Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,304)

Search Parameters:
Keywords = kidney tumors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8344 KiB  
Article
Gum Acacia–Dexamethasone Combination Attenuates Sepsis-Induced Acute Kidney Injury in Rats via Targeting SIRT1-HMGB1 Signaling Pathway and Preserving Mitochondrial Integrity
by Fawaz N. Alruwaili, Omnia A. Nour and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(8), 1164; https://doi.org/10.3390/ph18081164 - 5 Aug 2025
Abstract
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley [...] Read more.
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley rats were separated into six groups, including the control, GA group, LPS-induced AKI group, DEX + LPS group, GA + LPS group, and GA + DEX + LPS group. AKI was induced in rats using LPS (10 mg/kg, i.p.). GA was administered orally (7.5 g/kg) for 14 days before LPS injection, and DEX was injected (1 mg/kg, i.p.) 2 h after LPS injection. Results: LPS injection significantly (p < 0.05, vs. control group) impaired renal function, as evidenced through increased levels of kidney function biomarkers, decreased creatinine clearance, and histopathological alterations in the kidneys. LPS also significantly (p < 0.05, vs. control group) elevated levels of oxidative stress markers, while it reduced levels of antioxidant enzymes. Furthermore, LPS triggered an inflammatory response, manifested by significant (p < 0.05, vs. control group) upregulation of Toll-like receptor 4, myeloid differentiation primary response 88, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB, along with increased expression of high-mobility group box 1. Administration of GA significantly ameliorated LPS-induced renal impairment by enhancing antioxidant defenses and suppressing inflammatory pathways (p < 0.05, vs. LPS group). Furthermore, GA-DEX-treated rats showed improved kidney function, reduced oxidative stress, and attenuated inflammatory markers (p < 0.05, vs. LPS group). Conclusions: The GA-DEX combination exhibited potent renoprotective effects against LPS-induced SA-AKI, possibly due to their antioxidant and anti-inflammatory properties. These results suggest that the GA-DEX combination could be a promising and effective therapeutic agent for managing SA-AKI. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

19 pages, 2795 KiB  
Article
Can Biomarkers Predict Kidney Function Recovery and Mortality in Patients with Critical COVID-19 and Acute Kidney Injury?
by Noemí Del Toro-Cisneros, José C. Páez-Franco, Miguel A. Martínez-Rojas, Isaac González-Soria, Juan Antonio Ortega-Trejo, Hilda Sánchez-Vidal, Norma A. Bobadilla, Alfredo Ulloa-Aguirre and Olynka Vega-Vega
Diagnostics 2025, 15(15), 1960; https://doi.org/10.3390/diagnostics15151960 - 5 Aug 2025
Abstract
Background/Objectives: COVID-19 is a systemic viral infection that may lead to serious complications including acute kidney injury that requires kidney replacement therapy. The primary aim of this study was to evaluate urinary SerpinA3 (uSerpinA3) excretion as a biomarker of kidney recovery at [...] Read more.
Background/Objectives: COVID-19 is a systemic viral infection that may lead to serious complications including acute kidney injury that requires kidney replacement therapy. The primary aim of this study was to evaluate urinary SerpinA3 (uSerpinA3) excretion as a biomarker of kidney recovery at 90 days, and the mortality in patients with critical COVID-19 and AKI requiring kidney replacement therapy (KRT). Methods: The study included patients with critical COVID-19 on invasive mechanical ventilation (IMV) requiring KRT. Blood and urine samples were obtained when KRT was initiated (day zero), and thereafter on days 1, 3, 7, and 14 post-replacement. uSerpinA3, kidney injury molecule-1 (uKIM-1), and neutrophil gelatinase-associated lipocalin (uNGAL) were measured in urine, and interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-α) in peripheral blood. In addition, metabolomics in sample days zero and 3, and in the survivors on sample day 90 was performed by employing gas chromatography coupled with mass spectrometry. Results: A total of 60 patients were recruited, of whom 29 (48%) survived hospitalization and recovered kidney function by day 90. In the survivors, 79% presented complete recovery (CRR) and the remaining (21%) recovered partially (PRR). In terms of uSerpinA3, levels on days 7 and 14 predicted CRR, with AUC values of 0.68 (p = 0.041) and 0.71 (p = 0.030), respectively, as well as mortality, with AUC values of 0.75 (p = 0.007) and 0.76 (p = 0.015), respectively. Among the other biomarkers, the excretion of uKIM-1 on day zero of KRT had a superior performance as a CRR predictor [(AUC, 0.71 (p = 0.017)], and as a mortality predictor [AUC, 0.68 (p = 0.028)]. In the metabolomics analysis, we identified four distinct profiles; the metabolite that maintained statistical significance in predicting mortality was p-cresol glucuronide. Conclusions: This study strongly suggests that uSerpinA3 and uKIM-1 can predict CRR and mortality in patients with critical COVID-19 and AKI requiring KRT. Metabolic analysis appears promising for identifying affected pathways and their clinical impact in this population. Full article
Show Figures

