An Insert Goniometer Can Help Select the Optimal Insert Thickness When Performing Kinematically Aligned Total Knee Arthroplasty with a Medial 1:1 Ball-in-Socket and Lateral Flat Surface Insert and Posterior Cruciate Ligament Retention
Abstract
:1. Introduction
- (i)
- The surgical alignment goal of KA and how to achieve it via proper balancing in the coronal and sagittal planes;
- (ii)
- The biomechanical rationale for using the medial 1:1 ball-in-socket insert with a lateral flat surface;
- (iii)
- The biomechanical rationale for retaining the PCL;
- (iv)
- The benefits of KA for restoring normal patellar tracking;
- (v)
- A description and an illustration of the insert goniometer and its compatibility with an insert with medial 1:1 ball-in-socket conformity and lateral flat surface;
- (vi)
- An example describing and illustrating the use of the insert goniometer.
2. The Combination of Kinematic Alignment (KA), an Insert with Medial 1:1 Ball-in-Socket Conformity and a Lateral Flat Surface, and Posterior Cruciate Ligament (PCL) Retention Closely Restores In Vivo Native Knee Kinematics
2.1. Surgical Alignment Goal of KA and How to Achieve It via Proper Balancing in the Coronal and Sagittal Planes
2.2. Biomechanical Rationale for Using the Medial 1:1 Ball-in-Socket Insert with a Lateral Flat Surface
2.3. Biomechanical Rationale for Retaining the PCL
2.4. Benefits of KA for Restoring Normal Patellar Tracking
3. The Goniometer Assists the Surgeon in Selecting the Optimal Insert Thickness, Which Is the Thickness That Simultaneously Provides the Greatest External Tibial Orientation in Extension and the Greatest Internal Tibial Orientation at 90° Flexion without Lift-Off of the Insert
3.1. Description and Illustration of the Insert Goniometer and Its Compatibility with an Insert with Medial 1:1 Ball-in-Socket Conformity and a Lateral Flat Surface
3.2. Example Describing and Illustrating the Use of the Insert Goniometer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- French, S.R.; Munir, S.; Brighton, R. A single surgeon series comparing the outcomes of a cruciate retaining and medially stabilized total knee arthroplasty using kinematic alignment principles. J. Arthroplast. 2020, 35, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.F.; Gray, C.G. Outcomes are better with a medial-stabilized vs a posterior-stabilized total knee implanted with kinematic alignment. J. Arthroplast. 2022, 37, S852–S858. [Google Scholar] [CrossRef] [PubMed]
- Griffin, F.M.; Insall, J.N.; Scuderi, G.R. Accuracy of soft tissue balancing in total knee arthroplasty. J. Arthroplast. 2000, 15, 970–973. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Howell, S.M.; Hull, M.L. Simulation of total knee arthroplasty in 5 degrees or 7 degrees valgus: A study of gap imbalances and changes in limb and knee alignments from native. J. Orthop. Res. 2017, 35, 2031–2039. [Google Scholar] [CrossRef]
- Heesterbeek, P.J.; Wymenga, A.B. PCL balancing, an example of the need to couple detailed biomechanical parameters with clinical functional outcome. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 1301–1303. [Google Scholar] [CrossRef]
- Aratake, M.; Mitsugi, N.; Taki, N.; Ota, H.; Shinohara, K.; Sasaki, Y.; Saito, T. Impact of the polyethylene thickness on range of motion in total knee arthroplasty. Orthop. Proc. 2016, 98-B, 22. [Google Scholar]
- Shelton, T.J.; Howell, S.M.; Hull, M.L. A total knee arthroplasty is stiffer when the intraoperative tibial force is greater than the native knee. J. Knee Surg. 2019, 32, 1008–1014. [Google Scholar] [CrossRef]
- Elorza, S.P.; O’Donnell, E.; Nedopil, A.J.; Howell, S.M.; Hull, M.L. A new tibial insert design with ball-in-socket medial conformity and posterior cruciate ligament retention closely restores native knee tibial rotation after unrestricted kinematic alignment. J. Exp. Orthop. 2023, 10, 115. [Google Scholar] [CrossRef]
- Nicolet-Petersen, S.; Saiz, A.; Shelton, T.; Howell, S.; Hull, M.L. Kinematically aligned TKA restores physiological patellofemoral biomechanics in the sagittal plane during a deep knee bend. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1497–1507. [Google Scholar] [CrossRef]
- Riviere, C.; Iranpour, F.; Harris, S.; Auvinet, E.; Aframian, A.; Chabrand, P.; Cobb, J. The kinematic alignment technique for TKA reliably aligns the femoral component with the cylindrical axis. Orthop. Traumatol. Surg. Res. 2017, 103, 1069–1073. [Google Scholar] [CrossRef]
