxidative Stress
by Marcos Fernandes Gregnani, Leonardo Martins and Wieslawa Agnieszka Fogel
Receptors 2024, 3(4), 513-537; https://doi.org/10.3390/receptors3040026 - 14 Nov 2024
Viewed by 1183
Abstract
Reactive oxygen species (ROS) encompass various molecular oxygen derivatives naturally produced during aerobic metabolism, including superoxide anions, hydrogen peroxide, and hydroxyl radicals. Excessive ROS production leads to oxidative distress, causing cellular damage and contributing to various pathologies, often alongside inflammation. Endogenous sources of [...] Read more.
Reactive oxygen species (ROS) encompass various molecular oxygen derivatives naturally produced during aerobic metabolism, including superoxide anions, hydrogen peroxide, and hydroxyl radicals. Excessive ROS production leads to oxidative distress, causing cellular damage and contributing to various pathologies, often alongside inflammation. Endogenous sources of ROS include mitochondrial activity and NADPH oxidases. The antioxidant system, comprising enzymes such as superoxide dismutase, peroxiredoxin, and catalase, mitigates ROS-induced damage. This review explores the regulation of ROS by membrane receptors, focusing on B1 and B2 kinin receptors and histamine H2 receptors, which are implicated in vasodilation, angiogenesis, inflammation, and gastric acid secretion. Understanding these interactions provides insights into ROS modulation and its role in disease mechanisms. Full article
Show Figures

Figure 1

13 pages, 2374 KiB  
Article
Kinin B1- and B2-Receptor Subtypes Contract Isolated Bovine Ciliary Muscle: Their Role in Ocular Lens Function and Intraocular Pressure Reduction
by Najam A. Sharif, Madura Kulkarni-Chitnis, Anthonia Okolie, Ya Fatou Njie-Mbye and Sunny E. Ohia
Pharmaceuticals 2024, 17(11), 1501; https://doi.org/10.3390/ph17111501 - 8 Nov 2024
Viewed by 1055
Abstract
Background: Bradykinin is an endogenously produced nonapeptide with many physiological and pathological functions that are mediated by two pharmacologically defined receptor subtypes, B1- and B2-receptors. Current studies sought to characterize the functional bradykinin (BK) receptors present in freshly isolated bovine ciliary muscle (BCM) [...] Read more.
Background: Bradykinin is an endogenously produced nonapeptide with many physiological and pathological functions that are mediated by two pharmacologically defined receptor subtypes, B1- and B2-receptors. Current studies sought to characterize the functional bradykinin (BK) receptors present in freshly isolated bovine ciliary muscle (BCM) using an organ-bath tissue contraction system. Methods: Cumulative longitudinal isometric tension responses of BCM strips (4–5 mm) were recorded before and after the addition of test compounds to BCM strips hooked up to an isometric strain gauge transducer system. Results: BK and its analogs (7–11 concentrations) contracted BCM in a biphasic concentration-dependent manner. The first high affinity/potency phase accounted for 40–60% of the maximal contraction by each of BK (potency, EC50 = 0.9 ± 0.3 nM), Lys-BK (EC50 = 0.7 ± 0.1 nM), Met-Lys-BK (EC50 = 1 ± 0.1 nM), Hyp3-BK (EC50 = 1 ± 0.2 nM), RMP-7 (EC50 = 3.5 ± 0.5 nM), and Des-Arg9-BK (EC50 = 10 ± 0.4nM) (mean ± SEM, n = 3–8). The second lower activity phase of contraction potency values for these peptides ranged between 100 nM and 3 µM. In the presence of a selective B1-receptor antagonist (R715; 0.1–10 µM), the concentration–response curves to Des-Arg9-BK (B1-receptor agonist) were still observed, indicating activation of B2-receptors by this kinin. Likewise, when B2-receptors were completely blocked by using a B2-selective antagonist (WIN-64338; 1–10 µM), BK still induced BCM contraction, now by stimulating B1-receptors. Conclusions: This agonist/antagonist profile of BCM receptors indicated the presence of both B1- and B2-receptor subtypes, both being responsible for contracting this smooth muscle. The BCM kinin receptors may be involved in changing the shape of the ocular lens to influence accommodation, and since the ciliary muscle is attached to the trabecular meshwork through which aqueous humor drains, endogenously released kinins may regulate intraocular pressure. Full article
Show Figures