Figure 1

15 pages, 2024 KiB  
Article
Oxy210 Inhibits Hepatic Expression of Senescence-Associated, Pro-Fibrotic, and Pro-Inflammatory Genes in Mice During Development of MASH and in Hepatocytes In Vitro
by Feng Wang, Simon T. Hui, Frank Stappenbeck, Dorota Kaminska, Aldons J. Lusis and Farhad Parhami
Cells 2025, 14(15), 1191; https://doi.org/10.3390/cells14151191 - 2 Aug 2025
Viewed by 252
Abstract
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, [...] Read more.
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, such as in metabolic dysfunction-associated steatohepatitis (MASH), idiopathic pulmonary fibrosis (IPF), chronic kidney disease (CKD), and myocardial fibrosis, which can lead to heart failure, cystic fibrosis, and fibrosis in pancreatic tumors, to name a few. MASH is a progressive inflammatory and fibrotic liver condition that has reached pandemic proportions, now considered the largest non-viral contributor to the need for liver transplantation. Methods: We previously studied Oxy210, an anti-fibrotic and anti-inflammatory, orally bioavailable, oxysterol-based drug candidate for MASH, using APOE*3-Leiden.CETP mice, a humanized hyperlipidemic mouse model that closely recapitulates the hallmarks of human MASH. In this model, treatment of mice with Oxy210 for 16 weeks caused significant amelioration of the disease, evidenced by reduced hepatic inflammation, lipid deposition, and fibrosis, atherosclerosis and adipose tissue inflammation. Results: Here we demonstrate increased hepatic expression of senescence-associated genes and senescence-associated secretory phenotype (SASP), correlated with the expression of pro-fibrotic and pro-inflammatorygenes in these mice during the development of MASH that are significantly inhibited by Oxy210. Using the HepG2 human hepatocyte cell line, we demonstrate the induced expression of senescent-associated genes and SASP by TGF-β and inhibition by Oxy210. Conclusions: These findings further support the potential therapeutic effects of Oxy210 mediated in part through inhibition of senescence-driven hepatic fibrosis and inflammation in MASH and perhaps in other senescence-associated fibrotic diseases. Full article
Show Figures

Graphical abstract

30 pages, 955 KiB  
Review
Breaking Barriers with Sound: The Implementation of Histotripsy in Cancer
by Ashutosh P. Raman, Parker L. Kotlarz, Alexis E. Giff, Katherine A. Goundry, Paul Laeseke, Erica M. Knavel Koepsel, Mosa Alhamami and Dania Daye
Cancers 2025, 17(15), 2548; https://doi.org/10.3390/cancers17152548 - 1 Aug 2025
Viewed by 334
Abstract
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and [...] Read more.
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and precisely destroy targeted tissue in a predefined volume while sparing critical structures like bile ducts, ureters, and blood vessels. Such precision is of value when treating tumors near vital structures. The FDA has cleared histotripsy for the treatment of all liver tumors. Major medical centers are currently spearheading clinical trials, and some institutions have already integrated the technology into patient care. Histotripsy is now being studied for a host of other cancers, including primary kidney and pancreatic tumors. Preclinical murine and porcine models have already revealed promising outcomes. One of histotripsy’s primary advantages is its non-thermal mechanical actuation. This feature allows it to circumvent the limitations of heat-based techniques, including the heat sink effect and unpredictable treatment margins near sensitive tissues. In addition to its non-invasive ablative capacities, it is being preliminarily explored for its potential to induce immunomodulation and promote abscopal inhibition of distant, untreated tumors through CD8+ T cell responses. Thus, it may provide a multilayered therapeutic effect in the treatment of cancer. Histotripsy has the potential to improve precision and outcomes across a multitude of specialties, from oncology to cardiovascular medicine. Continued trials are crucial to further expand its applications and validate its long-term efficacy. Due to the speed of recent developments, the goal of this review is to provide a comprehensive and updated overview of histotripsy. It will explore its physics-based mechanisms, differentiating it from similar technologies, discuss its clinical applications, and examine its advantages, limitations, and future. Full article
Show Figures

