Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = kinematic screw

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2599 KiB  
Article
Construction of Motion/Force Transmission Performance Index of a Single-Drive Serial Loop Mechanism and Application to the Vehicle Door Latch Mechanism
by Ziyang Zhang, Lubin Hang and Xiaobo Huang
Appl. Sci. 2025, 15(15), 8475; https://doi.org/10.3390/app15158475 - 30 Jul 2025
Viewed by 124
Abstract
Aiming at the multifunctional requirements of the limited space in high-end vehicle side-door latches, a double single-loop RRUPRR mechanism driven by a single motor for both electric releasing and cinching is proposed based on the POC set. The kinematical equations of the RRURR [...] Read more.
Aiming at the multifunctional requirements of the limited space in high-end vehicle side-door latches, a double single-loop RRUPRR mechanism driven by a single motor for both electric releasing and cinching is proposed based on the POC set. The kinematical equations of the RRURR mechanism possess 2 × 2 analytical solutions. In order to apply the current motion/force transmission performance index of the parallel mechanisms to the transmission performance analysis of the serial mechanisms, matching methods for chain-driving transference and the moving/fixed platform inversion are proposed. The solution of the performance index of a single-degree-of-freedom single-loop mechanism is equivalent to the solution of the input motion/force transmission performance index of a parallel mechanism. The overall motion/force transmission performance index of a single-loop mechanism is constructed, and the corresponding calculation procedure is defined. Chain-driving transference can be obtained through forward and inverse solutions of the RRURR mechanism. In response to the extremely high requirements for motion/force transmission performance of electric release mechanisms, the proposed overall motion/force transmission performance index is used to calculate for the input motion screw and corresponding transmission-force screw of the single-loop RRURR mechanism and obtain the overall motion/force transmission performance of the mechanism. The performance atlas of the mechanism shows that it has excellent motion/force transmission characteristics within the workspace. Using ADAMS simulation software, the driving torque required for electric releasing and cinching of a vehicle side-door latch mechanism with a single motor is analyzed. The overall motion/force transmission performance index of a single-loop mechanism can be applied to single-loop overconstrained mechanisms and non-overconstrained mechanisms. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

25 pages, 1707 KiB  
Article
The Kinematics of a New Schönflies Motion Generator Parallel Manipulator Using Screw Theory
by Jaime Gallardo-Alvarado, Horacio Orozco-Mendoza, Ramon Rodriguez-Castro, Alvaro Sanchez-Rodriguez and Luis A. Alcaraz-Caracheo
Mathematics 2025, 13(14), 2291; https://doi.org/10.3390/math13142291 - 16 Jul 2025
Viewed by 262
Abstract
In this work, an innovative Schönflies motion generator manipulator is introduced, featuring a parallel architecture composed of serial chains with mixed degrees of freedom. Fundamental kinematic aspects essential to any manipulator such as displacement, velocity, acceleration, and singularity analyses are thoroughly addressed. Screw [...] Read more.
In this work, an innovative Schönflies motion generator manipulator is introduced, featuring a parallel architecture composed of serial chains with mixed degrees of freedom. Fundamental kinematic aspects essential to any manipulator such as displacement, velocity, acceleration, and singularity analyses are thoroughly addressed. Screw theory is employed to derive compact input–output expressions for velocity and acceleration, leveraging the properties of reciprocal screws and lines associated with the constrained degrees of freedom in the parallel manipulator. A key advantage of the proposed design is its near-complete avoidance of singular configurations, which significantly enhances its applicability in robotic manipulation. Numerical examples are provided to validate the theoretical results, with corroboration from specialized tools such as ADAMS™ software and data fitting algorithms. These results confirm the reliability and robustness of the developed kinematic analysis approach. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