- Howell, S.M.; Papadopoulos, S.; Kuznik, K.T.; Hull, M.L. Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Nedopil, A.J.; Delman, C.; Howell, S.M.; Hull, M.L. Restoring the patient’s pre-arthritic posterior slope is the correct target for maximizing internal tibial rotation when implanting a PCL retaining TKA with calipered kinematic alignment. J. Pers. Med. 2021, 11, 516. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.D.; Howell, S.M.; Hull, M.L. Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Shelton, T.J.; Howell, S.M.; Hull, M.L. Is there a force target that predicts early patient-reported outcomes after kinematically aligned TKA? Clin. Orthop. Relat. Res. 2019, 477, 1200–1207. [Google Scholar] [CrossRef]
- Shelton, T.J.; Nedopil, A.J.; Howell, S.M.; Hull, M.L. Do varus or valgus outliers have higher forces in the medial or lateral compartments than those which are in-range after a kinematically aligned total knee arthroplasty? Limb and joint line alignment after kinematically aligned total knee arthroplasty. Bone Jt. J. 2017, 99, 1319–1328. [Google Scholar] [CrossRef]
- Alesi, D.; Marcheggiani Muccioli, G.M.; Roberti di Sarsina, T.; Bontempi, M.; Pizza, N.; Zinno, R.; Di Paolo, S.; Zaffagnini, S.; Bragonzoni, L. In vivo femorotibial kinematics of medial-stabilized total knee arthroplasty correlates to post-operative clinical outcomes. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Scott, G.; Imam, M.A.; Eifert, A.; Freeman, M.; Pinskerova, V.; Field, R.; Skinner, J.; Banks, S.A. Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation. Bone Jt. Res. 2016, 5, 80–86. [Google Scholar] [CrossRef]
- Steinbruck, A.; Schroder, C.; Woiczinski, M.; Fottner, A.; Pinskerova, V.; Muller, P.E.; Jansson, V. Femorotibial kinematics and load patterns after total knee arthroplasty: An in vitro comparison of posterior-stabilized versus medial-stabilized design. Clin. Biomech. 2016, 33, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Nedopil, A.J.; Shekhar, A.; Howell, S.M.; Hull, M.L. An insert with less than spherical medial conformity causes a loss of passive internal rotation after calipered kinematically aligned TKA. Arch. Orthop. Trauma Surg. 2021, 141, 2287–2294. [Google Scholar] [CrossRef]
- Nedopil, A.J.; Howell, S.M.; Hull, M.L. A TKA insert with a lateral flat articular surface maximizes external and internal tibial orientations without anterior lift-off relative to low- and ultracongruent surfaces. J. Pers. Med. 2022, 12, 1274. [Google Scholar] [CrossRef]
- Delman, C.M.; Ridenour, D.; Howell, S.M.; Hull, M.L. The posterolateral upslope of a low-conforming insert blocks the medial pivot during a deep knee bend in TKA: A comparative analysis of two implants with different insert conformities. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 3627–3636. [Google Scholar] [CrossRef] [PubMed]
- Schutz, P.; Taylor, W.R.; Postolka, B.; Fucentese, S.F.; Koch, P.P.; Freeman, M.A.R.; Pinskerova, V.; List, R. Kinematic evaluation of the GMK sphere implant during gait activities: A dynamic videofluoroscopy study. J. Orthop. Res. 2019, 37, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Gray, H.A.; Guan, S.; Young, T.J.; Dowsey, M.M.; Choong, P.F.; Pandy, M.G. Comparison of posterior-stabilized, cruciate-retaining, and medial-stabilized knee implant motion during gait. J. Orthop. Res. 2020, 38, 1753–1768. [Google Scholar] [CrossRef] [PubMed]
- Nedopil, A.J.; Howell, S.M.; Hull, M.L. More passive internal tibial rotation with posterior cruciate ligament retention than with excision in a medial pivot TKA implanted with unrestricted caliper verified kinematic alignment. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Elorza, S.P.; O’Donnell, E.; Delman, C.; Howell, S.M.; Hull, M.L. Posterior cruciate ligament retention with medial ball-in-socket conformity promotes internal tibial rotation and knee flexion while providing high clinical outcome scores. Knee 2023, 43, 153–162. [Google Scholar] [CrossRef]
- Dennis, D.A.; Mahfouz, M.R.; Komistek, R.D.; Hoff, W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J. Biomech. 2005, 38, 241–253. [Google Scholar] [CrossRef]
- Komistek, R.D.; Dennis, D.A.; Mahfouz, M. In vivo fluoroscopic analysis of the normal human knee. Clin. Orthop. Relat. Res. 2003, 410, 69–81. [Google Scholar] [CrossRef]
- Hino, K.; Ishimaru, M.; Iseki, Y.; Watanabe, S.; Onishi, Y.; Miura, H. Mid-flexion laxity is greater after posterior-stabilised total knee replacement than with cruciate-retaining procedures: A computer navigation study. Bone Jt. J. 2013, 95-B, 493–497. [Google Scholar] [CrossRef]