Figure 1

23 pages, 7469 KiB  
Article
Dark Sweet Cherry Anthocyanins Suppressed Triple-Negative Breast Cancer Pulmonary Metastasis and Downregulated Genes Associated with Metastasis and Therapy Resistance In Vivo
by Ana Nava-Ochoa, Lauren W. Stranahan, Rodrigo San-Cristobal, Susanne U. Mertens-Talcott and Giuliana D. Noratto
Int. J. Mol. Sci. 2025, 26(15), 7225; https://doi.org/10.3390/ijms26157225 - 25 Jul 2025
Viewed by 350
Abstract
Dark sweet cherries (DSC) phytochemicals have emerged as a promising dietary strategy to combat triple-negative breast cancer (TNBC). This study explored the effects of DSC extract rich in anthocyanins (ACN) as a chemopreventive agent and as a complement to doxorubicin (DOX) in treating [...] Read more.
Dark sweet cherries (DSC) phytochemicals have emerged as a promising dietary strategy to combat triple-negative breast cancer (TNBC). This study explored the effects of DSC extract rich in anthocyanins (ACN) as a chemopreventive agent and as a complement to doxorubicin (DOX) in treating TNBC tumors and metastasis using a 4T1 syngeneic animal model. Initiating ACN intake as a chemopreventive one week before 4T1 cell implantation significantly delayed tumor growth without any signs of toxicity. Both DOX treatment and the combination of DOX-ACN effectively delayed tumor growth rate, but DOX-ACN allowed for body weight gain, which was hindered by DOX alone. As a chemopreventive, ACN downregulated metastasis- and immune-suppression-related genes, including STAT3, Snail1, mTOR, SIRT1, TGFβ1, IKKβ, and those unaffected by DOX alone, such as HIF, Cd44, and Rgcc32. Correlations between mRNA levels seen in control and DOX groups were absent in ACN and/or DOX-ACN groups, indicating that Cd44, mTOR, Rgcc32, SIRT1, Snail1, and TGFβ1 may be ACN targets. The DOX-ACN treatment showed a trend toward enhanced efficacy involving CREB, PI3K, Akt-1, and Vim compared to DOX alone. Particularly, ACN significantly suppressed lung metastasis compared to the other groups. ACN also decreased the frequency and incidence of metastasis in the liver, heart, kidneys, and spleen, while their metastatic area (%) and number of breast cancer (BC) metastatic tumor nodules were lowered without reaching significance. Further research is needed to explore the efficacy of combining ACN with drug therapy in the context of drug resistance. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Anticancer Effects)
Show Figures

