Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,069)

Search Parameters:
Keywords = kinematic characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1391 KiB  
Article
Running-Induced Fatigue Exacerbates Anteromedial ACL Bundle Stress in Females with Genu Valgum: A Biomechanical Comparison with Healthy Controls
by Xiaoyu Jian, Dong Sun, Yufan Xu, Chengyuan Zhu, Xuanzhen Cen, Yang Song, Gusztáv Fekete, Danica Janicijevic, Monèm Jemni and Yaodong Gu
Sensors 2025, 25(15), 4814; https://doi.org/10.3390/s25154814 - 5 Aug 2025
Abstract
Genu valgum (GV) is a common lower limb deformity that may increase the risk of anterior cruciate ligament (ACL) injury. This study used OpenSim musculoskeletal modeling and kinematic analysis to investigate the mechanical responses of the ACL under fatigue in females with GV. [...] Read more.
Genu valgum (GV) is a common lower limb deformity that may increase the risk of anterior cruciate ligament (ACL) injury. This study used OpenSim musculoskeletal modeling and kinematic analysis to investigate the mechanical responses of the ACL under fatigue in females with GV. Eight females with GV and eight healthy controls completed a running-induced fatigue protocol. Lower limb kinematic and kinetic data were collected and used to simulate stress and strain in the anteromedial ACL (A–ACL) and posterolateral ACL (P–ACL) bundles, as well as peak joint angles and knee joint stiffness. The results showed a significant interaction effect between group and fatigue condition on A–ACL stress. In the GV group, A–ACL stress was significantly higher than in the healthy group both before and after fatigue (p < 0.001) and further increased following fatigue (p < 0.001). In the pre-fatigued state, A–ACL strain was significantly higher during the late stance phase in the GV group (p = 0.036), while P–ACL strain significantly decreased post-fatigue (p = 0.005). Additionally, post-fatigue peak hip extension and knee flexion angles, as well as pre-fatigue knee abduction angles, showed significant differences between groups. Fatigue also led to substantial changes in knee flexion, adduction, abduction, and hip/knee external rotation angles within the GV group. Notably, knee joint stiffness in this group was significantly lower than in controls and decreased further post-fatigue. These findings suggest that the structural characteristics of GV, combined with exercise-induced fatigue, exacerbate A–ACL loading and compromise knee joint stability, indicating a higher risk of ACL injury in fatigued females with GV. Full article
(This article belongs to the Special Issue Sensors for Human Posture and Movement)
Show Figures

Figure 1

17 pages, 1653 KiB  
Article
Corner Case Dataset for Autonomous Vehicle Testing Based on Naturalistic Driving Data
by Jian Zhao, Wenxu Li, Bing Zhu, Peixing Zhang, Zhaozheng Hu and Jie Meng
Smart Cities 2025, 8(4), 129; https://doi.org/10.3390/smartcities8040129 - 5 Aug 2025
Abstract
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined [...] Read more.
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined as combinations of driving task and scenario elements. These scenarios are characterized by low probability, high risk, and a tendency to reveal functional limitations inherent to autonomous driving systems, triggering anomalous behavior. This study constructs a novel corner case dataset using naturalistic driving data, specifically tailored for autonomous vehicle testing. A scenario marginality quantification method is designed to analyze multi-source naturalistic driving data, enabling efficient extraction of corner cases. Heterogeneous scenarios are systematically transformed, resulting in a dataset characterized by diverse interaction behaviors and standardized formatting. The results indicate that the scenario marginality of the dataset constructed in this study is 2.78 times that of mainstream naturalistic driving datasets, and the scenarios exhibit considerable diversity. The trajectory and velocity fluctuations, quantified at 0.013 m and 0.021 m/s, respectively, are consistent with the kinematic characteristics of real-world driving scenarios. These results collectively demonstrate the dataset’s high marginality, diversity, and applicability. Full article
Show Figures