Figure 1

14 pages, 8731 KiB  
Article
Kinin Receptors B1 and B2 Mediate Breast Cancer Cell Migration and Invasion by Activating the FAK-Src Axis
by Felipe González-Turén, Lorena Lobos-González, Alexander Riquelme-Herrera, Andrés Ibacache, Luis Meza Ulloa, Alexandra Droguett, Camila Alveal, Bastián Carrillo, Javiera Gutiérrez, Pamela Ehrenfeld and Areli Cárdenas-Oyarzo
Int. J. Mol. Sci. 2024, 25(21), 11709; https://doi.org/10.3390/ijms252111709 - 31 Oct 2024
Viewed by 1552
Abstract
Kinin receptors B1 and B2 are involved in migration and invasion in gastric, glioma, and cervical cancer cells, among others. However, the role of kinin receptors in breast cancer cells has been poorly studied. We aimed to reveal the impact of B1 and [...] Read more.
Kinin receptors B1 and B2 are involved in migration and invasion in gastric, glioma, and cervical cancer cells, among others. However, the role of kinin receptors in breast cancer cells has been poorly studied. We aimed to reveal the impact of B1 and B2 receptors on migration and invasion in breast cancer cells and demonstrate their capacity to modulate in vivo tumor growth. MDA-MB-231, MCF-7, and T47D cells treated with Lys-des[Arg9]bradykinin (LDBK) or bradykinin (BK) were used to evaluate migration and invasion. Des-[Arg9]-Leu8-BK and HOE-140 were used as antagonists for the B1 and B2 receptors. MDA-MB-231 cells incubated or not with antagonists were subcutaneously inoculated in BALBc NOD/SCID mice to evaluate tumor growth. LDBK and BK treatment significantly increased migration and invasion in breast cancer cells, effects that were negated when antagonists were used. The use of antagonists in vivo inhibited tumor growth. Moreover, the migration and invasion induced by kinins in breast cancer cells were inhibited when focal adhesion kinase (FAK) and Src inhibitors were used. The novelty revealed in our work is that B1 and B2 receptors activated by LDBK and BK induce migration and invasion in breast cancer cells via a mechanism that involves the FAK–Src signaling pathway, and the antagonism of both receptors in vivo impairs breast tumor growth. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

13 pages, 6942 KiB  
Article
Involvement of the Kinin B1 Receptor in Increased Permeability of Cerebral Microvessels in Rats Subjected to Autoimmune Encephalomyelitis
by Grzegorz Sulkowski, Beata Dąbrowska-Bouta, Małgorzata Frontczak-Baniewicz and Lidia Strużyńska
Cells 2024, 13(19), 1641; https://doi.org/10.3390/cells13191641 - 2 Oct 2024
Viewed by 1076
Abstract
Kinins are vasoactive peptides that are involved in various cellular mechanisms, including the inflammatory response. Kinins, released in vessel walls, exacerbate inflammation by modulating the production and release of pro-inflammatory factors via two types of G protein-related receptors—B1 and B2 receptors. B1 R [...] Read more.
Kinins are vasoactive peptides that are involved in various cellular mechanisms, including the inflammatory response. Kinins, released in vessel walls, exacerbate inflammation by modulating the production and release of pro-inflammatory factors via two types of G protein-related receptors—B1 and B2 receptors. B1 R is overexpressed during the inflammation that accompanies numerous neurological disorders, including multiple sclerosis (MS), in which loss of BBB integrity is an early pathomechanism of the disease. In this work, we apply pharmacological inhibition of the kinin B1 receptor with DALBK to investigate its effect on blood–brain barrier (BBB) permeability during the course of EAE, an animal model of MS. Functional, ultrastructural and molecular analyses were performed. The expression of selected BBB-associated proteins such as occludin and claudin-5 was assessed, as well as the astrocytic marker GFAP. We show that administration of a specific antagonist attenuates neurological symptoms in EAE rats and recovers the downregulation of TJ proteins and BBB leakage observed during the course of the disease, as well as significantly reducing the disease-specific activation of astroglia. The results show that B1 R-mediated signaling is involved in inducing molecular changes at the level of cerebral microvessels, leading to increased permeability of the BBB following neuroinflammation in EAE. Full article
(This article belongs to the Special Issue Therapeutic Mechanism of Nervous System Inflammation)
Show Figures