Graphical abstract

17 pages, 440 KiB  
Review
Diagnosis and Management of Upper Tract Urothelial Carcinoma: A Review
by Domenique Escobar, Christopher Wang, Noah Suboc, Anishka D’Souza and Varsha Tulpule
Cancers 2025, 17(15), 2467; https://doi.org/10.3390/cancers17152467 - 25 Jul 2025
Viewed by 474
Abstract
Background/Objectives: Upper tract urothelial carcinoma (UTUC) is a rare and biologically distinct subset of urothelial malignancies, comprising approximately 5–10% of urothelial cancers. UTUC presents unique diagnostic and therapeutic challenges, with both a higher likelihood of invasive disease at presentation and a less favorable [...] Read more.
Background/Objectives: Upper tract urothelial carcinoma (UTUC) is a rare and biologically distinct subset of urothelial malignancies, comprising approximately 5–10% of urothelial cancers. UTUC presents unique diagnostic and therapeutic challenges, with both a higher likelihood of invasive disease at presentation and a less favorable prognosis compared to urothelial carcinoma of the bladder. Current treatment strategies for UTUC are largely derived from bladder cancer studies, underscoring the need for UTUC-directed research. This review provides a comprehensive overview of UTUC, encompassing diagnostic approaches, systemic and intraluminal therapies, surgical management, and future directions. Methods: A narrative review was conducted synthesizing evidence from guideline-based recommendations, retrospective and prospective clinical studies, and ongoing trials focused on UTUC. Results: Neoadjuvant cisplatin-based chemotherapy is increasingly preferred in UTUC due to the risk of postoperative renal impairment that may preclude adjuvant cisplatin use. Surgical management includes kidney-sparing approaches and radical nephroureterectomy (RNU), with selection guided by tumor risk and patient comorbidities. While endoscopic management (EM) preserves renal function, it carries a higher recurrence and surveillance burden; RNU remains standard for high-risk cases. Systemic therapy for advanced and metastatic UTUC mirrors that of bladder urothelial carcinoma. Enfortumab vedotin (EV) plus pembrolizumab showed superior efficacy over chemotherapy in the EV-302 trial, with improved response rate, progression-free survival, and overall survival across subgroups, including UTUC. For patients ineligible for EV, the CheckMate-901 study supported first-line chemoimmunotherapy with gemcitabine, cisplatin, and nivolumab. Further systemic therapy strategies include maintenance avelumab post-chemotherapy (JAVELIN Bladder 100), targeted therapies such as erdafitinib (THOR trial), and trastuzumab deruxtecan (DESTINY-PanTumor02) in FGFR2/3-altered and HER2-positive disease, respectively. Conclusions: Historically, the therapeutic landscape of UTUC has been extrapolated from bladder cancer; however, ongoing research specific to UTUC is deriving more precise regimens involving the use of immune checkpoint inhibitors, antibody–drug conjugates, and biomarker-driven therapies. Full article
(This article belongs to the Special Issue Upper Tract Urothelial Carcinoma: Current Knowledge and Perspectives)
Show Figures

Figure 1

23 pages, 3506 KiB  
Article
Evaluation of Vision Transformers for Multi-Organ Tumor Classification Using MRI and CT Imaging
by Óscar A. Martín and Javier Sánchez
Electronics 2025, 14(15), 2976; https://doi.org/10.3390/electronics14152976 - 25 Jul 2025
Viewed by 225
Abstract
Using neural networks has become the standard technique for medical diagnostics, especially in cancer detection and classification. This work evaluates the performance of Vision Transformer architectures, including Swin Transformer and MaxViT, for several datasets of magnetic resonance imaging (MRI) and computed tomography (CT) [...] Read more.
Using neural networks has become the standard technique for medical diagnostics, especially in cancer detection and classification. This work evaluates the performance of Vision Transformer architectures, including Swin Transformer and MaxViT, for several datasets of magnetic resonance imaging (MRI) and computed tomography (CT) scans. We used three training sets of images with brain, lung, and kidney tumors. Each dataset included different classification labels, from brain gliomas and meningiomas to benign and malignant lung conditions and kidney anomalies such as cysts and cancers. This work aims to analyze the behavior of the neural networks in each dataset and the benefits of combining different image modalities and tumor classes. We designed several experiments by fine-tuning the models on combined and individual datasets. The results revealed that the Swin Transformer achieved the highest accuracy, with an average of 99.0% on single datasets and reaching 99.43% on the combined dataset. This research highlights the adaptability of Transformer-based models to various human organs and image modalities. The main contribution lies in evaluating multiple ViT architectures across multi-organ tumor datasets, demonstrating their generalization to multi-organ classification. Integrating these models across diverse datasets could mark a significant advance in precision medicine, paving the way for more efficient healthcare solutions. Full article
(This article belongs to the Special Issue Convolutional Neural Networks and Vision Applications, 4th Edition)
Show Figures

