Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (367)

Search Parameters:
Keywords = karst groundwater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3033 KiB  
Review
Recharge Sources and Flow Pathways of Karst Groundwater in the Yuquan Mountain Spring Catchment Area, Beijing: A Synthesis Based on Isotope, Tracers, and Geophysical Evidence
by Yuejia Sun, Liheng Wang, Qian Zhang and Yanhui Dong
Water 2025, 17(15), 2292; https://doi.org/10.3390/w17152292 - 1 Aug 2025
Viewed by 208
Abstract
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its [...] Read more.
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its recharge and flow mechanisms. This study integrates published isotope data, spatial distributions of Na+ and Cl as hydrochemical tracers, groundwater age estimates, and geophysical survey results to assess the recharge sources and flow pathways within the YM Spring catchment area. The analysis identifies two major recharge zones: the Tanzhesi area, primarily recharged by direct infiltration of precipitation through exposed carbonate rocks, and the Junzhuang area, which receives mixed recharge from rainfall and Yongding River seepage. Three potential flow pathways are proposed, including shallow flow along faults and strata, and a deeper, speculative route through the Jiulongshan-Xiangyu syncline. The synthesis of multiple lines of evidence leads to a refined conceptual model that illustrates how geological structures govern recharge, flow, and discharge processes in this karst system. These findings not only enhance the understanding of subsurface hydrodynamics in complex geological settings but also provide a scientific basis for future spring restoration planning and groundwater management strategies in the regions. Full article
Show Figures

Figure 1

23 pages, 6014 KiB  
Article
Modeling Water Table Response in Apulia (Southern Italy) with Global and Local LSTM-Based Groundwater Forecasting
by Lorenzo Di Taranto, Antonio Fiorentino, Angelo Doglioni and Vincenzo Simeone
Water 2025, 17(15), 2268; https://doi.org/10.3390/w17152268 - 30 Jul 2025
Viewed by 272
Abstract
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the [...] Read more.
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the shallow porous aquifer in Southern Italy. This aquifer is recharged by local rainfall, which exhibits minimal variation across the catchment in terms of volume and temporal distribution. To gain a deeper understanding of the complex interactions between precipitation and groundwater levels within the aquifer, we used water level data from six wells. Although these wells were not directly correlated in terms of individual measurements, they were geographically located within the same shallow aquifer and exhibited a similar hydrogeological response. The trained model uses two variables, rainfall and groundwater levels, which are usually easily available. This approach allowed the model, during the training phase, to capture the general relationships and common dynamics present across the different time series of wells. This methodology was employed despite the geographical distinctions between the wells within the aquifer and the variable duration of their observed time series (ranging from 27 to 45 years). The results obtained were significant: the global model, trained with the simultaneous integration of data from all six wells, not only led to superior performance metrics but also highlighted its remarkable generalization capability in representing the hydrogeological system. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
Hydrochemical Characterization and Predictive Modeling of Groundwater Quality in Karst Aquifers Under Semi-Arid Climate: A Case Study of Ghar Boumaaza, Algeria
by Sabrine Guettaia, Abderrezzak Boudjema, Abdessamed Derdour, Abdessalam Laoufi, Hussein Almohamad, Motrih Al-Mutiry and Hazem Ghassan Abdo
Sustainability 2025, 17(15), 6883; https://doi.org/10.3390/su17156883 - 29 Jul 2025
Viewed by 404
Abstract
Understanding groundwater quality in karst environments is essential, particularly in semi-arid regions where water resources are highly vulnerable to both climatic variability and anthropogenic pressures. The Ghar Boumaaza karst aquifer, located in the semi-arid Tlemcen Mountains of Algeria, represents a critical yet understudied [...] Read more.
Understanding groundwater quality in karst environments is essential, particularly in semi-arid regions where water resources are highly vulnerable to both climatic variability and anthropogenic pressures. The Ghar Boumaaza karst aquifer, located in the semi-arid Tlemcen Mountains of Algeria, represents a critical yet understudied water resource increasingly threatened by climate change and human activity. This study integrates hydrochemical analysis, multivariate statistical techniques, and predictive modeling to assess groundwater quality and characterize the relationship between total dissolved solids (TDSs) and discharge (Q). An analysis of 66 water samples revealed that 96.97% belonged to a Ca2+–HCO3 facies, reflecting carbonate rock dissolution, while 3% exhibited a Cl–HCO3 facies associated with agricultural contamination. A principal component analysis identified carbonate weathering (40.35%) and agricultural leaching (18.67%) as the dominant drivers of mineralization. A third-degree polynomial regression model (R2 = 0.953) effectively captured the nonlinear relationship between TDSs and flow, demonstrating strong predictive capacity. Independent validation (R2 = 0.954) confirmed the model’s robustness and reliability. This study provides the first integrated hydrogeochemical assessment of the Ghar Boumaaza system in decades and offers a transferable methodological framework for managing vulnerable karst aquifers under similar climatic and anthropogenic conditions. Full article
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 335
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