Figure 1

20 pages, 3630 KiB  
Article
Tissue Kallikrein-1 Suppresses Type I Interferon Responses and Reduces Depressive-Like Behavior in the MRL/lpr Lupus-Prone Mouse Model
by Priyanka S. Bhoj, Cassandra Nocito, Namdev S. Togre, Malika Winfield, Cody Lubinsky, Sabeeya Khan, Nikhita Mogadala, Alecia Seliga, Ellen M. Unterwald, Yuri Persidsky and Uma Sriram
Int. J. Mol. Sci. 2024, 25(18), 10080; https://doi.org/10.3390/ijms251810080 - 19 Sep 2024
Cited by 1 | Viewed by 2085
Abstract
Excessive production and response to Type I interferons (IFNs) is a hallmark of systemic lupus erythematosus (SLE). Neuropsychiatric lupus (NPSLE) is a common manifestation of human SLE, with major depression as the most common presentation. Clinical studies have demonstrated that IFNα can cause [...] Read more.
Excessive production and response to Type I interferons (IFNs) is a hallmark of systemic lupus erythematosus (SLE). Neuropsychiatric lupus (NPSLE) is a common manifestation of human SLE, with major depression as the most common presentation. Clinical studies have demonstrated that IFNα can cause depressive symptoms. We have shown that the kallikrein–kinin system (KKS) [comprised of kallikreins (Klks) and bradykinins] and angiotensin-converting enzyme inhibitors suppressed Type I IFN responses in dendritic cells from lupus-prone mice and human peripheral blood mononuclear cells. Tissue Klk genes are decreased in patients with lupus, and giving exogenous Klk1 ameliorated kidney pathology in mice. We retro-orbitally administered mouse klk1 gene-carrying adenovirus in the Murphy Roths Large lymphoproliferative (MRL/lpr) lupus-prone mice at early disease onset and analyzed immune responses and depressive-like behavior. Klk1 improved depressive-like behavior, suppressed interferon-responsive genes and neuroinflammation, and reduced plasma IFNα levels and proinflammatory cytokines. Klk1 also reduced IFNAR1 and JAK1 protein expression, important upstream molecules in Type I IFN signaling. Klk1 reduced bradykinin B1 receptor expression, which is known to induce proinflammatory response. Together, these findings suggest that Klk1 may be a potential therapeutic candidate to control IFNα production/responses and other inflammatory responses in SLE and NPSLE. Full article
(This article belongs to the Topic Inflammation: The Cause of all Diseases 2.0)
Show Figures

Figure 1

21 pages, 2549 KiB  
Review
Potential Pathways and Pathophysiological Implications of Viral Infection-Driven Activation of Kallikrein–Kinin System (KKS)
by Sharton Vinícius Antunes Coelho, Fabiane Messner Augusto and Luciana Barros de Arruda
Viruses 2024, 16(2), 245; https://doi.org/10.3390/v16020245 - 3 Feb 2024
Cited by 3 | Viewed by 2760
Abstract
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein–kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed [...] Read more.
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein–kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases. Full article
(This article belongs to the Special Issue Host Cell-Virus Interaction, 3rd Edition)
Show Figures

Figure 1

14 pages, 2821 KiB  
Article
Effects of Bradykinin B2 Receptor Ablation from Tyrosine Hydroxylase Cells on Behavioral and Motor Aspects in Male and Female Mice
by Thaina Maquedo Franco, Mariana R. Tavares, Leonardo S. Novaes, Carolina D. Munhoz, Jose Eduardo Peixoto-Santos, Ronaldo C. Araujo, Jose Donato, Michael Bader and Frederick Wasinski
Int. J. Mol. Sci. 2024, 25(3), 1490; https://doi.org/10.3390/ijms25031490 - 25 Jan 2024
Viewed by 1883
Abstract
The kallikrein–kinin system is a versatile regulatory network implicated in various biological processes encompassing inflammation, nociception, blood pressure control, and central nervous system functions. Its physiological impact is mediated through G-protein-coupled transmembrane receptors, specifically the B1 and B2 receptors. Dopamine, a key catecholamine [...] Read more.
The kallikrein–kinin system is a versatile regulatory network implicated in various biological processes encompassing inflammation, nociception, blood pressure control, and central nervous system functions. Its physiological impact is mediated through G-protein-coupled transmembrane receptors, specifically the B1 and B2 receptors. Dopamine, a key catecholamine neurotransmitter widely distributed in the CNS, plays a crucial role in diverse physiological functions including motricity, reward, anxiety, fear, feeding, sleep, and arousal. Notably, the potential physical interaction between bradykinin and dopaminergic receptors has been previously documented. In this study, we aimed to explore whether B2R modulation in catecholaminergic neurons influences the dopaminergic pathway, impacting behavioral, metabolic, and motor aspects in both male and female mice. B2R ablation in tyrosine hydroxylase cells reduced the body weight and lean mass without affecting body adiposity, substrate oxidation, locomotor activity, glucose tolerance, or insulin sensitivity in mice. Moreover, a B2R deficiency in TH cells did not alter anxiety levels, exercise performance, or motor coordination in female and male mice. The concentrations of monoamines and their metabolites in the substantia nigra and cortex region were not affected in knockout mice. In essence, B2R deletion in TH cells selectively influenced the body weight and composition, leaving the behavioral and motor aspects largely unaffected. Full article
Show Figures