Figure 1

14 pages, 1088 KiB  
Article
Management and Outcomes of Urinary Tract Involvement in Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy (CRS/HIPEC): A Retrospective Cohort Study
by Feza Karakayali, Melik Kagan Aktas, Erman Aytac, Ugur Sungurtekin, Sezai Demirbas, Mustafa Oncel, Ersin Ozturk, Tahsin Colak, Mehmet Ince, Mustafa Haksal, Safak Coskun and Selman Sokmen
Medicina 2025, 61(8), 1331; https://doi.org/10.3390/medicina61081331 - 23 Jul 2025
Viewed by 225
Abstract
Background and Objectives: The combined use of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) is employed for the treatment of peritoneal carcinomatosis (PC). To achieve optimal cytoreduction, there may be a need for extensive resection and subsequent reconstruction of urologic structures. [...] Read more.
Background and Objectives: The combined use of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) is employed for the treatment of peritoneal carcinomatosis (PC). To achieve optimal cytoreduction, there may be a need for extensive resection and subsequent reconstruction of urologic structures. This study was designed to evaluate the outcomes of urinary tract resection or repair performed in CRS/HIPEC in terms of operative and oncological outcomes. Materials and Methods: After institutional review board approval, data from 550 consecutive patients who underwent the CRS/HIPEC procedure from January 2007 to July 2018 at six university hospitals was retrieved from prospectively maintained databases. Data from patients who had a concomitant curative resection and reconstruction of the bladder, ureter, or kidney during the CRS/HIPEC procedure were analyzed retrospectively. Results: A total of 50 out of 550 patients had undergone resection with a repair of the urinary tract due to tumor invasion or iatrogenic injury. Postoperative (within 30 days) urologic complications were observed in 9 of the 50 patients. It was found that having a peritoneal cancer index (PCI) equal to or greater than 20 (p < 0.009) was the sole significant risk factor associated with the occurrence of early urinary complications. Survival time post CRS/HIPEC treatment did not significantly differ between patients with and without urologic complications (median overall survival: 23 vs. 27 months, p = 0.683). Conclusions: Despite urinary tract issues during CRS/HIPEC for PC, including a PCI over 20 and potential complications from resection or repair, the procedure still offers significant survival benefits. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

27 pages, 4223 KiB  
Article
Prolyl Hydroxylase Inhibitor-Mediated HIF Activation Drives Transcriptional Reprogramming in Retinal Pigment Epithelium: Relevance to Chronic Kidney Disease
by Tamás Gáll, Dávid Pethő, Annamária Nagy, Szilárd Póliska, György Balla and József Balla
Cells 2025, 14(14), 1121; https://doi.org/10.3390/cells14141121 - 21 Jul 2025
Viewed by 509
Abstract
Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved [...] Read more.
Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved in eye diseases, this study examined the effects of HIF-PHIs on metabolism and gene expression in retinal pigment epithelium (RPE) cells. Results revealed that PHIs differentially induced angiogenic (VEGFA, ANG) and glycolytic (PDK1, GLUT1) gene expression, with Roxadustat causing the strongest transcriptional changes. However, Roxadustat-induced angiogenic signals did not promote endothelial tube formation. Moreover, it did not induce oxidative stress, inflammation, or significant antioxidant gene responses in ARPE-19 cells. Roxadustat also reduced the inflammatory cytokine response to tumor necrosis factor-α, including IL-6, IL-8, and MCP-1, and did not exacerbate VEGF expression under high-glucose conditions. Overall, Roxadustat triggered complex gene expression changes without promoting inflammation or oxidative stress in RPE cells. Despite these findings, ophthalmologic monitoring is advised during PHI treatment in CKD patients receiving HIF-PHIs. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

23 pages, 587 KiB  
Review
Immune Checkpoint Inhibitors and Allograft Rejection Risk: Emerging Evidence Regarding Their Use in Kidney Transplant Recipients
by Muhammad Ali Khan, Munir Mehmood, Hind EL Azzazi, Samiullah Shaikh, Bhavna Bhasin-Chhabra, Prakash Gudsoorkar, Sumi Sukumaran Nair, Lavanya Kodali, Girish Mour, Sundararaman Swaminathan and Bassam G. Abu Jawdeh
J. Clin. Med. 2025, 14(14), 5152; https://doi.org/10.3390/jcm14145152 - 20 Jul 2025
Viewed by 543
Abstract
The indications for immune checkpoint inhibitor (ICI) use in cancer treatment continue to expand. This is attributable to their proven anticancer activity in addition to their tolerability and favorable toxicity profile as compared to conventional chemotherapeutic agents. ICIs work by blocking the inhibitory [...] Read more.
The indications for immune checkpoint inhibitor (ICI) use in cancer treatment continue to expand. This is attributable to their proven anticancer activity in addition to their tolerability and favorable toxicity profile as compared to conventional chemotherapeutic agents. ICIs work by blocking the inhibitory signals between tumor cells and T-cells, thereby enhancing the T-cell cytotoxic activity to inhibit tumor growth. Because of their immune-stimulating effect, ICIs are linked to adverse renal outcomes in both native and transplanted kidneys. The risk of kidney allograft rejection in the setting of ICI use has been reported to be around 40%, leading to an increased risk of graft loss. In this report, we review the literature examining outcomes in kidney transplant recipients receiving ICIs for various oncologic indications. Full article
(This article belongs to the Special Issue Clinical Advancements in Kidney Transplantation)
Show Figures