Figure 1

18 pages, 4182 KiB  
Article
Structural Design of a Multi-Stage Variable Stiffness Manipulator Based on Low-Melting-Point Alloys
by Moufa Ye, Lin Guo, An Wang, Wei Dong, Yongzhuo Gao and Hui Dong
Technologies 2025, 13(8), 338; https://doi.org/10.3390/technologies13080338 - 5 Aug 2025
Abstract
Soft manipulators have garnered significant research attention in recent years due to their flexibility and adaptability. However, the inherent flexibility of these manipulators imposes limitations on their load-bearing capacity and stability. To address this, this study compares various variable stiffness technologies and proposes [...] Read more.
Soft manipulators have garnered significant research attention in recent years due to their flexibility and adaptability. However, the inherent flexibility of these manipulators imposes limitations on their load-bearing capacity and stability. To address this, this study compares various variable stiffness technologies and proposes a novel design concept: leveraging the phase-change characteristics of low-melting-point alloys (LMPAs) with distinct melting points to fulfill the variable stiffness requirements of soft manipulators. The pneumatic structure of the manipulator is fabricated via 3D-printed molds and silicone casting. The manipulator integrates a pneumatic working chamber, variable stiffness chambers, heating devices, sensors, and a central channel, achieving multi-stage variable stiffness through controlled heating of the LMPAs. A steady-state temperature field distribution model is established based on the integral form of Fourier’s law, complemented by finite element analysis (FEA). Subsequently, the operational temperatures at which the variable stiffness mechanism activates, and the bending performance are experimentally validated. Finally, stiffness characterization and kinematic performance experiments are conducted to evaluate the manipulator’s variable stiffness capabilities and flexibility. This design enables the manipulator to switch among low, medium, and high stiffness levels, balancing flexibility and stability, and provides a new paradigm for the design of soft manipulators. Full article
Show Figures

Figure 1

13 pages, 1794 KiB  
Article
A New Constitutive Relation for Homogeneous Isotropic Materials by FEM Model of the Brazilian Splitting Test
by Salvatore Benfratello, Antonino Cirello and Luigi Palizzolo
Sci 2025, 7(3), 110; https://doi.org/10.3390/sci7030110 - 3 Aug 2025
Viewed by 47
Abstract
The paper studies the behavior of homogeneous isotropic materials by performing appropriate numerical analyses and utilizing suitable FEMs to reproduce the Brazilian splitting test. Starting with a theoretical approach and adopting suitable numerical simulations, a new formula that is able to characterize the [...] Read more.
The paper studies the behavior of homogeneous isotropic materials by performing appropriate numerical analyses and utilizing suitable FEMs to reproduce the Brazilian splitting test. Starting with a theoretical approach and adopting suitable numerical simulations, a new formula that is able to characterize the Young’s modulus is presented. To this end, in addition to the analysis of the specimen’s response in terms of stresses and strains, the real displacement field resulting from the real kinematical constraints on the specimen is determined. Therefore, the Brazilian test is taken as a reference test and the specimen’s behavior is derived by taking advantage of both the theoretical approach and numerical simulations developed in the ANSYS 2021 R1 environment. The latter allows us to define a new mathematical relation representing the missing part of the kinematical field. Furthermore, a new formula which explicitly relates the Young’s modulus of the material to the geometrical characteristics of the specimen, to the acting force, and to a measured selected displacement is proposed. Future developments will include adopting the proposed formulas for the identification of other mechanical parameters of the material, e.g., by adopting a full-field contactless approach to displacement measurement and studying the behavior of specimens with different geometrical characteristics. Full article
Show Figures