27 pages, 3222 KiB  
Article
DNN-Augmented Kinematically Decoupled Three-DoF Origami Parallel Robot for High-Precision Heave and Tilt Control
by Gaokun Shi, Hassen Nigatu, Zhijian Wang and Yongsheng Huang
Actuators 2025, 14(6), 291; https://doi.org/10.3390/act14060291 - 13 Jun 2025
Viewed by 346
Abstract
This paper presents a three-degrees-of-freedom origami parallel robot that is free from parasitic motion. This robot is designed to achieve one translational and two rotational motions within its workspace, enabling precise orientation about a fixed point—a capability unattainable for parallel robots with parasitic [...] Read more.
This paper presents a three-degrees-of-freedom origami parallel robot that is free from parasitic motion. This robot is designed to achieve one translational and two rotational motions within its workspace, enabling precise orientation about a fixed point—a capability unattainable for parallel robots with parasitic motion. The elimination of parasitic motion is critical, allowing the use of this device in applications requiring high precision. The robot’s key kinematic features include a parasitic motion-free workspace, large orientational capability, compactness, decoupled motion, simplicity in manufacturing and control, mechanically pivoted rotation of the moving platform, and scalability. These characteristics make the robot particularly well-suited for micromanipulation tasks in both manufacturing and medical applications. In manufacturing, it can enable high-precision operations such as micro-assembly, optical fiber alignment, and semiconductor packaging. In medicine, it can support delicate procedures such as microsurgery and cell injection, where sub-micron accuracy, high stability, and precise motion decoupling are critical requirements. The use of nearly identical limbs simplifies the architecture, facilitating easier design, manufacture, and control. The kinematics of the robot is analyzed using reciprocal screw theory for an analytic constraint-embedded Jacobian. To further enhance operational accuracy and robustness, particularly in the presence of uncertainties or disturbances, a deep neural network (DNN)-based state estimation method is integrated, providing accurate forward kinematic predictions. The construction of the robot utilizes origami-inspired limbs and joints, enhancing miniaturization, manufacturing simplicity, and foldability. Although capable of being scaled up or further miniaturized, its current size is 66 mm × 68 mm × 100 mm. The robot’s moving platform is theoretically and experimentally proven to be free of parasitic motion and possesses a large orientation capability. Its unique features are demonstrated, and its potential for high-precision applications is thoroughly discussed. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

17 pages, 1463 KiB  
Article
An Autonomous Fluoroscopic Imaging System for Catheter Insertions by Bilateral Control Scheme: A Numerical Simulation Study
by Gregory Y. Ward, Dezhi Sun and Kenan Niu
Machines 2025, 13(6), 498; https://doi.org/10.3390/machines13060498 - 6 Jun 2025
Viewed by 866
Abstract
This study presents a bilateral control architecture that links fluoroscopic image feedback directly to the kinematics of a tendon-driven, three-joint robotic catheter and a 3-DoF motorised C-arm, intending to preserve optimal imaging geometry during autonomous catheter insertion and thereby mitigating radiation exposure. Forward [...] Read more.
This study presents a bilateral control architecture that links fluoroscopic image feedback directly to the kinematics of a tendon-driven, three-joint robotic catheter and a 3-DoF motorised C-arm, intending to preserve optimal imaging geometry during autonomous catheter insertion and thereby mitigating radiation exposure. Forward and inverse kinematics for both manipulators were derived via screw theory and geometric analysis, while a calibrated projection model generated synthetic X-ray images whose catheter bending angles were extracted through intensity thresholding, segmentation, skeletonisation, and least-squares circle fitting. The estimated angle fed a one-dimensional extremum-seeking routine that rotated the C-arm about its third axis until the apparent bending angle peaked, signalling an orthogonal view of the catheter’s bending plane. Implemented in a physics-based simulator, the framework achieved inverse-kinematic errors below 0.20% for target angles between 20° and 90°, with accuracy decreasing to 3.00% at 10°. The image-based angle estimator maintained a root-mean-square error 3% across most of the same range, rising to 6.4% at 10°. The C-arm search consistently located the optimal perspective, and the combined controller steered the catheter tip along a predefined aortic path without collision. These results demonstrate sub-degree angular accuracy under idealised, noise-free conditions and validate real-time coupling of image guidance to dual-manipulator motion; forthcoming work will introduce realistic image noise, refined catheter mechanics, and hardware-in-the-loop testing to confirm radiation-dose and workflow benefits. Full article
Show Figures

Figure 1

29 pages, 1578 KiB  
Article
Algorithmic Modified Denavit–Hartenberg Modeling for Robotic Manipulators Using Line Geometry
by Minchang Sung and Youngjin Choi
Appl. Sci. 2025, 15(9), 4999; https://doi.org/10.3390/app15094999 - 30 Apr 2025
Viewed by 728
Abstract
This paper proposes a kinematic modeling method for robotic manipulators by extracting the modified Denavit–Hartenberg (MDH) parameters using line geometry. For single-branched manipulators, various joint axes can be represented as lines using Plücker coordinates. The forward kinematics is derived by performing the product [...] Read more.
This paper proposes a kinematic modeling method for robotic manipulators by extracting the modified Denavit–Hartenberg (MDH) parameters using line geometry. For single-branched manipulators, various joint axes can be represented as lines using Plücker coordinates. The forward kinematics is derived by performing the product of matrices which are the exponential maps lifted from two kinds of exponential coordinates using the MDH parameters. For extracting MDH parameters, line geometry systematically analyzes the following: (1) the closest point between a point and line, (2) the closest distance and twist angle between two lines, (3) the common perpendicular line and its intersection points, and (4) classifies line relationships into collinear, distant parallel, intersected, and skewed cases. For each case, five parameters including twist angle, closest distance, common perpendicular direction vector, and both feet on a common perpendicular line are sequentially computed as results of the line geometry block. Finally, the aforementioned line geometry blocks are utilized to extract the four MDH parameters according to their definitions. The effectiveness of the proposed algorithm is verified by four examples including a typical Selective Compliance Assembly Robot Arm (SCARA) robot and three different commercial manipulators. Full article
(This article belongs to the Special Issue Advances in Industrial Robotics and Control Systems)
Show Figures

Figure 1

27 pages, 4409 KiB  
Article
Design of a Novel Bio-Inspired Three Degrees of Freedom (3DOF) Spherical Robotic Manipulator and Its Application in Human–Robot Interactions
by Suleyman Soltanov and Rodney Roberts
Robotics 2025, 14(2), 8; https://doi.org/10.3390/robotics14020008 - 22 Jan 2025
Viewed by 4084
Abstract
Studying the interactions between biological organisms and their environment provides engineers with valuable insights for developing complex mechanical systems and fostering the creation of novel technological innovations. In this study, we introduce a novel bio-inspired three degrees of freedom (DOF) spherical robotic manipulator [...] Read more.
Studying the interactions between biological organisms and their environment provides engineers with valuable insights for developing complex mechanical systems and fostering the creation of novel technological innovations. In this study, we introduce a novel bio-inspired three degrees of freedom (DOF) spherical robotic manipulator (SRM), designed to emulate the biomechanical properties observed in nature. The design utilizes the transformation of spherical Complex Spatial Kinematic Pairs (CSKPs) to synthesize bio-inspired robotic manipulators. Additionally, the use of screw theory and the Levenberg–Marquardt algorithm for kinematic parameter computation supports further advancements in human–robot interactions and simplifies control processes. The platform directly transmits motion from the motors to replicate the ball-and-socket mobility of biological joints, minimizing mechanical losses, and optimizing energy efficiency for superior spatial mobility. The proposed 3DOF SRM provides advantages including an expanded workspace, enhanced dexterity, and a lightweight, compact design. Experimental validation, conducted through SolidWorks, MATLAB, Python, and Arduino, demonstrates the versatility and broad application potential of the novel bio-inspired 3DOF SRM, positioning it as a robust solution for a wide range of robotic applications. Full article
(This article belongs to the Section Humanoid and Human Robotics)
Show Figures