Figure 1

28 pages, 944 KiB  
Review
Amphiregulin in Fibrotic Diseases and Cancer
by Tae Rim Kim, Beomseok Son, Chun Geun Lee and Han-Oh Park
Int. J. Mol. Sci. 2025, 26(14), 6945; https://doi.org/10.3390/ijms26146945 - 19 Jul 2025
Viewed by 437
Abstract
Fibrotic disorders pose a significant global health burden due to limited treatment options, creating an urgent need for novel therapeutic strategies. Amphiregulin (AREG), a low-affinity ligand for the epidermal growth factor receptor (EGFR), has emerged as a key mediator of fibrogenesis through dual [...] Read more.
Fibrotic disorders pose a significant global health burden due to limited treatment options, creating an urgent need for novel therapeutic strategies. Amphiregulin (AREG), a low-affinity ligand for the epidermal growth factor receptor (EGFR), has emerged as a key mediator of fibrogenesis through dual signaling pathways. Unlike high-affinity EGFR ligands, AREG induces sustained signaling that activates downstream effectors and promotes the integrin-mediated activation of transforming growth factor (TGF)-β. This enables both canonical and non-canonical EGFR signaling pathways that contribute to fibrosis. Elevated AREG expression correlates with disease severity across multiple organs, including the lungs, kidneys, liver, and heart. The therapeutic targeting of AREG has shown promising antifibrotic and anticancer effects, suggesting a dual-benefit strategy. The increasing recognition of the shared mechanisms between fibrosis and cancer further supports the development of unified treatment approaches. The inhibition of AREG has been shown to sensitize fibrotic tumor microenvironments to chemotherapy, enhancing combination therapy efficacy. Targeted therapies, such as Self-Assembled-Micelle inhibitory RNA (SAMiRNA)-AREG, have demonstrated enhanced specificity and favorable safety profiles in preclinical studies and early clinical trials. Personalized treatment based on AREG expression may improve clinical outcomes, establishing AREG as a promising precision medicine target for both fibrotic and malignant diseases. This review aims to provide a comprehensive understanding of AREG biology and evaluate its therapeutic potential in fibrosis and cancer. Full article
Show Figures

Figure 1

17 pages, 2216 KiB  
Article
Functional Characterization of TNFα in the Starry Flounder (Platichthys stellatus) and Its Potential as an Immunostimulant
by Min-Young Sohn, Gyoungsik Kang, Kyung-Ho Kim, Ha-Jeong Son and Chan-Il Park
Animals 2025, 15(14), 2119; https://doi.org/10.3390/ani15142119 - 17 Jul 2025
Viewed by 379
Abstract
Tumor necrosis factor alpha (TNFα) is a central pro-inflammatory cytokine that mediates host immune responses during infection. In this study, we identified and characterized the TNFα gene in the starry flounder (Platichthys stellatus) through transcriptomic analysis. The deduced protein [...] Read more.
Tumor necrosis factor alpha (TNFα) is a central pro-inflammatory cytokine that mediates host immune responses during infection. In this study, we identified and characterized the TNFα gene in the starry flounder (Platichthys stellatus) through transcriptomic analysis. The deduced protein contained a conserved TNF domain and transmembrane region, and phylogenetic analysis confirmed its homology with other teleost TNFα proteins. Tissue-specific expression profiling revealed high baseline expression in immune-related peripheral organs and a distinct temporal modulation in response to Streptococcus parauberis infection. Recombinant TNFα (rTNFα), produced using a cell-free expression system, significantly enhanced phagocytic activity in peripheral and kidney-derived leukocytes in a dose-dependent manner. Peak activity was observed at 150–200 μg/mL, while a decline at higher concentrations suggested a threshold for immune stimulation. Importantly, hemolysis assays confirmed the safety of rTNFα even at the highest tested concentrations. These results demonstrate the immunomodulatory potential of TNFα as a molecular adjuvant in aquaculture vaccines and underscore its potential utility in immune-enhancing strategies for sustainable aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