Figure 1

17 pages, 2583 KiB  
Article
Kinin Receptors and Kinin-Related Gene Expression in Astrocytic Brain Tumors
by Izabela Stadnicka, Barbara Strzałka-Mrozik, Magdalena Kimsa-Dudek, Wojciech Kaspera, Andrzej Plewka, Wojciech Szopa and Antoni Stadnicki
Cancers 2024, 16(2), 241; https://doi.org/10.3390/cancers16020241 - 5 Jan 2024
Cited by 1 | Viewed by 1918
Abstract
Kinins are a set of peptides present in tissues that are involved in the inflammatory response and cancer progression. However, studies showing the expression of kinin receptors in human glioma samples are still incomplete and contradictory. The aim of the present study was [...] Read more.
Kinins are a set of peptides present in tissues that are involved in the inflammatory response and cancer progression. However, studies showing the expression of kinin receptors in human glioma samples are still incomplete and contradictory. The aim of the present study was to ascertain the expression of BDKRB1 and BDKRB2 genes, as well as the level of B1R and B2R proteins in human gliomas, depending on the degree of malignancy. Additionally, representative kinin-dependent genes with altered expression were indicated. The expression profile of kinin-dependent genes was determined using oligonucleotide microarray technique. In addition, RT-qPCR was used to assess the expression level of selected differentiating genes. The location of kinin receptors in brain gliomas was assessed using immunohistochemical methods. The oligonucleotide microarray method was used to identify 12 mRNA IDs of kinin-related genes whose expression was upregulated or downregulated in gliomas of different grades. In immunohistochemically stained samples, the concentrations of BR1 and BR2 proteins, measured by optical density, were statistically significantly higher in grade G3 vs. G2 and G4 vs. G3. Increased expression of kinin receptors BDKRB1 and BDKRB2 in brain gliomas, depending on the degree of malignancy, suggests the involvement of kinins and their receptors in the disease’s pathogenesis. Quantitative assessment of mRNA BDKRB1, PRKAR1A, MAP2K, and EGFR in patients with brain tumors may hold diagnostic and therapeutic significance. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

17 pages, 3965 KiB  
Article
Prevention of Inflammation, Neovascularization, and Retinal Dysfunction by Kinin B1 Receptor Antagonism in a Mouse Model of Age-Related Macular Degeneration
by Menakshi Bhat, Shima Shirzad, Abdel-Rahamane Kader Fofana, Fernand Gobeil, Réjean Couture and Elvire Vaucher
J. Clin. Med. 2023, 12(19), 6213; https://doi.org/10.3390/jcm12196213 - 26 Sep 2023
Viewed by 2118
Abstract
The kallikrein-kinin system (KKS) contributes to vascular inflammation and neovascularization in age-related macular degeneration (AMD), particularly via the kinin B1 receptor (B1R). The aim of the present study was to determine the protective effects of the topical administration of the [...] Read more.
The kallikrein-kinin system (KKS) contributes to vascular inflammation and neovascularization in age-related macular degeneration (AMD), particularly via the kinin B1 receptor (B1R). The aim of the present study was to determine the protective effects of the topical administration of the B1R antagonist (R-954) on inflammation, neovascularization, and retinal dysfunction in a murine model of neovascular AMD. Choroidal neovascularization (CNV) was induced in C57BL6 mice using an argon laser. A treatment with ocular drops of R-954 (100 μg/15 μL, twice daily in both eyes), or vehicle, was started immediately on day 0, for 7, 14, or 21 days. CNV, invasive microglia, and B1R immunoreactive glial cells, as well as electroretinography alterations, were observed within the retina and choroid of the CNV group but not in the control group. The staining of B1R was abolished by R-954 treatment as well as the proliferation of microglia. R-954 treatment prevented the CNV development (volume: 20 ± 2 vs. 152 ± 5 × 104 µm3 in R-954 vs. saline treatment). R-954 also significantly decreased photoreceptor and bipolar cell dysfunction (a-wave amplitude: −47 ± 20 vs. −34 ± 14 µV and b-wave amplitude: 101 ± 27 vs. 64 ± 17 µV in R-954 vs. saline treatment, day 7) as well as angiogenesis tufts in the retina. These results suggest that self-administration of R-954 by eye-drop treatment could be a promising therapy in AMD to preserve retinal health and vision. Full article
(This article belongs to the Special Issue Updates in Kallikrein-Kinin System—KININ2022 Conference)
Show Figures