Figure 1

15 pages, 1258 KiB  
Article
Synthesis and Evaluation of Sunflower-Oil-Based Esters as Biolubricant Base Oils Using Ca/TEA Alkoxide Catalyst
by Dimosthenis Filon, George Anastopoulos and Dimitrios Karonis
Lubricants 2025, 13(8), 345; https://doi.org/10.3390/lubricants13080345 - 2 Aug 2025
Viewed by 161
Abstract
This study evaluates the production of base oils for biolubricants using fatty acid methyl esters (FAMEs) derived from sunflower oil as the raw material. The production process involved the synthesis of oleochemical esters through a single-step alkaline transesterification reaction with a high-molecular-weight polyol, [...] Read more.
This study evaluates the production of base oils for biolubricants using fatty acid methyl esters (FAMEs) derived from sunflower oil as the raw material. The production process involved the synthesis of oleochemical esters through a single-step alkaline transesterification reaction with a high-molecular-weight polyol, such as trimethylolpropane (TMP). To assess the effectiveness of the developed catalytic system in conducting the transesterification reactions and its impact on the properties of the final product, two types of alkaline catalysts were used. Specifically, the reactions were carried out using either Ca/TEA alkoxide or sodium methoxide as catalysts in various configurations and concentrations to determine the optimal catalyst concentration and reaction conditions. Sodium methoxide served as the commercial benchmark catalyst, while the Ca/TEA alkoxide was prepared in the laboratory. The optimal concentration of Ca/TEA was determined to be 3.0% wt. in the presence of iso-octane and 3.5% wt. under vacuum, while the corresponding concentrations of CH3ONa for both cases were determined to be 2.0% wt. The synthesized biolubricant esters exhibit remarkable performance characteristics, such as high kinematic viscosities and low pour points—ranging from 33–48 cSt at 40 °C, 7.68–10.03 cSt at 100 °C, to −14 to −7 °C, respectively—which are comparable to or improved over those of mineral oils such as SN-150 or SN-500, with the Ca/TEA alkoxide-catalyzed systems showing superior oxidation stability and reduced byproduct formation. Full article
(This article belongs to the Special Issue Tribological Properties of Biolubricants)
Show Figures

Figure 1

38 pages, 5463 KiB  
Article
Configuration Synthesis and Performance Analysis of 1T2R Decoupled Wheel-Legged Reconfigurable Mechanism
by Jingjing Shi, Ruiqin Li and Wenxiao Guo
Micromachines 2025, 16(8), 903; https://doi.org/10.3390/mi16080903 (registering DOI) - 31 Jul 2025
Viewed by 185
Abstract
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are [...] Read more.
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are carried out, and the motion mode of the robot’s reconfigurable mechanical leg is selected according to the task requirements. Then, the robot’s gait in walking mode is planned. Firstly, based on bionic principles, the motion characteristics of a mechanical leg based on a mammalian model and an insect model were analyzed. The input and output characteristics of the mechanism were analyzed to obtain the reconfiguration principle of the mechanism. Using type synthesis theory for the decoupled parallel mechanism, the configuration synthesis of the chain was carried out, and the constraint mode of the mechanical leg was determined according to the constraint property of the chain and the motion characteristics of the moving platform. Secondly, an evaluation index for the complexity of the reconfigurable mechanical leg structure was developed, and the synthesized mechanism was further analyzed and evaluated to select the mechanical leg’s configuration. Thirdly, the inverse position equations were established for the mechanical leg in the two motion modes, and its Jacobian matrix was derived. The degrees of freedom of the mechanism are completely decoupled in the two motion modes. Then, the workspace and motion/force transmission performance of the mechanical leg in the two motion modes were analyzed. Based on the weighted standard deviation of the motion/force transmission performance, the global performance fluctuation index of the mechanical leg motion/force transmission is defined, and the structural size parameters of the mechanical leg are optimized with the performance index as the optimization objective function. Finally, with the reconfigurable mechanical leg in the insect mode, the robot’s gait in the walking operation mode is planned according to the static stability criterion. Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications, 2nd Edition)
Show Figures

Figure 1

18 pages, 2599 KiB  
Article
Construction of Motion/Force Transmission Performance Index of a Single-Drive Serial Loop Mechanism and Application to the Vehicle Door Latch Mechanism
by Ziyang Zhang, Lubin Hang and Xiaobo Huang
Appl. Sci. 2025, 15(15), 8475; https://doi.org/10.3390/app15158475 - 30 Jul 2025
Viewed by 117
Abstract
Aiming at the multifunctional requirements of the limited space in high-end vehicle side-door latches, a double single-loop RRUPRR mechanism driven by a single motor for both electric releasing and cinching is proposed based on the POC set. The kinematical equations of the RRURR [...] Read more.
Aiming at the multifunctional requirements of the limited space in high-end vehicle side-door latches, a double single-loop RRUPRR mechanism driven by a single motor for both electric releasing and cinching is proposed based on the POC set. The kinematical equations of the RRURR mechanism possess 2 × 2 analytical solutions. In order to apply the current motion/force transmission performance index of the parallel mechanisms to the transmission performance analysis of the serial mechanisms, matching methods for chain-driving transference and the moving/fixed platform inversion are proposed. The solution of the performance index of a single-degree-of-freedom single-loop mechanism is equivalent to the solution of the input motion/force transmission performance index of a parallel mechanism. The overall motion/force transmission performance index of a single-loop mechanism is constructed, and the corresponding calculation procedure is defined. Chain-driving transference can be obtained through forward and inverse solutions of the RRURR mechanism. In response to the extremely high requirements for motion/force transmission performance of electric release mechanisms, the proposed overall motion/force transmission performance index is used to calculate for the input motion screw and corresponding transmission-force screw of the single-loop RRURR mechanism and obtain the overall motion/force transmission performance of the mechanism. The performance atlas of the mechanism shows that it has excellent motion/force transmission characteristics within the workspace. Using ADAMS simulation software, the driving torque required for electric releasing and cinching of a vehicle side-door latch mechanism with a single motor is analyzed. The overall motion/force transmission performance index of a single-loop mechanism can be applied to single-loop overconstrained mechanisms and non-overconstrained mechanisms. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

18 pages, 7292 KiB  
Article
Optimization of Acceleration and Driving Force for Double-Toggle Stephenson-Chain Mold Clamping Mechanisms
by Tzu-Hsia Chen and Po-Cheng Lai
Appl. Sci. 2025, 15(15), 8463; https://doi.org/10.3390/app15158463 - 30 Jul 2025
Viewed by 109
Abstract
The mold clamping mechanism is crucial in injection molding machines and significantly influences molding. This research optimizes the Stephenson-chain mechanism with double-toggle effects, particularly focusing on acceleration and driving force. A design incorporating double-toggle effects in the closed position enhances clamping force and [...] Read more.
The mold clamping mechanism is crucial in injection molding machines and significantly influences molding. This research optimizes the Stephenson-chain mechanism with double-toggle effects, particularly focusing on acceleration and driving force. A design incorporating double-toggle effects in the closed position enhances clamping force and ensures safety. For a 6-bar linkage, the Watt-chain mechanism and Stephenson-chain mechanism are available. In this paper, Stephenson-chain mechanisms were selected and subjected to a comprehensive analysis of their kinematic characteristics using vector loop and finite difference methods. The optimal design process included defining the objective function and evaluating the maximum acceleration and force ratio. The results show that the optimal Stephenson-I mechanism achieves a 1.92% increase in the maximum acceleration, and the maximum driving force decreases by 12.34% compared to the optimal Watt-chain mechanism. The Stephenson-II mechanism performs even better, with a 33.94% reduction in maximum acceleration and a 6.81% decrease in maximum driving force compared to the optimal Watt-chain mechanism. The results indicate that the Stephenson-II mechanism outperforms the Stephenson-I mechanism and other existing designs in terms of the maximum acceleration and driving force. Full article
Show Figures

Figure 1

19 pages, 8681 KiB  
Article
Design and Implementation of a Biomimetic Underwater Robot Propulsion System Inspired by Bullfrog Hind Leg Movements
by Yichen Chu, Yahui Wang, Yanhui Fu, Mingxu Ma, Yunan Zhong and Tianbiao Yu
Biomimetics 2025, 10(8), 498; https://doi.org/10.3390/biomimetics10080498 - 30 Jul 2025
Viewed by 332
Abstract
Underwater propulsion systems are the fundamental functional modules of underwater robotics and are crucial in intricate underwater operational scenarios. This paper proposes a biomimetic underwater robot propulsion scheme that is motivated by the hindlimb movements of the bullfrog. A multi-linkage mechanism was developed [...] Read more.
Underwater propulsion systems are the fundamental functional modules of underwater robotics and are crucial in intricate underwater operational scenarios. This paper proposes a biomimetic underwater robot propulsion scheme that is motivated by the hindlimb movements of the bullfrog. A multi-linkage mechanism was developed to replicate the “kicking-and-retracting” motion of the bullfrog by employing motion capture systems to acquire biological data on their hindlimb movements. The FDM 3D printing and PC board engraving techniques were employed to construct the experimental prototype. The prototype’s biomimetic and motion characteristics were validated through motion capture experiments and comparisons with a real bullfrog. The biomimetic bullfrog hindlimb propulsion system was tested with six-degree-of-freedom force experiments to evaluate its propulsion capabilities. The system achieved an average thrust of 2.65 N. The effectiveness of motor drive parameter optimization was validated by voltage comparison experiments, which demonstrated a nonlinear increase in thrust as voltage increased. This design approach, which transforms biological kinematic characteristics into mechanical drive parameters, exhibits excellent feasibility and efficacy, offering a novel solution and quantitative reference for underwater robot design. Full article
Show Figures

Figure 1

33 pages, 4686 KiB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 242
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

21 pages, 8688 KiB  
Article
Design and Dynamic Performance Evaluation of a Novel 6W4L Wheel-Legged Robot
by Weiwei Hu, Ruiqin Li, Wenxiao Guo, Fengping Ning and Lei Zhang
Machines 2025, 13(8), 662; https://doi.org/10.3390/machines13080662 - 28 Jul 2025
Viewed by 248
Abstract
To improve the mobility of mobile robots in complex terrain environments, a novel 2-UPS&PRPU parallel mechanism is proposed, for which the parallel mechanism branched-chain decomposition and synthesis method is adopted. Based on the structural characteristics of the Hooke joint kinematic substructure, an inverse [...] Read more.
To improve the mobility of mobile robots in complex terrain environments, a novel 2-UPS&PRPU parallel mechanism is proposed, for which the parallel mechanism branched-chain decomposition and synthesis method is adopted. Based on the structural characteristics of the Hooke joint kinematic substructure, an inverse solution calculation for the mechanism is carried out, and the parameters of the simulation model are formulated to determine the workspace of the parallel mechanism. The linear velocity dexterity and minimum output carrying capacity of the parallel mechanism are analyzed, allowing the optimal parameters of the mechanism to be selected through dimension optimization, thus greatly improving the mechanism’s linear velocity dexterity and carrying capacity. The results show that the proposed parallel mechanism can satisfy the mobility requirements of mobile robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

15 pages, 1395 KiB  
Article
Ground Reaction Forces and Impact Loading Among Runners with Different Acuity of Tibial Stress Injuries: Advanced Waveform Analysis for Running Mechanics
by Ryan M. Nixon, Sharareh Sharififar, Matthew Martenson, Lydia Pezzullo, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(8), 802; https://doi.org/10.3390/bioengineering12080802 - 26 Jul 2025
Viewed by 357
Abstract
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) [...] Read more.
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) and those recovering from tibial stress fractures (TSF; both unilateral [UL] and bilateral [BL]). This cross-sectional analysis of runners (n = 66) included four groups: symptomatic MTSS, recovering from UL or BL TSF, or uninjured case-matched controls. Participants ran at self-selected speed on an instrumented treadmill. Kinematics were collected with a 3D optical motion analysis system. Double-Gaussian models described the biphasic loading pattern of running gait (initial impact, active phases). Gaussian parameters described relative differences in the GRF waveform by injury condition. LR was calculated using the central difference numerical derivative of the raw normalized net force data. During the impact phase (0–20% of stance), controls and BL TSF produced higher GRF amplitudes than UL TSF and MTSS (p < 0.05). BL TSF and controls had greater maximal positive LR and minimum LR than UL TSF and MTSS. Peak medial GRF was 18–43% higher in the BL TSF group than in MTSS and UL TSF (p < 0.05). Correlations existed between tibial pain severity and early stance net GRF (r = 0.512; p = 0.016) and between pain severity and the duration since diagnosis for LR values during the impact phase (r values = 0.389–0.522; all p < 0.05). Collectively, these data suggest that this waveform modeling approach can differentiate injury status and pain acuity in runners. Early stance GRF and LR may offer novel insight into the management of running-related injuries. Full article
Show Figures

Graphical abstract

21 pages, 3005 KiB  
Article
Convex Optimization-Based Constrained Trajectory Planning for Autonomous Vehicles
by Xiaoxiao Song, Songming Chen and Qiang Liu
Electronics 2025, 14(15), 2929; https://doi.org/10.3390/electronics14152929 - 22 Jul 2025
Viewed by 318
Abstract
This paper proposes a constrained trajectory optimization framework for autonomous vehicles (AVs) based on convex programming techniques. An enhanced kinematic vehicle model is introduced to capture dynamic motion characteristics that are often overlooked in conventional models. For obstacle avoidance, environmental constraints are transformed [...] Read more.
This paper proposes a constrained trajectory optimization framework for autonomous vehicles (AVs) based on convex programming techniques. An enhanced kinematic vehicle model is introduced to capture dynamic motion characteristics that are often overlooked in conventional models. For obstacle avoidance, environmental constraints are transformed into convex formulations using free-space corridor methods. The trajectory planning process is further optimized through a linearized model predictive control (MPC) scheme, which considers both vehicle dynamics and environmental safety. The resulting formulation enables efficient convex optimization suitable for real-time implementation. Experimental results in various scenarios demonstrate improvements in both trajectory smoothness and safety. Furthermore, the proposed optimization method reduces the average execution time by nearly 70% compared to the nonlinear alternative, validating its computational efficiency and practical applicability. Full article
Show Figures

Figure 1

21 pages, 3033 KiB  
Proceeding Paper
Robot Modeling and Control in Digital Twin System
by Denis Chikurtev, Vladimir Ivanov, Simeon Tsvetanov and Kaloyan Yovchev
Eng. Proc. 2025, 100(1), 62; https://doi.org/10.3390/engproc2025100062 - 21 Jul 2025
Viewed by 92
Abstract
This paper presents studies of a digital twin system. A conceptual model of the system is proposed to be used to control an industrial robot and can be integrated into different fields of application such as industry, manufacturing, farming, livestock breeding and others. [...] Read more.
This paper presents studies of a digital twin system. A conceptual model of the system is proposed to be used to control an industrial robot and can be integrated into different fields of application such as industry, manufacturing, farming, livestock breeding and others. On the principle of software engineering, the overall architecture of the system is developed, and its constituent elements are presented in detail. A kinematic analysis of the considered industrial robot is presented. To realize the digital twin, a simulation model of the industrial robot was developed to fully meet the dimensions and kinematic characteristics of the real one. Experiments have been made on the operation of the system so as to compare the movements of the real and simulated robot. The results obtained show almost identical motions both in the end effector of the robots and in the motions of each of the joints. A short methodology for the steps of creating systems using digital twins is presented to assist developers and scientists. Full article
Show Figures

Figure 1

21 pages, 18567 KiB  
Article
Mitigation of Black Streak Defects in AISI 304 Stainless Steel via Numerical Simulation and Reverse Optimization Algorithm
by Xuexia Song, Xiaocan Zhong, Wanlin Wang and Kun Dou
Materials 2025, 18(14), 3414; https://doi.org/10.3390/ma18143414 - 21 Jul 2025
Viewed by 304
Abstract
The formation mechanism of black streak defects in hot-rolled steel sheets was investigated to address the influence of the process parameters on the surface quality during the production of 304 stainless steels. Macro-/microstructural characterization revealed that the defect regions contained necessary mold slag [...] Read more.
The formation mechanism of black streak defects in hot-rolled steel sheets was investigated to address the influence of the process parameters on the surface quality during the production of 304 stainless steels. Macro-/microstructural characterization revealed that the defect regions contained necessary mold slag components (Ca, Si, Al, Mg, Na, K) which originated from the initial stage of solidification in the mold region of the continuous casting process, indicating obvious slag entrapment during continuous casting. On this basis, a three-dimensional coupled finite-element model for the molten steel flow–thermal characteristics was established to evaluate the effects of typical casting parameters using the determination of the critical slag entrapment velocity as the criterion. Numerical simulations demonstrated that the maximum surface velocity improved from 0.29 m/s to 0.37 m/s with a casting speed increasing from 1.0 m/min to 1.2 m/min, which intensified the meniscus turbulence. However, the increase in the port angle and the depth of the submerged entry nozzle (SEN) effectively reduced the maximum surface velocity to 0.238 m/s and 0.243 m/s, respectively, with a simultaneous improvement in the slag–steel interface temperature. Through MATLAB (version 2023b)-based reverse optimization combined with critical velocity analysis, the optimal mold slag properties were determined to be 2800 kg/m3 for the density, 4.756 × 10−6 m2/s for the kinematic viscosity, and 0.01 N/m for the interfacial tension. This systematic approach provides theoretical guidance for process optimization and slag design enhancement in industrial production. Full article
Show Figures

Figure 1

Back to TopTop