10 pages, 229 KiB  
Article
The Incidence of Oncocytoma and Angiomyolipoma in Patients Undergoing Nephron-Sparing Surgery for Small Renal Masses
by Stelian Ianiotescu, Constantin Gingu, Irina Balescu, Nicolae Bacalbasa, Cristian Balalau and Ioanel Sinescu
J. Mind Med. Sci. 2025, 12(2), 38; https://doi.org/10.3390/jmms12020038 - 16 Jul 2025
Viewed by 244
Abstract
Background: Oncocytoma and angiomyolipoma (AML) are benign renal tumors that may mimic malignant lesions on imaging. With the increasing use of partial nephrectomy (PN) for renal masses, accurate preoperative characterization of these lesions is essential. This study highlights the role of partial nephrectomy [...] Read more.
Background: Oncocytoma and angiomyolipoma (AML) are benign renal tumors that may mimic malignant lesions on imaging. With the increasing use of partial nephrectomy (PN) for renal masses, accurate preoperative characterization of these lesions is essential. This study highlights the role of partial nephrectomy as a valuable diagnostic tool in situations where imaging is inconclusive or raises concern for malignancy without definitive confirmation. In the absence of a reliable preoperative diagnosis, partial nephrectomy provides direct histologic verification with minimal perioperative morbidity. Moreover, it offers curative potential when malignancy is present. By achieving both diagnostic certainty and renal preservation, this approach is well-suited for clinical scenarios in which imaging ambiguity might otherwise result in overtreatment through radical surgery or undertreatment Material and methods: in this retrospective study, we reviewed our 5-year experience (2019–2024), 188 partial nephrectomies—including bilateral procedures and operations on solitary kidneys—using robotic and open approaches. All of these 30 tumors were solid renal masses with indeterminate imaging features or suspicious characteristics suggestive of malignancy, further underscoring the limitations of current preoperative diagnostic modalities. Results: Histopathological evaluation confirmed benign renal tumors in 30 cases, with oncocytoma diagnosed in 18 cases (16 robotic, 2 open) and AML in 12 cases (9 robotic, 3 open). Conclusions: Even when imaging raises suspicion of malignancy or remains inconclusive, many small renal masses are ultimately confirmed as benign upon histopathological examination. This study underscores the diagnostic uncertainty associated with small renal tumors and highlights the value of partial nephrectomy as a decisive diagnostic intervention. In situations where non-invasive modalities fail to provide definitive answers, partial nephrectomy offers tissue confirmation with minimal morbidity. Furthermore, when malignancy is present, this approach ensures appropriate oncologic management while preserving renal function. Our findings support the integration of this strategy into routine clinical practice, particularly when diagnostic clarity is essential for guiding safe and effective treatment. Full article
28 pages, 2365 KiB  
Systematic Review
The Roles of Tripartite Motif Proteins in Urological Cancers: A Systematic Review
by Yuta Yamada, Naoki Kimura, Kazuki Maki, Yuji Hakozaki, Fumihiko Urabe, Shoji Kimura, Tetsuya Fujimura, Satoshi Inoue and Haruki Kume
Cancers 2025, 17(14), 2367; https://doi.org/10.3390/cancers17142367 - 16 Jul 2025
Viewed by 276
Abstract
We aimed to investigate the roles of tripartite motif (TRIM) proteins in urological cancers. Methods: A systematic review was conducted to investigate the oncological role of tripartite motif proteins in urological cancers. Results: A total of 84 articles were identified for [...] Read more.
We aimed to investigate the roles of tripartite motif (TRIM) proteins in urological cancers. Methods: A systematic review was conducted to investigate the oncological role of tripartite motif proteins in urological cancers. Results: A total of 84 articles were identified for the final analysis (26 articles on kidney cancers, 19 on bladder cancers, 37 on prostate cancers, and 1 on testicular cancers). In total, 27 TRIM family proteins were involved in kidney cancer, of which 9 were associated with tumor-promoting findings (TRIM24, TRIM27, TRIM37, TRIM44, TRIM46, TRIM47, TRIM59, TRIM63, and TRIM65) and of which 9 TRIM proteins were tumor-suppressive (TRIM2, TRIM7, TRIM8, TRIM13, TRIM21, TRIM26, TRIM28, TRIM33, and TRIM58). Fourteen TRIM family proteins were associated with bladder cancer (tumor-promoting: TRIM9, TRIM25, TRIM26, TRIM28, TRIM29, TRIM59, TRIM65, and TRIM66; tumor-suppressive: TRIM19 and TRIM38). Ten TRIM family proteins were associated with prostate cancer (tumor-promoting: TRIM11, TRIM24, TRIM28, TRIM33, TRIM44, TRIM59, TRIM63, TRIM66, and TRIM68; tumor-suppressive: TRIM32 and TRIM36). Twenty-eight TRIM family proteins were identified to be associated with prostate cancer (tumor-promoting: TRIM11, TRIM24, TRIM28, TRIM33, TRIM44, TRIM59, TRIM63, TRIM66, and TRIM68; tumor-suppressive: TRIM32 and TRIM36). TRIM proteins regulate urological cancers by ubiquitination or modulation of oncologic pathways. Conclusions: This review identifies TRIM proteins that are involved in urological cancers. Some of these proteins have the potential to be the therapeutic target. Full article
(This article belongs to the Section Systematic Review or Meta-Analysis in Cancer Research)
Show Figures