Graphical abstract

21 pages, 6334 KiB  
Article
Emerging Role of Kinin B1 Receptor in Persistent Neuroinflammation and Neuropsychiatric Symptoms in Mice Following Recovery from SARS-CoV-2 Infection
by Srinivas Sriramula, Drew Theobald, Rohan Umesh Parekh, Shaw M. Akula, Dorcas P. O’Rourke and Jeffrey B. Eells
Cells 2023, 12(16), 2107; https://doi.org/10.3390/cells12162107 - 19 Aug 2023
Cited by 5 | Viewed by 2507
Abstract
Evidence suggests that patients with long COVID can experience neuropsychiatric, neurologic, and cognitive symptoms. However, these clinical data are mostly associational studies complicated by confounding variables, thus the mechanisms responsible for persistent symptoms are unknown. Here we establish an animal model of long-lasting [...] Read more.
Evidence suggests that patients with long COVID can experience neuropsychiatric, neurologic, and cognitive symptoms. However, these clinical data are mostly associational studies complicated by confounding variables, thus the mechanisms responsible for persistent symptoms are unknown. Here we establish an animal model of long-lasting effects on the brain by eliciting mild disease in K18-hACE2 mice. Male and female K18-hACE2 mice were infected with 4 × 103 TCID50 of SARS-CoV-2 and, following recovery from acute infection, were tested in the open field, zero maze, and Y maze, starting 30 days post infection. Following recovery from SARS-CoV-2 infection, K18-hACE2 mice showed the characteristic lung fibrosis associated with SARS-CoV-2 infection, which correlates with increased expression of the pro-inflammatory kinin B1 receptor (B1R). These mice also had elevated expression of B1R and inflammatory markers in the brain and exhibited behavioral alterations such as elevated anxiety and attenuated exploratory behavior. Our data demonstrate that K18-hACE2 mice exhibit persistent effects of SARS-CoV-2 infection on brain tissue, revealing the potential for using this model of high sensitivity to SARS-CoV-2 to investigate mechanisms contributing to long COVID symptoms in at-risk populations. These results further suggest that elevated B1R expression may drive the long-lasting inflammatory response associated with SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue New Advances in Neuroinflammation)
Show Figures

Graphical abstract

11 pages, 13113 KiB  
Article
Kinin B1 Receptor Antagonism Prevents Acute Kidney Injury to Chronic Kidney Disease Transition in Renal Ischemia-Reperfusion by Increasing the M2 Macrophages Population in C57BL6J Mice
by Gabriel Rufino Estrela, Raisa Brito Santos, Alexandre Budu, Adriano Cleis de Arruda, Jonatan Barrera-Chimal and Ronaldo Carvalho Araújo
Biomedicines 2023, 11(8), 2194; https://doi.org/10.3390/biomedicines11082194 - 4 Aug 2023
Cited by 1 | Viewed by 1757
Abstract
Background: Chronic kidney disease (CKD) is a multifactorial, world public health problem that often develops as a consequence of acute kidney injury (AKI) and inflammation. Strategies are constantly sought to avoid and mitigate the irreversibility of this disease. One of these strategies is [...] Read more.
Background: Chronic kidney disease (CKD) is a multifactorial, world public health problem that often develops as a consequence of acute kidney injury (AKI) and inflammation. Strategies are constantly sought to avoid and mitigate the irreversibility of this disease. One of these strategies is to decrease the inflammation features of AKI and, consequently, the transition to CKD. Methods: C57Bl6J mice were anesthetized, and surgery was performed to induce unilateral ischemia/reperfusion as a model of AKI to CKD transition. For acute studies, the animals received the Kinin B1 receptor (B1R) antagonist before the surgery, and for the chronic model, the animals received one additional dose after the surgery. In addition, B1R genetically deficient mice were also challenged with ischemia/reperfusion. Results: The absence and antagonism of B1R improved the kidney function following AKI and prevented CKD transition, as evidenced by the preserved renal function and prevention of fibrosis. The protective effect of B1R antagonism or deficiency was associated with increased levels of macrophage type 2 markers in the kidney. Conclusions: The B1R is pivotal to the evolution of AKI to CKD, and its antagonism shows potential as a therapeutic tool in the prevention of CKD following AKI. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

Back to TopTop