- Kayani, B.; Konan, S.; Horriat, S.; Ibrahim, M.S.; Haddad, F.S. Posterior cruciate ligament resection in total knee arthroplasty: The effect on flexion-extension gaps, mediolateral laxity, and fixed flexion deformity. Bone Jt. J. 2019, 101-B, 1230–1237. [Google Scholar] [CrossRef]
- Warth, L.C.; Deckard, E.R.; Meneghini, R.M. Posterior cruciate ligament resection does not consistently increase the flexion space in contemporary total knee arthroplasty. J. Arthroplast. 2021, 36, 963–969. [Google Scholar] [CrossRef]
- Nedopil, A.J.; Thadani, P.J.; McCoy, T.H.; Howell, S.M.; Hull, M.L. Adjusting insert thickness and tibial slope do not correct internal tibial rotation loss caused by PCL resection: In vitro study of a medial constraint TKA implanted with unrestricted calipered kinematic alignment. J. Knee Surg. 2021, 36, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.M.; Sappey-Marinier, E.; Niesen, A.E.; Nedopil, A.J.; Hull, M.L. Better forgotten joint scores when the angle of the prosthetic trochlea is lateral to the quadriceps vector in kinematically aligned total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5438–5445. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.A.; Pinskerova, V. The movement of the knee studied by magnetic resonance imaging. Clin. Orthop. Relat. Res. 2003, 410, 35–43. [Google Scholar] [CrossRef]
- Li, G.; Gill, T.J.; DeFrate, L.E.; Zayontz, S.; Glatt, V.; Zarins, B. Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads--an in vitro experimental study. J. Orthop. Res. 2002, 20, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Santana, G.; Howell, S.M.; Hull, M.L. The peak force to push a trial tibial insert into position cannot be used to select the correct thickness in total knee arthroplasty. Arch. Orthop. Trauma Surg. 2024, 144, 2767–2773. [Google Scholar] [CrossRef]
- Bellemans, J.; Robijns, F.; Duerinckx, J.; Banks, S.; Vandenneucker, H. The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2005, 13, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Nedopil, A.J.; Howell, S.M.; Hull, M.L. What mechanisms are associated with tibial component failure after kinematically-aligned total knee arthroplasty? Int. Orthop. 2017, 41, 1561–1569. [Google Scholar] [CrossRef]
- Scott, R.D.; Chmell, M.J. Balancing the posterior cruciate ligament during cruciate-retaining fixed and mobile-bearing total knee arthroplasty: Description of the pull-out lift-off and slide-back tests. J. Arthroplast. 2008, 23, 605–608. [Google Scholar] [CrossRef]
- Nedopil, A.J.; Howell, S.M.; Hull, M.L. Measurement of tibial orientation helps select the optimal insert thickness to personalize PCL tension in a medial ball-in-socket TKA. J. Pers. Med. 2022, 12, 1427. [Google Scholar] [CrossRef]
Knee Movement | Lateral Flat Surface | Low-Congruent Surface | Ultra-Congruent Surface |
---|---|---|---|
External orientation in extension | +9° | +5° | +2° |
Internal orientation at 90° flexion | −13° | −9° | −7° |
Mean total range | 22° | 14° | 9° |
Mean total loss | - | 8° | 13° |
Anterior lift-off | 0% | 26% | 57% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanghavi, S.A.; Nedopil, A.J.; Howell, S.M.; Hull, M.L. An Insert Goniometer Can Help Select the Optimal Insert Thickness When Performing Kinematically Aligned Total Knee Arthroplasty with a Medial 1:1 Ball-in-Socket and Lateral Flat Surface Insert and Posterior Cruciate Ligament Retention. Bioengineering 2024, 11, 910. https://doi.org/10.3390/bioengineering11090910
Sanghavi SA, Nedopil AJ, Howell SM, Hull ML. An Insert Goniometer Can Help Select the Optimal Insert Thickness When Performing Kinematically Aligned Total Knee Arthroplasty with a Medial 1:1 Ball-in-Socket and Lateral Flat Surface Insert and Posterior Cruciate Ligament Retention. Bioengineering. 2024; 11(9):910. https://doi.org/10.3390/bioengineering11090910
Chicago/Turabian StyleSanghavi, Sahil A., Alexander J. Nedopil, Stephen M. Howell, and Maury L. Hull. 2024. "An Insert Goniometer Can Help Select the Optimal Insert Thickness When Performing Kinematically Aligned Total Knee Arthroplasty with a Medial 1:1 Ball-in-Socket and Lateral Flat Surface Insert and Posterior Cruciate Ligament Retention" Bioengineering 11, no. 9: 910. https://doi.org/10.3390/bioengineering11090910
APA StyleSanghavi, S. A., Nedopil, A. J., Howell, S. M., & Hull, M. L. (2024). An Insert Goniometer Can Help Select the Optimal Insert Thickness When Performing Kinematically Aligned Total Knee Arthroplasty with a Medial 1:1 Ball-in-Socket and Lateral Flat Surface Insert and Posterior Cruciate Ligament Retention. Bioengineering, 11(9), 910. https://doi.org/10.3390/bioengineering11090910