Graphical abstract

17 pages, 4644 KiB  
Article
A System for Robotic Extraction of Fasteners
by Austin Clark and Musa K. Jouaneh
Appl. Sci. 2025, 15(2), 618; https://doi.org/10.3390/app15020618 - 10 Jan 2025
Viewed by 1188
Abstract
Automating the extraction of mechanical fasteners from end-of-life (EOL) electronic waste is challenging due to unpredictable conditions and unknown fastener locations relative to robotic coordinates. This study develops a system for extracting cross-recessed screws using a Deep Convolutional Neural Network (DCNN) for screw [...] Read more.
Automating the extraction of mechanical fasteners from end-of-life (EOL) electronic waste is challenging due to unpredictable conditions and unknown fastener locations relative to robotic coordinates. This study develops a system for extracting cross-recessed screws using a Deep Convolutional Neural Network (DCNN) for screw detection, integrated with industrial robot simulation software. The simulation models the tooling, camera, environment, and robot kinematics, enabling real-time control and feedback between the robot and the simulation environment. The system, tested on a robotic platform with custom tooling, including force and torque sensors, aimed to optimize fastener removal. Key performance indicators included the speed and success rate of screw extraction, with success rates ranging from 78 to 89% on the first pass and 100% on the second. The system uses a state-based program design for fastener extraction, with real-time control via a web-socket interface. Despite its potential, the system faces limitations, such as longer cycle times, with single fastener extraction taking over 30 s. These challenges can be mitigated by refining the tooling, DCNN model, and control logic for improved efficiency. Full article
(This article belongs to the Special Issue Computer Vision in Automatic Detection and Identification)
Show Figures

Figure 1

19 pages, 32077 KiB  
Article
Present-Day Tectonic Deformation Characteristics of the Northeastern Pamir Margin Constrained by InSAR and GPS Observations
by Junjie Zhang, Xiaogang Song, Donglin Wu and Xinjian Shan
Remote Sens. 2024, 16(24), 4771; https://doi.org/10.3390/rs16244771 - 21 Dec 2024
Viewed by 1035
Abstract
The Pamir is located on the northwestern margin of the Tibetan Plateau, which is an area of intense continental deformation and part of the famous India–Himalaya collision zone. The dominant structural deformation in the eastern Pamir is characterized by a 250 km long [...] Read more.
The Pamir is located on the northwestern margin of the Tibetan Plateau, which is an area of intense continental deformation and part of the famous India–Himalaya collision zone. The dominant structural deformation in the eastern Pamir is characterized by a 250 km long east–west extensional fault system, known as the Kongur Shan extensional system (KSES), which has developed a series of faults with different orientations and characteristics, resulting in highly complex structural deformation and lacking sufficient geodetic constraints. We collected Sentinel-1 SAR data from December 2016 to March 2023, obtained high-resolution ascending and descending LOS velocities and 3D deformation fields, and combined them with GPS data to constrain the current motion characteristics of the northeastern Pamirs for the first time. Based on the two-dimensional screw dislocation model and using the Bayesian Markov chain Monte Carlo (MCMC) inversion method, the kinematic parameters of the fault were calculated, revealing the fault kinematic characteristics in this region. Our results demonstrate that the present-day deformation of the KSES is dominated by nearly E–W extension, with maximum extensional motion concentrated in its central segment, reaching peak extension rates of ~7.59 mm/yr corresponding to the Kongur Shan. The right-lateral Muji fault at the northern end exhibits equivalent rates of extensional motion with a relatively shallow locking depth. The strike-slip rate along the Muji fault gradually increases from west to east, ranging approximately between 4 and 6 mm/yr, significantly influenced by the eastern normal fault. The Tahman fault (TKF) at the southernmost end of the KSES shows an extension rate of ~1.5 mm/yr accompanied by minor strike-slip motion. The Kashi anticline is approaching stability, while the Mushi anticline along the eastern Pamir frontal thrust (PFT) remains active with continuous uplift at ~2 mm/yr, indicating that deformation along the Tarim Basin–Tian Shan boundary has propagated southward from the South Tian Shan thrust (STST). Overall, this study demonstrates the effectiveness of integrated InSAR and GPS data in constraining contemporary deformation patterns along the northeastern Pamir margin, contributing to our understanding of the region’s tectonic characteristics. Full article
Show Figures

Figure 1

17 pages, 5645 KiB  
Article
Kinematic Analysis of Plasticization and Transportation System of Tri-Screw Dynamic Extruder
by Bin Xue, Jun Li, Qu Yang, Guiting Wu, Danxiang Wei, Yijie Ding, Zhenbin Du and Mingshi Huang
Polymers 2024, 16(23), 3252; https://doi.org/10.3390/polym16233252 - 22 Nov 2024
Viewed by 866
Abstract
With the growing demand for high-performance polymer composites, conventional single- and twin-screw extruders often fall short of meeting industrial requirements for effective mixing and compounding. This research investigates the kinematic behavior of the plasticization and transport mechanisms in tri-screw extruders when subjected to [...] Read more.
With the growing demand for high-performance polymer composites, conventional single- and twin-screw extruders often fall short of meeting industrial requirements for effective mixing and compounding. This research investigates the kinematic behavior of the plasticization and transport mechanisms in tri-screw extruders when subjected to a vibrational force field. The study specifically examines how applying vibrational force technology can improve the efficiency of polymer mixing. Vibration force field means that in a three-screw mechanism, an axial vibration is applied to the middle screw to produce a vibration force field. Through the development of mathematical and physical models, this study analyzed the motion dynamics of the screw and the influence of a vibrational force field on polymer transport and mixing efficiency. The findings indicate that, in comparison to traditional twin-screw extruders, tri-screw systems can achieve higher shear and elongational rates, leading to enhanced polymer mixing uniformity. Furthermore, applying an axial vibrational force field significantly influenced the shear and elongational strain rates of the material, thereby optimizing its rheological behavior and processing quality. This research not only establishes a theoretical foundation for the design and optimization of tri-screw extruders but also opens new pathways for the efficient processing of high-viscosity composite materials. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 6819 KiB  
Article
Analysis and Experimentation on the Motion Characteristics of a Dragon Fruit Picking Robot Manipulator
by Kairan Lou, Zongbin Wang, Bin Zhang, Qiu Xu, Wei Fu, Yang Gu and Jinyi Liu
Agriculture 2024, 14(11), 2095; https://doi.org/10.3390/agriculture14112095 - 20 Nov 2024
Cited by 1 | Viewed by 1386
Abstract
Due to the complex growth positions of dragon fruit and the difficulty in robotic picking, this paper proposes a six degrees of freedom dragon fruit picking robot and investigates the manipulator’s motion characteristics to address the adaptive motion issues of the picking manipulator. [...] Read more.
Due to the complex growth positions of dragon fruit and the difficulty in robotic picking, this paper proposes a six degrees of freedom dragon fruit picking robot and investigates the manipulator’s motion characteristics to address the adaptive motion issues of the picking manipulator. Based on the agronomic characteristics of dragon fruit cultivation, the structural design of the robot and the dimensions of its manipulator were determined. A kinematic model of the dragon fruit picking robot based on screw theory was established, and the workspace of the manipulator was analyzed using the Monte Carlo method. Furthermore, a dynamic model of the manipulator based on the Kane equation was constructed. Performance experiments under trajectory and non-trajectory planning showed that trajectory planning significantly reduced power consumption and peak torque. Specifically, Joint 3’s power consumption decreased by 62.28%, and during the picking, placing, and resetting stages, the peak torque of Joint 4 under trajectory planning was 10.14 N·m, 12.57 N·m, and 16.85 N·m, respectively, compared to 12.31 N·m, 15.69 N·m, and 22.13 N·m under non-trajectory planning. This indicated that the manipulator operates with less impact and smoother motion under trajectory planning. Comparing the dynamic model simulation and actual testing, the maximum absolute error in the joint torques was −2.76 N·m, verifying the correctness of the dynamic equations. Through field picking experiments, it was verified that the machine’s picking success rate was 66.25%, with an average picking time of 42.4 s per dragon fruit. The manipulator operated smoothly during each picking process. In the study, the dragon fruit picking manipulator exhibited good stability, providing the theoretical foundation and technical support for intelligent dragon fruit picking. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 3408 KiB  
Article
Non-Inertial Dynamic Analysis of 3-SPS/U Parallel Platform by Screw Theory and Kane’s Method
by Tianzhu Wang, Haifeng Yang, Qiang Zhang, Jinhui Fang, Zhenyu Lai, Ruilin Feng, Jianhua Wei and Zhanfeng Wang
Actuators 2024, 13(11), 430; https://doi.org/10.3390/act13110430 - 24 Oct 2024
Viewed by 11040
Abstract
This paper presents an improved method for the non-inertial dynamic analysis of the 3-SPS/U parallel platform (3-SPS/U PM), employing the screw theory and Kane’s method, where S, P, and U denote spherical, prismatic, and universal joints, respectively. The proposed method extends the traditional [...] Read more.
This paper presents an improved method for the non-inertial dynamic analysis of the 3-SPS/U parallel platform (3-SPS/U PM), employing the screw theory and Kane’s method, where S, P, and U denote spherical, prismatic, and universal joints, respectively. The proposed method extends the traditional inertial dynamic analysis to non-inertial systems. First, the generalized screw method is introduced, followed by the derivation of a transformation formula that adapts the screw method to various co-ordinate systems. Subsequently, the velocities and accelerations of each rigid body within the platform under non-inertial conditions are examined by combining the extended screw method with the system’s inverse kinematics model. The extended screw method is not only conceptually simple, but also adaptable to other non-inertial systems. Finally, the standard non-inertial dynamic model of the 3-SPS/U PM is derived through the Kane’s method and validated by the co-simulations with RecurDyn (V9R5) and MATLAB/Simulation (2019b). Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

13 pages, 1035 KiB  
Article
A New Method for Displacement Modelling of Serial Robots Using Finite Screw
by Feiyang Xue, Zhengjun Fang, Jiahao Song, Qi Liu and Shuofei Yang
Machines 2024, 12(9), 658; https://doi.org/10.3390/machines12090658 - 20 Sep 2024
Cited by 1 | Viewed by 1019
Abstract
Kinematics is a hot topic in robotic research, serving as a foundational step in the synthesis and analysis of robots. Forward kinematics and inverse kinematics are the prerequisite and foundation for motion control, trajectory planning, dynamic simulation, and precision guarantee of robotic manipulators. [...] Read more.
Kinematics is a hot topic in robotic research, serving as a foundational step in the synthesis and analysis of robots. Forward kinematics and inverse kinematics are the prerequisite and foundation for motion control, trajectory planning, dynamic simulation, and precision guarantee of robotic manipulators. Both of them depend on the displacement models. Compared with the previous work, finite screw is proven to be the simplest and nonredundant mathematical tool for displacement description. Thus, it is used for displacement modelling of serial robots in this paper. Firstly, a finite-screw-based method for formulating displacement model is proposed, which is applicable for any serial robot. Secondly, the procedures for forward and inverse kinematics by solving the formulated displacement equation are discussed. Then, two typical serial robots with three translations and two rotations are taken as examples to illustrate the proposed method. Finally, through Matlab simulation, the obtained analytical expressions of kinematics are verified. The main contribution of the proposed method is that finite-screw-based displacement model is highly related with instantaneous-screw-based kinematic and dynamic models, providing an integrated modelling and analysis methodology for robotic mechanisms. Full article
(This article belongs to the Special Issue The Kinematics and Dynamics of Mechanisms and Robots)
Show Figures

Figure 1

12 pages, 13850 KiB  
Review
An Insert Goniometer Can Help Select the Optimal Insert Thickness When Performing Kinematically Aligned Total Knee Arthroplasty with a Medial 1:1 Ball-in-Socket and Lateral Flat Surface Insert and Posterior Cruciate Ligament Retention
by Sahil A. Sanghavi, Alexander J. Nedopil, Stephen M. Howell and Maury L. Hull
Bioengineering 2024, 11(9), 910; https://doi.org/10.3390/bioengineering11090910 - 12 Sep 2024
Cited by 2 | Viewed by 1557
Abstract
Current surgical practices in total knee arthroplasty (TKA) have advanced and include significant changes and improvements in alignment philosophies, femorotibial implant conformities, and ligament management to replicate in vivo knee kinematics. While corrective measures have emphasized sagittal plane alignment to restore normal flexion–extension [...] Read more.
Current surgical practices in total knee arthroplasty (TKA) have advanced and include significant changes and improvements in alignment philosophies, femorotibial implant conformities, and ligament management to replicate in vivo knee kinematics. While corrective measures have emphasized sagittal plane alignment to restore normal flexion–extension (F–E) motion and coronal plane ligament balance, internal–external (I–E) rotation kinematics in the axial plane have been largely neglected. Recent in vivo evidence indicates that the combination of factors necessary to closely restore native tibial rotation as the knee flexes and extends is kinematic alignment (KA), which resurfaces the patient’s pre-arthritic knee without releasing ligaments, an insert with medial 1:1 ball-in-socket conformity and a lateral flat surface, and posterior cruciate ligament (PCL) retention. However, the inherent anterior–posterior (A–P) stability provided by the medial 1:1 ball-in-socket limits the surgeon’s ability to select the correct insert thickness using manual laxity testing. Accordingly, this review presents the design and validation of an instrument called an insert goniometer that measures I–E tibial rotation for inserts that differ in thickness by 1 mm and uses rotation limits at extension and 90° flexion to select the optimal insert thickness. The optimal thickness is the one that provides the greatest external tibial orientation in extension and internal tibial orientation at 90° flexion without lift-off of the insert. Full article
(This article belongs to the Special Issue Total Joint Arthroplasty: Technical Developments and Applications)
Show Figures

Figure 1

31 pages, 5400 KiB  
Article
A Closed-Form Inverse Kinematic Analytical Method for Seven-DOF Space Manipulator with Aspheric Wrist Structure
by Guojun Zhao, Bo Tao, Du Jiang, Juntong Yun and Hanwen Fan
Machines 2024, 12(9), 632; https://doi.org/10.3390/machines12090632 - 9 Sep 2024
Cited by 2 | Viewed by 1122 | Correction
Abstract
The seven-degree-of-freedom space manipulator, characterized by its redundant and aspheric wrist structure, is extensively used in space missions due to its exceptional dexterity and multi-joint capabilities. However, the non-spherical wrist structure presents challenges in solving inverse kinematics, as it cannot decouple joints using [...] Read more.
The seven-degree-of-freedom space manipulator, characterized by its redundant and aspheric wrist structure, is extensively used in space missions due to its exceptional dexterity and multi-joint capabilities. However, the non-spherical wrist structure presents challenges in solving inverse kinematics, as it cannot decouple joints using the Pieper criterion, unlike spherical wrist structures. To address this issue, this paper presents a closed-form analytical method for solving the inverse kinematics of seven-degree-of-freedom aspheric wrist space manipulators. The method begins by identifying the redundant joint through comparing the volumes of the workspace with different joints fixed. The redundant joint angle is then treated as a parametric joint angle, enabling the derivation of closed-form expressions for the non-parametric joint angles using screw theory. The optimal solution branch is identified through a comparative analysis of various self-motion manifold branches. Additionally, a hybrid approach, combining analytical and numerical methods, is proposed to optimize the parametric joint angle for a trajectory tracking task. Simulation results confirm the effectiveness of the proposed method. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

27 pages, 15545 KiB  
Article
Multi-Level Behavioral Mechanisms and Kinematic Modeling Research of Cellular Space Robot
by Xiaomeng Liu, Haiyu Gu, Xiangyu Zhang, Jianyu Duan, Zhaoxu Liu, Zhichao Li, Siyu Wang and Bindi You
Machines 2024, 12(9), 598; https://doi.org/10.3390/machines12090598 - 27 Aug 2024
Viewed by 819
Abstract
The cellular space robot (CSR) is a new type of self-reconfigurable robot. It can adapt the variety of on-orbit service tasks with large space spans through multi-level reconfiguration mechanisms. As the CSR has a large configuration space, kinematic solving becomes a key problem [...] Read more.
The cellular space robot (CSR) is a new type of self-reconfigurable robot. It can adapt the variety of on-orbit service tasks with large space spans through multi-level reconfiguration mechanisms. As the CSR has a large configuration space, kinematic solving becomes a key problem affecting on-orbit operation capability, and kinematic automatic solving research must be conducted. In order to solve this problem, firstly, the cellular space robot system capable of realizing multi-level self-reconfiguration is proposed for the demand of space on-orbit service, and the kinematic equations of modules are constructed by considering a single module function using screw theory. Secondly, the kinematics of the cellular space robot are encapsulated and divided into multiple levels, and the multilevel-assembly relationship-description method for robotic systems is proposed based on graph theory. On this basis, the pathway-solving algorithm is proposed to express the robot organization reachability information. Finally, the module–organ–robot multilevel kinematics solving algorithm is proposed in combination with screw theory. In order to verify the effectiveness of the algorithm in this paper, numerical simulation is used to compare with the proposed algorithm. The results show that compared with the traditional algorithm, the method in this paper only needs to update part of the assembly relations after organ migration, which simplifies the kinematic modeling operation and improves the efficiency of kinematic computation. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

Back to TopTop