Graphical abstract

19 pages, 852 KiB  
Article
Genotype–Phenotype Correlation of TNF-α (−238, rs361525) and Cystatin C for Early Detection of Sepsis-Associated AKI and Its Severity in Critically Ill Neonates
by Shimaa Abdelsattar, Hiba S. Al-Amodi, Mahmoud Nazih, Eman H. M. Salem, Rasha G. Mostafa, Shymaa S. Menshawy, Amany A. El-Banna, Basma M. Abdelgawad, Omnia S. Nabih, Yasmin Mohsen, Elaf Abozeid, Mai El-Sayad Abd El-Hamid, Nabil A. Shoman, Naglaa Abdelmawgoud Ahmed, Mai Mohamed Nabil and Dalia Abdel-Wahab Mohamed
Int. J. Mol. Sci. 2025, 26(14), 6738; https://doi.org/10.3390/ijms26146738 - 14 Jul 2025
Viewed by 283
Abstract
Sepsis-associated acute kidney injury (S-AKI) represents a significant health problem associated with adverse outcomes. Our study aimed to assess the value of serum cystatin-C (sCysC) and TNF-α (rs361525) in combination for diagnosing S-AKI patients and predicting their adverse outcomes. The study included 100 [...] Read more.
Sepsis-associated acute kidney injury (S-AKI) represents a significant health problem associated with adverse outcomes. Our study aimed to assess the value of serum cystatin-C (sCysC) and TNF-α (rs361525) in combination for diagnosing S-AKI patients and predicting their adverse outcomes. The study included 100 critically ill neonates and 100 controls. Patients were categorized into an S-AKI group and a non-AKI group. TNF-α (−238, rs361525) genotyping was performed using RT-PCR, and sCysC was assessed using ELISA. Our study showed a fundamental difference in the genotype frequencies of TNF-α (−238, rs361525) and SNP between S-AKI and non-AKI patients. Furthermore, there was a significant relationship between cystatin C and TNF-α (−238, rs361525), where cystatin C was higher in patients with AA alleles than in patients with GA and GG alleles. Combining GA + AA genotypes with elevated serum cystatin-C levels can serve as a potential diagnostic and prognostic biomarker for AKI development in this population. The GA/AA genotypes independently predicted S-AKI risk (OR = 6.64, p < 0.001). At the same time, elevated sCysC (>9.4 mg/L) emerged as a sensitive biomarker (AUC = 0.848) and independent predictor of adverse outcomes. Collectively, these findings contribute to the growing field of personalized medicine and represent a strategic advantage, enabling prevention-focused care rather than the treatment of established disease. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop