Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = kinetic energy dissipation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 736 KiB  
Article
Hybrid Framework of Fermi–Dirac Spin Hydrodynamics
by Zbigniew Drogosz
Physics 2025, 7(3), 31; https://doi.org/10.3390/physics7030031 - 1 Aug 2025
Viewed by 125
Abstract
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac [...] Read more.
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac statistics are obtained and compared with the earlier derived versions where the Boltzmann approximation was used. The expressions in the two cases are found to have the same form, but the coefficients are shown to be governed by different functions. The relative differences between the tensor coefficients in the Fermi–Dirac and Boltzmann cases are found to grow exponentially with the baryon chemical potential. In the proposed formalism, nonequilibrium processes are studied including mathematically possible dissipative corrections. Standard conservation laws are applied, and the condition of positive entropy production is shown to allow for the transfer between the spin and orbital parts of angular momentum. Full article
(This article belongs to the Special Issue High Energy Heavy Ion Physics—Zimányi School 2024)
Show Figures

Figure 1

23 pages, 9638 KiB  
Article
A Study on the Influence Mechanism of the Oil Injection Distance on the Oil Film Distribution Characteristics of the Gear Meshing Zone
by Wentao Zhao, Lin Li and Gaoan Zheng
Machines 2025, 13(7), 606; https://doi.org/10.3390/machines13070606 - 14 Jul 2025
Viewed by 309
Abstract
Under the trend of lightweight and high-efficiency development in industrial equipment, precise regulation of lubrication in gear reducers is a key breakthrough for enhancing transmission system efficiency and reliability. This study establishes a three-dimensional numerical model for high-speed gear jet lubrication using computational [...] Read more.
Under the trend of lightweight and high-efficiency development in industrial equipment, precise regulation of lubrication in gear reducers is a key breakthrough for enhancing transmission system efficiency and reliability. This study establishes a three-dimensional numerical model for high-speed gear jet lubrication using computational fluid dynamics (CFD) and dynamic mesh technology. By implementing the volume of fluid (VOF) multiphase flow model and the standard k-ω turbulence model, the study simulates the dynamic distribution of lubricant in gear meshing zones and analyzes critical parameters such as the oil volume fraction, eddy viscosity, and turbulent kinetic energy. The results show that reducing the oil injection distance significantly enhances lubricant coverage and continuity: as the injection distance increases from 4.8 mm to 24 mm, the lubricant shifts from discrete droplets to a dense wedge-shaped film, mitigating lubrication failure risks from secondary atomization and energy loss. The optimized injection distance also improves the spatial stability of eddy viscosity and suppresses excessive dissipation of turbulent kinetic energy, enhancing both the shear-load capacity and thermal management. Dynamic data from monitoring point P show that reducing the injection distance stabilizes lubricant velocity and promotes more consistent oil film formation and heat transfer. Through multiphysics simulations and parametric analysis, this study elucidates the interaction between geometric parameters and hydrodynamic behaviors in jet lubrication systems. The findings provide quantitative evaluation methods for structural optimization and energy control in gear lubrication systems, offering theoretical insights for thermal management and reliability enhancement in high-speed transmission. These results contribute to the lightweight design and sustainable development of industrial equipment. Full article
(This article belongs to the Section Friction and Tribology)
Show Figures

Figure 1

14 pages, 2812 KiB  
Perspective
The Generation of Wind Velocity via Scale Invariant Gibbs Free Energy: Turbulence Drives the General Circulation
by Adrian F. Tuck
Entropy 2025, 27(7), 740; https://doi.org/10.3390/e27070740 - 10 Jul 2025
Viewed by 292
Abstract
The mechanism for the upscale deposition of energy into the atmosphere from molecules and photons up to organized wind systems is examined. This analysis rests on the statistical multifractal analysis of airborne observations. The results show that the persistence of molecular velocity after [...] Read more.
The mechanism for the upscale deposition of energy into the atmosphere from molecules and photons up to organized wind systems is examined. This analysis rests on the statistical multifractal analysis of airborne observations. The results show that the persistence of molecular velocity after collision in breaking the continuous translational symmetry of an equilibrated gas is causative. The symmetry breaking may be caused by excited photofragments with the associated persistence of molecular velocity after collision, interaction with condensed phase surfaces (solid or liquid), or, in a scaling environment, an adjacent scale having a different velocity and temperature. The relationship of these factors for the solution to the Navier–Stokes equation in an atmospheric context is considered. The scale invariant version of Gibbs free energy, carried by the most energetic molecules, enables the acceleration of organized flow (winds) from the smallest planetary scales by virtue of the nonlinearity of the mechanism, subject to dissipation by the more numerous average molecules maintaining an operational temperature via infrared radiation to the cold sink of space. The fastest moving molecules also affect the transfer of infrared radiation because their higher kinetic energy and the associated more-energetic collisions contribute more to the far wings of the spectral lines, where the collisional displacement from the central energy level gap is greatest and the lines are less self-absorbed. The relationship of events at these scales to macroscopic variables such as the thermal wind equation and its components will be considered in the Discussion section. An attempt is made to synthesize the mechanisms by which winds are generated and sustained, on all scales, by appealing to published works since 2003. This synthesis produces a view of the general circulation that includes thermodynamics and the defining role of turbulence in driving it. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

22 pages, 1984 KiB  
Article
Large Eddy Simulation of the Diurnal Cycle of Shallow Convection in the Central Amazon
by Jhonatan A. A. Manco and Silvio Nilo Figueroa
Atmosphere 2025, 16(7), 789; https://doi.org/10.3390/atmos16070789 - 27 Jun 2025
Viewed by 363
Abstract
Climate models often face challenges in accurately simulating the daily precipitation cycle over tropical land areas, particularly in the Amazon. One contributing factor may be the incomplete representation of the diurnal evolution of shallow cumulus (ShCu) clouds. This study aimed to enhance the [...] Read more.
Climate models often face challenges in accurately simulating the daily precipitation cycle over tropical land areas, particularly in the Amazon. One contributing factor may be the incomplete representation of the diurnal evolution of shallow cumulus (ShCu) clouds. This study aimed to enhance the understanding of the diurnal cycles of ShCu clouds—from formation to maturation and dissipation—over the Central Amazon (CAMZ). Using observational data from the Green Ocean Amazon 2014 (GoAmazon) campaign and large eddy simulation (LES) modeling, we analyzed the diurnal cycles of six selected pure ShCu cases and their composite behavior. Our results revealed a well-defined cycle, with cloud formation occurring between 10 and 11 local time (LT), maturity from 13 to 15 LT, and dissipation by 17–18 LT. The vertical extent of the liquid water mixing ratio and the intensity of the updraft mass flux were closely associated with increases in turbulent kinetic energy (TKE), enhanced buoyancy flux within the cloud layer, and reduced large-scale subsidence. We further analyzed the diurnal cycles of the convective available potential energy (CAPE), the convective inhibition (CIN), the Bowen ratio (BR), and the vertically integrated TKE in the mixed layer (ITKE-ML), exploring their relationships with the cloud base mass flux (Mb) and cloud depth across the six ShCu cases. ITKE-ML and Mb exhibited similar diurnal trends, peaking at approximately 14–15 LT. However, no consistent relationships were found between CAPE (or BR) and Mb. Similarly, comparisons of the cloud depth with CAPE, BR, ITKE-ML, CIN, and Mb revealed no clear relationships. Smaller ShCu clouds were sometimes linked to higher CAPE and lower CIN. It is important to emphasize that these findings are preliminary and based on a limited sample of ShCu cases. Further research involving an expanded dataset and more detailed analyses of the TKE budget and synoptic conditions is necessary. Such efforts would yield a more comprehensive understanding of the factors influencing ShCu clouds’ vertical development. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 5801 KiB  
Article
Study on the Impact of Pipe Installation Height on the Hydraulic Performance of Combined Canal–Pipe Water Conveyance Systems
by Yanan Liu, Meijian Bai, Kai Zhang, Baozhong Zhang, Yinong Li, Yuanpeng Wang, Jintao Liu, Hairuo Liu and Yutian He
Agriculture 2025, 15(13), 1347; https://doi.org/10.3390/agriculture15131347 - 23 Jun 2025
Viewed by 352
Abstract
This study investigates the impact of pipe installation height on the hydraulic performance of a combined canal–pipe water conveyance system (CCPS) and provides practical recommendations. A combined experimental and numerical simulation approach was conducted to systematically analyze and evaluate the impact of different [...] Read more.
This study investigates the impact of pipe installation height on the hydraulic performance of a combined canal–pipe water conveyance system (CCPS) and provides practical recommendations. A combined experimental and numerical simulation approach was conducted to systematically analyze and evaluate the impact of different pipe installation heights (0, 1, 3, and 5 cm) and flow rates (18.40, 21.21, 24.74, 28.27, 33.58, and 38.88 L/s) on the system’s behavior. The results indicated that the canal water depths obtained from the numerical simulations were in close agreement with the measurements from the experiments. The water depth in the upstream canal remained nearly parallel to the canal bottom. At the junction, the trend of water depth varies under different flow rates. When the flow rate is low, the water depth sharply decreases. Conversely, when the flow rate is higher, the water depth rises significantly. Cross sections farther from the junction exhibit a higher uniformity in flow velocity distribution. As the height of the pipe installation increases, the range of influence of the junction on the flow velocity distribution in the upstream canal decreases. The elevation of the pipe installation height has been instrumental in enhancing the uniformity of flow velocity distribution across the section. However, the local head loss gradually increases as the installation height increases. Turbulent kinetic energy (TKE) and turbulent eddy dissipation rate (TED) are negatively correlated with the distance between the section and the junction point, and the maximum value decreases gradually with increasing values of the pipe installation height. Considering the hydraulic performance and engineering construction investment, the recommended pipe installation height under the conditions of this study is 1 cm. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

18 pages, 1827 KiB  
Article
Exploring the Impact of Extraplatelet Content on Fibrin-Based Scaffold Performance for Regenerative Therapies
by Daniel Marijuán-Pinel, Jon Mercader-Ruiz, Maider Beitia, Pello Sánchez, Leonor López de Dicastillo, Sergio Gonzalez, João Espregueira-Mendes, Beatriz Aizpurua, Jaime Oraá, Diego Delgado and Mikel Sánchez
Int. J. Mol. Sci. 2025, 26(13), 5967; https://doi.org/10.3390/ijms26135967 - 21 Jun 2025
Viewed by 361
Abstract
This study investigated the impact of increased extraplatelet content on the tissue regenerative capacity of platelet-rich plasma (PRP)-derived fibrin scaffolds. Comparative analyses were performed between a “balanced protein-concentrate plasma” (BPCP) and a standard PRP (sPRP), focusing on platelet and fibrinogen content, scaffold microstructure, [...] Read more.
This study investigated the impact of increased extraplatelet content on the tissue regenerative capacity of platelet-rich plasma (PRP)-derived fibrin scaffolds. Comparative analyses were performed between a “balanced protein-concentrate plasma” (BPCP) and a standard PRP (sPRP), focusing on platelet and fibrinogen content, scaffold microstructure, and functional performance. Growth factor (GF) release kinetics from the scaffolds were quantified via ELISA over 10 days, while scaffold biomechanics were evaluated through rheological testing, indentation, energy dissipation, adhesion, and assessments of coagulation dynamics, biodegradation, swelling, and retraction. Microstructural analysis was conducted using scanning electron microscopy (SEM), with fiber diameter and porosity measurements. The results demonstrated that BPCP scaffolds released significantly higher amounts of GFs and total protein, especially beyond 24 h (* p < 0.05). Despite a delayed coagulation process (** p < 0.01), BPCP scaffolds exhibited superior structural integrity and cushioning behavior (* p < 0.05). SEM revealed thicker fibers in BPCP scaffolds (**** p < 0.0001), while adhesion and biodegradation remained unaffected. Notably, BPCP scaffolds showed reduced retraction after 24 h and maintained their shape stability over two weeks without significant swelling. These findings indicate that enhancing the extraplatelet content in PRP formulations can optimize fibrin scaffold performance. Further preclinical and clinical studies are warranted to evaluate the therapeutic efficacy of BPCP-derived scaffolds in regenerative medicine. Full article
Show Figures

Graphical abstract

21 pages, 4282 KiB  
Article
Stability Assessment of Hazardous Rock Masses and Rockfall Trajectory Prediction Using LiDAR Point Clouds
by Rao Zhu, Yonghua Xia, Shucai Zhang and Yingke Wang
Appl. Sci. 2025, 15(12), 6709; https://doi.org/10.3390/app15126709 - 15 Jun 2025
Viewed by 446
Abstract
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with [...] Read more.
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with a Zenmuse L2 airborne LiDAR (Light Detection And Ranging) sensor with detailed structural-joint survey data. First, qualitative structural interpretation is conducted with stereographic projection. Next, safety factors are quantified using the limit-equilibrium method, establishing a dual qualitative–quantitative diagnostic framework. This framework delineates six hazardous rock zones (WY1–WY6), dominated by toppling and free-fall failure modes, and evaluates their stability under combined rainfall infiltration, seismic loading, and ambient conditions. Subsequently, six-degree-of-freedom Monte Carlo simulations incorporating realistic three-dimensional terrain and block geometry are performed in RAMMS::ROCKFALL (Rapid Mass Movements Simulation—Rockfall). The resulting spatial patterns of rockfall velocity, kinetic energy, and rebound height elucidate their evolution coupled with slope height, surface morphology, and block shape. Results show peak velocities ranging from 20 to 42 m s−1 and maximum kinetic energies between 0.16 and 1.4 MJ. Most rockfall trajectories terminate within 0–80 m of the cliff base. All six identified hazardous rock masses pose varying levels of threat to residential structures at the slope foot, highlighting substantial spatial variability in hazard distribution. Drawing on the preceding diagnostic results and dynamic simulations, we recommend a three-tier “zonal defense with in situ energy dissipation” scheme: (i) install 500–2000 kJ flexible barriers along the crest and upper slope to rapidly attenuate rockfall energy; (ii) place guiding or deflection structures at mid-slope to steer blocks and dissipate momentum; and (iii) deploy high-capacity flexible nets combined with a catchment basin at the slope foot to intercept residual blocks. This staged arrangement maximizes energy attenuation and overall risk reduction. This study shows that integrating high-resolution 3D point clouds with rigid-body contact dynamics overcomes the spatial discontinuities of conventional surveys. The approach substantially improves the accuracy and efficiency of hazardous rock stability assessments and rockfall trajectory predictions, offering a quantifiable, reproducible mitigation framework for long slopes, large rock volumes, and densely fractured cliff faces. Full article
(This article belongs to the Special Issue Emerging Trends in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

23 pages, 3893 KiB  
Article
Subtypes I and II of Ulva prolifera O.F. Müller: Dominant Green Tide Species in the Southern Yellow Sea and Their Responses to Natural Light and Temperature Conditions
by Shuang Zhao, Jinlin Liu, Zhangyi Xia, Jingyi Sun, Jianheng Zhang and Peimin He
Biology 2025, 14(6), 702; https://doi.org/10.3390/biology14060702 - 15 Jun 2025
Viewed by 503
Abstract
This study systematically investigated two ecotypes of Ulva prolifera, the dominant species responsible for green tides in the Yellow Sea, classified as Subtype I (strain I08-1) and Subtype II (strain QD-7). Both subtypes produce positively phototactic biflagellate gametes with oval/pear-shaped [...] Read more.
This study systematically investigated two ecotypes of Ulva prolifera, the dominant species responsible for green tides in the Yellow Sea, classified as Subtype I (strain I08-1) and Subtype II (strain QD-7). Both subtypes produce positively phototactic biflagellate gametes with oval/pear-shaped morphology but exhibit distinct cellular dimensions. Subtype I gametes demonstrated significantly larger cell sizes, with long and short axes measuring 6.55 μm and 4.62 μm, respectively, compared to Subtype II’s dimensions of 6.46 μm (long axis) and 3.03 μm (short axis). Developmental analysis revealed striking morphological divergence at the 6-day germling stage: Subtype I attained an average length of 1301.14 μm, more than doubling Subtype II’s 562.25 μm. Superior growth kinetics were observed in Subtype I, exhibiting enhanced specific growth rates (SGRs) across multiple parameters—main stem length (8.58% vs. 3.55%), primary branch elongation (19.17% vs. 12.59%), main stem width expansion (17.29% vs. 5.00%), and biomass accumulation (41.90% vs. 40.96% fresh weight). Chlorophyll quantification confirmed significantly higher pigment content in Subtype I. Pre-co-culture photosynthetic profiling demonstrated Subtype I’s superior quantum efficiency (α = 0.077 vs. 0.045) with marked differences in regulated energy dissipation (YNPQ) and non-photochemical quenching (NPQ). Post-co-culture physiological adaptation was evident in Subtype II, showing significant elevation of non-regulated energy dissipation quantum yield (YNO) and eventual surpassing of maximum electron transport rate (ETRmax) compared to Subtype I. These findings establish that U. prolifera employs robust photoprotective and thermal adaptation strategies under natural photothermal conditions. Crucially, YNO-based analysis revealed Subtype II’s enhanced high-light protection mechanisms and superior adaptability to intense irradiance environments. This research elucidates ecotype-specific environmental adaptation mechanisms in U. prolifera, providing critical insights for optimizing green tide mitigation strategies and advancing ecological understanding of algal bloom dynamics. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

30 pages, 14172 KiB  
Article
Synoptic and Dynamic Analyses of an Intense Mediterranean Cyclone: A Case Study
by Ahmad E. Samman
Climate 2025, 13(6), 126; https://doi.org/10.3390/cli13060126 - 15 Jun 2025
Viewed by 596
Abstract
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the [...] Read more.
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the formation and development of this significant Mediterranean cyclone, which impacted the Mediterranean basin and the Arabian Peninsula from 26 January to 4 February 2006. Utilizing ECMWF ERA5 reanalysis data, this research analyzes the synoptic and dynamic conditions that contributed to the cyclone’s evolution and intensification. The cyclone originated over the North Atlantic as cold air from higher latitudes and was advected southward, driven by a strong upper-level trough. The initial phase of cyclogenesis was triggered by baroclinic instability, facilitated by an intense upper-level jet stream interacting with a pre-existing low-level baroclinic zone over coastal regions. Upper-level dynamics enhanced surface frontal structures, promoting the formation of the intense cyclone. As the system progressed, low-level diabatic processes became the primary drivers of its evolution, reducing the influence of upper-level baroclinic mechanisms. The weakening of the upper-level dynamics led to the gradual distortion of the low-level baroclinicity and frontal structures, transitioning the system to a more barotropic state during its mature phase. Vorticity analysis revealed that positive vorticity advection and warm air transport toward the developing cyclone played key roles in its intensification, leading to the development of strong low-level winds. Atmospheric kinetic energy analysis showed that the majority of the atmospheric kinetic energy was concentrated at 400 hPa and above, coinciding with intense jet stream activity. The generation of the atmospheric kinetic energy was primarily driven by cross-contour flow, acting as a major energy source, while atmospheric kinetic energy dissipation from grid to subgrid scales served as a major energy sink. The dissipation pattern closely mirrored the generation pattern but with the opposite sign. Additionally, the horizontal flux of the atmospheric kinetic energy was identified as a continuous energy source throughout the cyclone’s lifecycle. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

32 pages, 7008 KiB  
Article
Revealing the Roles of Heat Transfer, Thermal Dynamics, and Reaction Kinetics in Hydrogenation/Dehydrogenation Processes for Mg-Based Metal Hydride Hydrogen Storage
by Zhiqian Li, Min Zhang and Huijin Xu
Energies 2025, 18(11), 2924; https://doi.org/10.3390/en18112924 - 4 Jun 2025
Viewed by 606
Abstract
Hydrogen is critical for achieving carbon neutrality as a clean energy source. However, its low ambient energy density poses challenges for storage, making efficient and safe hydrogen storage a bottleneck. Metal hydride-based solid-state hydrogen storage has emerged as a promising solution due to [...] Read more.
Hydrogen is critical for achieving carbon neutrality as a clean energy source. However, its low ambient energy density poses challenges for storage, making efficient and safe hydrogen storage a bottleneck. Metal hydride-based solid-state hydrogen storage has emerged as a promising solution due to its high energy density, low operating pressure, and safety. In this work, the thermodynamic and kinetic characteristics of the hydrogenation and dehydrogenation processes are investigated and analyzed in detail, and the effects of initial conditions on the thermochemical hydrogen storage reactor are discussed. Multiphysics field modeling of the magnesium-based hydrogen storage tank was conducted to analyze the reaction processes. Distributions of temperature and reaction rate in the reactor and temperature and pressure during the hydrogen loading process were discussed. Radially, wall-adjacent regions rapidly dissipate heat with short reaction times, while the central area warms into a thermal plateau. Inward cooling propagation shortens the plateau, homogenizing temperatures—reflecting inward-to-outward thermal diffusion and exothermic attenuation, alongside a reaction rate peak migrating from edge to center. Axially, initial uniformity transitions to bottom-up thermal expansion after 60 min, with sustained high top temperatures showing nonlinear decay under t = 20 min intervals, where cooling rates monotonically accelerate. The greater the hydrogen pressure, the shorter the period of the temperature rise and the steeper the curve, while lower initial temperatures preserve local maxima but shorten plateaus and cooling time via enhanced thermal gradients. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Graphical abstract

19 pages, 3021 KiB  
Article
Theoretical Analysis of Low-Frequency Sound Absorption Owing to the Vibration of Lightweight Powder Using a 1D Beam Model
by Shuichi Sakamoto, Yuya Kawakami, Hiroaki Soeta and Yosuke Kubo
Materials 2025, 18(11), 2611; https://doi.org/10.3390/ma18112611 - 3 Jun 2025
Viewed by 416
Abstract
Lightweight powder-based sound-absorbing materials are characterized by sound absorption peaks at lower frequencies compared to other sound absorption materials of the same thickness. This behavior is attributed to the excitation of longitudinal vibration modes in the powder particles by incident sound waves, wherein [...] Read more.
Lightweight powder-based sound-absorbing materials are characterized by sound absorption peaks at lower frequencies compared to other sound absorption materials of the same thickness. This behavior is attributed to the excitation of longitudinal vibration modes in the powder particles by incident sound waves, wherein acoustic energy is converted into kinetic energy and subsequently dissipated through interparticle interactions. These lightweight, fine powders are artificially engineered acoustic materials. Despite their structural simplicity, they exhibit emergent and complex sound absorption behaviors through fundamental vibrational mechanisms. Representing the powder layer with a transfer matrix simplifies model-based development and enhances versatility as an acoustic element. The powder layer was modeled as a longitudinally oscillating 1D beam, and transfer matrix of the powder layer was derived. To verify the obtained transfer matrix, the experimental values were compared with the theoretical values for a single powder layer. In addition, both were compared for the case of other acoustic elements stacked on top of each other, which were close to each other. The theoretical values were compared with the experimental values, which were close to each other. Full article
(This article belongs to the Special Issue Novel Materials for Sound-Absorbing Applications)
Show Figures

Figure 1

29 pages, 4275 KiB  
Article
CFD-Assisted Design of an NH3/H2 Combustion Chamber Based on the Rich–Quench–Lean Concept
by Gonçalo Pacheco, José Chaves, Miguel Mendes and Pedro Coelho
Energies 2025, 18(11), 2919; https://doi.org/10.3390/en18112919 - 2 Jun 2025
Viewed by 987
Abstract
Ammonia (NH3) and hydrogen (H2) are considered promising fuels for the power sector’s decarbonization. Their combustion is capable of producing energy with zero direct CO2 emissions, and ammonia can act as a stable energy H2 carrier. This [...] Read more.
Ammonia (NH3) and hydrogen (H2) are considered promising fuels for the power sector’s decarbonization. Their combustion is capable of producing energy with zero direct CO2 emissions, and ammonia can act as a stable energy H2 carrier. This study numerically investigates the design and implementation of staged combustion of a mixture of NH3/H2 by means of CFD simulations. The investigation employed the single-phase flow RANS governing equations and the eddy dissipation concept (EDC) combustion model, with the incorporation of a detailed kinetic mechanism. The combustion chamber operates under the RQL (rich–quench–lean) combustion regime. The first stage operates under rich conditions, firing mixtures of ammonia in air, enriched by hydrogen (H2) to enhance combustion properties in a swirl and bluff-body stabilized burner. The secondary stage injects additional air and hydrogen to mitigate unburnt ammonia and NOx emissions. Simulations of the first stage were performed for a thermal input ranging from 4 kW to 8 kW and flames with an equivalence ratio of 1.2. In the second stage, additional hydrogen is injected with a thermal input of either 1 kW or 2 KW, and air is added to adjust the global equivalence ratio to 0.6. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Graphical abstract

17 pages, 8553 KiB  
Article
Observation of Near-Inertial Oscillation in an Anticyclonic Eddy in the Northern South China Sea
by Botao Xie, Tao Liu, Bigui Huang, Chujin Liang and Feilong Lin
J. Mar. Sci. Eng. 2025, 13(6), 1079; https://doi.org/10.3390/jmse13061079 - 29 May 2025
Viewed by 337
Abstract
Anticyclonic mesoscale eddies are known to trap and modulate near-inertial kinetic energy (NIKE); however, the spatial distribution of NIKE within the eddy core and periphery, as well as the mechanisms driving its energy cascade to smaller scales, remains inadequately understood. This study analyzed [...] Read more.
Anticyclonic mesoscale eddies are known to trap and modulate near-inertial kinetic energy (NIKE); however, the spatial distribution of NIKE within the eddy core and periphery, as well as the mechanisms driving its energy cascade to smaller scales, remains inadequately understood. This study analyzed the evolution of NIKE in anticyclonic eddies using satellite altimetry and field observations from four mooring arrays. By extracting near-inertial oscillations (NIOs) and subharmonic wave kinetic energy across mooring stations during the same period, we characterized the spatial structure of NIKE within the eddy field. The results revealed that NIKE was concentrated in the eddy core, where strong NIOs (peak velocity ~0.23 m/s) persisted for ~7 days, with energy primarily distributed at depths of 200–400 m and propagating inward from the periphery. Subharmonic waves fD1 generated by interactions between NIOs and diurnal tides highlighted the role of the vertical nonlinear term in energy transfer. A further analysis indicated that under vorticity confinement, NIKE accumulated in the core of the eddy and dissipated through shear instability and nonlinear wave interactions. The migrating anticyclonic eddy thus acted as a localized energy source, driving mixing and energy dissipation in the ocean interior. Full article
(This article belongs to the Special Issue Ocean Internal Waves and Circulation Dynamics in Climate Change)
Show Figures

Figure 1

21 pages, 7060 KiB  
Article
Study on the Dissolution Mechanism of Aviation Hydraulic Oil–Nitrogen Gas Based on Molecular Dynamics
by Qingtai Guo, Changming Zhang, Hui Zhang, Tianlei Zhang and Dehai Meng
Processes 2025, 13(5), 1564; https://doi.org/10.3390/pr13051564 - 18 May 2025
Cited by 1 | Viewed by 616
Abstract
The shock absorbers in the landing gear absorb and dissipate a significant amount of kinetic energy generated from impacts during the landing and taxiing phases to ensure the stability and safety of the aircraft. The nitrogen–oil binary system is a commonly used energy [...] Read more.
The shock absorbers in the landing gear absorb and dissipate a significant amount of kinetic energy generated from impacts during the landing and taxiing phases to ensure the stability and safety of the aircraft. The nitrogen–oil binary system is a commonly used energy absorption medium in these shock absorbers. Nevertheless, the interplay of interfacial mass transfer dynamics, microscopic dissolution behavior, and pressure drop in the aviation hydraulic oil–N2 system under landing conditions necessitates further elucidation. Thus, we investigated the interfacial mass transfer characteristics of the oil–gas mixing process using molecular dynamics (MD) for analyzing the dissolution mechanism of N2 in the aviation hydraulic oil system. The results show that as system pressure and temperature increase, the degree of oil–gas mixing intensifies. Under conditions of 373 K, 35 MPa and 433 K, 20 MPa, the diffusion coefficient, interfacial thickness, and system energy reach their maximum values. An increase in system pressure facilitates the occurrence of oil–gas mixing until the interface disappears at the minimum miscibility pressure (MMP), with the obtained MMP value being 107 MPa. Finally, the solubility of N2 molecules in aviation hydraulic oil under different conditions was statistically analyzed, which is identified as the root cause of the pressure drop in the shock absorber’s gas chamber. This study innovatively applies molecular dynamics simulations to unveil, for the first time, the dissolution mechanism of N2 in aviation hydraulic oil at the molecular scale, overcoming experimental limitations in observing extreme pressure–temperature conditions. This research elucidates the behavior of aviation hydraulic oil and N2 under different thermodynamic conditions, making it easier to capture the patterns of phenomena that are difficult to observe in extreme environments. The research findings not only enhance the microscopic understanding of oil–gas mixing within the shock absorber but also provide valuable guidance for optimizing energy dissipation efficiency, improving damping characteristics, and enhancing safety in aircraft landing gear systems. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

25 pages, 11740 KiB  
Article
Effects of Stress States and Joint Configurations on Dynamic Mechanical Properties of Rock Masses
by Tingting Liu, Zi Wang, Xuyi Wang, Shenghao Yang, Wenxu Huang and Luyang Ding
Materials 2025, 18(8), 1699; https://doi.org/10.3390/ma18081699 - 9 Apr 2025
Viewed by 515
Abstract
In complex geological environments, the discontinuous dynamic response behavior of jointed rock masses under the coupled effects of in situ stress and transient dynamic disturbances significantly exacerbates the risk of surrounding rock instability. This study establishes three-dimensional numerical models of various jointed rocks [...] Read more.
In complex geological environments, the discontinuous dynamic response behavior of jointed rock masses under the coupled effects of in situ stress and transient dynamic disturbances significantly exacerbates the risk of surrounding rock instability. This study establishes three-dimensional numerical models of various jointed rocks under uniaxial–biaxial–triaxial split Hopkinson pressure bar (SHPB) experimental systems through the coupling of the finite difference method (FDM) and discrete element method (DEM). The models adhere to the one-dimensional stress wave propagation assumption and satisfy the dynamic stress equilibrium requirements, demonstrating dynamic mechanical responses consistent with physical experiments. The results reveal that the synergistic–competitive effects between joint configuration and initial pre-compression jointly dominate the dynamic mechanical response of rocks. Multiaxial pre-compression promotes the development of secondary force chain networks, enhances rock impact resistance through multi-path stress transfer mechanisms, significantly improves strain energy storage density during peak stages, and drives failure modes to evolve from macroscopic through-going fractures to localized crushing zones. The spatial heterogeneity of joint configurations induces anisotropic characteristics in principal stress fabric. Single joint systems maintain structural integrity due to restricted weak plane propagation, while cross/parallel joints exhibit geometrically induced synergistic propagation effects, forming differentiated crack propagation paths that intensify frictional and kinetic energy dissipation. Through cross-scale numerical model comparisons, the evolution of force chain fabric, particle displacement distribution, microcrack propagation, and energy dissipation mechanisms were analyzed, unveiling the synergistic regulatory effects of the stress state and joint configuration on the rock dynamic response. This provides a theoretical basis for impact-resistant structure optimization and dynamic instability early warning in deep engineering projects involving jointed surrounding rock. Full article
Show Figures

Figure 1

Back to TopTop