15 pages, 2467 KiB  
Article
Definition of Groundwater Management Zones for a Fissured Karst Aquifer in Semi-Arid Northeastern Brazil
by Hailton Mello da Silva, Luiz Rogério Bastos Leal, Cezar Augusto Teixeira Falcão Filho, Thiago dos Santos Gonçalves and Harald Klammler
Hydrology 2025, 12(8), 195; https://doi.org/10.3390/hydrology12080195 - 23 Jul 2025
Viewed by 339
Abstract
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds [...] Read more.
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds of meters thick, resulting from a large sequence of carbonates piled up by thrust faults during tectonic plate collisions. Groundwater recharge and flow in this aquifer are greatly influenced by karst features, through the high density of sinkholes and vertical wells. Over the past four decades, population and agricultural activities have increased in the region, resulting in unsustainable groundwater withdrawal and, at the same time, water quality degradation. Therefore, it is important to develop legal and environmental management strategies. This work proposes the division of the karst area into three well-defined management zones by mapping karst structures, land use, and urban occupation, as well as the concentrations of chloride and nitrate in the region’s groundwater. Zone 1 in the north possesses the lowest levels of karstification, anthropization, and contamination, while zone 2 in the central region has the highest levels and zone 3 in the south ranging in-between (except for stronger karstification). The delimitation of management zones will contribute to the development and implementation of optimized zone-specific groundwater preservation and restoration strategies. Full article
Show Figures

Figure 1

7 pages, 186 KiB  
Editorial
Recent Advances in Karstic Hydrogeology, 2nd Edition
by Francesco Maria De Filippi and Giuseppe Sappa
Water 2025, 17(15), 2180; https://doi.org/10.3390/w17152180 - 22 Jul 2025
Viewed by 236
Abstract
Karst hydrogeology is the branch of hydrogeology that studies how groundwater flows and behaves in karst systems, characterized by the presence of soluble rocks (mainly limestone and dolomite) that favour chemical dissolution by meteoric water [...] Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
24 pages, 5241 KiB  
Review
Global Environmental Geochemistry and Molecular Speciation of Heavy Metals in Soils and Groundwater from Abandoned Smelting Sites: Analysis of the Contamination Dynamics and Remediation Alternatives in Karst Settings
by Hang Xu, Qiao Han, Muhammad Adnan, Mengfei Li, Mingshi Wang, Mingya Wang, Fengcheng Jiang and Xixi Feng
Toxics 2025, 13(7), 608; https://doi.org/10.3390/toxics13070608 - 21 Jul 2025
Viewed by 507
Abstract
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, [...] Read more.
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, and carbonate mineralogy) influence the mobility, speciation, and bioavailability of “metallic” pollutants, such as Pb, Cd, Zn, and As. In some areas, such as Guizhou (China), the Cd content in the surface soil is as high as 23.36 mg/kg, indicating a regional risk. Molecular-scale analysis, such as synchrotron-based XAS, can elucidate the speciation forms that underlie toxicity and remediation potential. Additionally, we emphasize discrepancies between karst in Asia, Europe, and North America and synthesize cross-regional contamination events. The risk evaluation is complicated, particularly when dynamic flow systems and spatial heterogeneity are permanent, and deep models like DI-NCPI are required as a matter of course. The remediation is still dependent on the site; however, some technologies, such as phytoremediation, biosorption, and bioremediation, are promising if suitable geochemical and microbial conditions are present. This review presents a framework for integrating molecular data and hydrogeological concepts to inform the management of risk and sustainable remediation of legacy metal pollution in karst. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 228
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

23 pages, 9204 KiB  
Article
Hydrochemical Characteristics and Genesis Analysis of Closed Coal Mining Areas in Southwestern Shandong Province, China
by Xiaoqing Wang, Jinxian He, Guchun Zhang, Jianguo He, Heng Zhao, Meng Wu, Xuejuan Song and Dongfang Liu
Eng 2025, 6(7), 164; https://doi.org/10.3390/eng6070164 - 18 Jul 2025
Viewed by 272
Abstract
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to [...] Read more.
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to quantitatively analyze the hydrochemical characteristics of closed coal mining areas in southwest Shandong and to clarify the sources of geochemical components in surface water and groundwater, and the PMF model was used to analyze the sources of chemical components in mine water and karst water. The results show that the concentrations of TDS ( Total Dissolved Solids), SO42−, Fe, and Mn in the mine water of the closed coal mine area are higher than in the karst water. Both water bodies are above groundwater quality standards. Ca2+, SO42−, and HCO3 dominate the ionic components in surface water and different types of groundwater. The hydrochemical types of surface, pore, and mine waters are mainly SO4-HCO3-Ca, whereas SO4-HCO3-Ca and HCO3-SO4-Ca dominate karst waters. SO42− is the leading ion in the TDS of water bodies. The mineralization process of surface water is mainly controlled by the weathering of silicate minerals, while that of the groundwater is mainly controlled by the dissolution of carbonate minerals. The impact of mining activities on surface water and groundwater is significant, while the impact of agricultural activities on surface water and groundwater is relatively small. The degree of impact of coal mining activities on SO42− concentrations in surface water, pore water, and karst water, in descending order, is karst water, surface water, and pore water. The PMF (Positive Matrix Factorization) model analysis results indicate that dissolution of carbonate minerals with sulphate and oxidation dissolution of sulfide minerals are the main sources of chemical constituents in mine waters. Carbonate dissolution, oxidation dissolution of sulfide minerals, domestic sewage, and dissolution of carbonate minerals with sulphate are ranked as the main sources of chemical constituents in karst water from highest to lowest. These findings provide a scientific basis for the assessment and control of groundwater pollution in the areas of closed coal mines. Full article
Show Figures

Figure 1

19 pages, 13316 KiB  
Article
Mapping of Closed Depressions in Karst Terrains: A GIS-Based Delineation of Endorheic Catchments in the Alburni Massif (Southern Apennine, Italy)
by Libera Esposito, Guido Leone, Michele Ginolfi, Saman Abbasi Chenari and Francesco Fiorillo
Hydrology 2025, 12(7), 186; https://doi.org/10.3390/hydrology12070186 - 10 Jul 2025
Viewed by 419
Abstract
A deep interaction between groundwater and surface hydrology characterizes karst environments. These settings feature closed depressions, whose hydrological role varies depending on whether they have genetic and hydraulic relationships with overland–subsurface flow (epigenic) or deep groundwater circulation (hypogenic). Epigenic dolines and poljes are [...] Read more.
A deep interaction between groundwater and surface hydrology characterizes karst environments. These settings feature closed depressions, whose hydrological role varies depending on whether they have genetic and hydraulic relationships with overland–subsurface flow (epigenic) or deep groundwater circulation (hypogenic). Epigenic dolines and poljes are among the diagnostic landforms of karst terrains. In this study, we applied a hydrological criterion to map closed depressions—including dolines—across the Alburni karst massif, in southern Italy. A GIS-based, semi-automatic approach was employed, combining the sink-filling method (applied to a 5 m DEM) with the visual interpretation of various informative layers. This process produced a raster representing the location and depth of karst closed depressions. This raster was then used to automatically delineate endorheic areas using classic GIS tools. The resulting map reveals a thousand dolines and hundreds of adjacent endorheic areas. Endorheic areas form a complex mosaic across the massif, a feature that had been poorly emphasized in previous works. The main morphometric features of the dolines and endorheic areas were statistically analyzed and compared with the structural characteristics of the massif. The results of the proposed mapping approach provide valuable insights for groundwater management, karst area protection, recharge modeling, and tracer test planning. Full article
Show Figures

Figure 1

17 pages, 18340 KiB  
Article
Physics-Informed Deep Learning for Karst Spring Prediction: Integrating Variational Mode Decomposition and Long Short-Term Memory with Attention
by Liangjie Zhao, Stefano Fazi, Song Luan, Zhe Wang, Cheng Li, Yu Fan and Yang Yang
Water 2025, 17(14), 2043; https://doi.org/10.3390/w17142043 - 8 Jul 2025
Viewed by 579
Abstract
Accurately forecasting karst spring discharge remains a significant challenge due to the inherent nonstationarity and multi-scale hydrological dynamics of karst hydrological systems. This study presents a physics-informed variational mode decomposition long short-term memory (VMD-LSTM) model, enhanced with an attention mechanism and Monte Carlo [...] Read more.
Accurately forecasting karst spring discharge remains a significant challenge due to the inherent nonstationarity and multi-scale hydrological dynamics of karst hydrological systems. This study presents a physics-informed variational mode decomposition long short-term memory (VMD-LSTM) model, enhanced with an attention mechanism and Monte Carlo dropout for uncertainty quantification. Hourly discharge data (2013–2018) from the Zhaidi karst spring in southern China were decomposed using VMD to extract physically interpretable temporal modes. These decomposed modes, alongside precipitation data, were input into an attention-augmented LSTM incorporating physics-informed constraints. The model was rigorously evaluated against a baseline standalone LSTM using an 80% training, 15% validation, and 5% testing data partitioning strategy. The results demonstrate substantial improvements in prediction accuracy for the proposed framework compared to the standard LSTM model. Compared to the baseline LSTM, the RMSE during testing decreased dramatically from 0.726 to 0.220, and the NSE improved from 0.867 to 0.988. The performance gains were most significant during periods of rapid conduit flow (the peak RMSE decreased by 67%) and prolonged recession phases. Additionally, Monte Carlo dropout, using 100 stochastic realizations, effectively quantified predictive uncertainty, achieving over 96% coverage in the 95% confidence interval (CI). The developed framework provides robust, accurate, and reliable predictions under complex hydrological conditions, highlighting substantial potential for supporting karst groundwater resource management and enhancing flood early-warning capabilities. Full article
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
An Interdisciplinary Perspective of the Karst Springs’ Areas as Drinking Water: Perusal from Northeastern Slovenia
by Natalija Špeh and Anja Bubik
Pollutants 2025, 5(3), 19; https://doi.org/10.3390/pollutants5030019 - 1 Jul 2025
Viewed by 664
Abstract
Karst aquifer systems are highly vulnerable due to their unique underground water flow characteristics, making them prone to contamination and abandonment. This study compares an active karst water source (Ljubija) with a previously abandoned one (Rečica) to assess freshwater quality and water protection [...] Read more.
Karst aquifer systems are highly vulnerable due to their unique underground water flow characteristics, making them prone to contamination and abandonment. This study compares an active karst water source (Ljubija) with a previously abandoned one (Rečica) to assess freshwater quality and water protection risks, especially as water scarcity becomes a concern during dry summer periods. The Ljubija and Rečica catchments, designated as water protection areas (WPAs), were monitored over a year (January–December 2020). Groundwater (GW) and surface water (SW) were analyzed twice a month during both dry and wet periods, adhering to European and national guidelines. An interdisciplinary approach integrated natural and human impact indicators, linking water quality to precipitation, hydrogeography, and landscape characteristics. After Slovene regulation standards (50 mg/L), the Ljubija source demonstrated stable water quality, with low nitrate levels (average 2.6 mg/L) and minimal human impact. In contrast, the Rečica catchment was more vulnerable, with its GW excluded from drinking use since the 1990s due to organic contamination, worsened by the area’s karst hydrogeology. In 2020, its nitrate concentration averaged 6.0 mg/L. These findings highlight the need for improved monitoring regulations, particularly for vulnerable karst water sources, to safeguard water quality and ensure sustainable use. Full article
Show Figures

Figure 1

18 pages, 3775 KiB  
Article
Water Storage Capacity of Ordovician Limestone Aquifer and Hydrogeological Response Mechanism of Deep Reinjection in North China
by Jianguo Fan, Weixiao Chen, Xianfeng Tan, Jiancai Sui, Qi Liu, Hongnian Chen, Feng Zhang, Ge Chen and Zhimin Xu
Water 2025, 17(13), 1982; https://doi.org/10.3390/w17131982 - 1 Jul 2025
Viewed by 311
Abstract
Mine water treatment and emissions have become important factors that restrict the comprehensive benefits of coal enterprises and local economic development, and the use of the deep well recharge method can address the specific conditions of mine surge water. This paper takes the [...] Read more.
Mine water treatment and emissions have become important factors that restrict the comprehensive benefits of coal enterprises and local economic development, and the use of the deep well recharge method can address the specific conditions of mine surge water. This paper takes the actual situation of coal mine water treatment as an example and innovatively carries out dynamic tests for the Ordovician limestone aquifers deep in the mine. Intermittent reinjection test shows that under the same reinjection time, the water level recovery rate during the intermittent period is fast at first and then slow. Moreover, the recovery speed of the water level buried depth slows down with the increase in the reinjection time, which reveals the characteristics of the water level rising rapidly and recovering quickly during the reinjection of the reservoir. The average formation water absorption index is 420.81 m3/h·MPa. The water level buried depth of the long-term reinjection test showed three stages (rapid rise, slow rise, and stable stages), and the water level buried depth was raised to 1.52 m at its highest. Monitoring data from the surrounding 5 km area showed that reinjection did not affect aquifer water levels, verifying the excellent storage capacity of the deep Ordovician fissure-karst aquifer. The variability of well loss under pumping and injection conditions was comparatively analyzed, and the well loss produced by the recharge test was 4.06 times higher than that of the pumping test, which provided theoretical support for the calculation of hydrogeological parameters to eliminate the influence of well loss. This study deepens the understanding of Ordovician limestone aquifers in deep mine water, providing a reference for cheap mine water treatment and sustainable groundwater management in similar mine areas. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

27 pages, 5041 KiB  
Article
Differential Evolution in Hydrochemical Characteristics Amongst Porous, Fissured and Karst Aquifers in China
by Chengsong Li, Jie Fang, Feisheng Feng, Tingting Yao, Yongping Shan and Wanli Su
Hydrology 2025, 12(7), 175; https://doi.org/10.3390/hydrology12070175 - 1 Jul 2025
Viewed by 477
Abstract
The efficacy of water resource management and protection hinges on a profound understanding of the controlling factors and regulatory mechanisms that shape groundwater chemistry within aquifers. Despite this, our comprehension of how groundwater chemistry and ion sources vary across diverse aquifer types remained [...] Read more.
The efficacy of water resource management and protection hinges on a profound understanding of the controlling factors and regulatory mechanisms that shape groundwater chemistry within aquifers. Despite this, our comprehension of how groundwater chemistry and ion sources vary across diverse aquifer types remained limited. To bridge this gap, our study conducted a detailed hydrochemical and statistical investigation of porous, fissured, and karst aquifers. By applying multivariate statistical techniques, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), the hydrochemical characteristics and main ion sources of each aquifer type, as well as distinct controlling factors and regulation patterns, were determined. Notably, evaporation predominantly affected the hydrochemistry of porous aquifers, whereas mineral dissolution and rock weathering processes played a pivotal role in shaping the groundwater evolution of fissured and karst aquifers. HCO3 and SO42− are the most common anions of all types, while Na+ is dominant in porous and fissured aquifers and Ca2+ is dominant in karst aquifers. The most common hydrochemical types identified were HCO3-Ca·Mg (accounting for approximately 56.84%) and SO4·Cl-Na (constituting approximately 21.75%). PCA results revealed that lateral recharge from fissured aquifers in hilly regions into the groundwater of porous aquifer, and wastewater discharge and agricultural fertilizer application, significantly impact the groundwater chemistry across all three aquifer types. It is worth noting that the dissolution of carbonate minerals, often influenced by human activities, had a profound effect on the hydrochemistry of each aquifer. Conversely, the dissolution of evaporitic minerals affected groundwater chemistry primarily through cation exchange processes. In summary, the hydrochemical characteristics of these aquifer types were predominantly shaped by a complex interplay of mineral dissolution, cation exchange, evaporation, and anthropogenic activities, with notable contributions from fissured aquifer recharge and pollution. These insights were critical for informing national-level strategies for groundwater resource protection and management. Full article
Show Figures

Figure 1

18 pages, 4751 KiB  
Article
Hydrochemical Formation Mechanisms and Source Apportionment in Multi-Aquifer Systems of Coastal Cities: A Case Study of Qingdao City, China
by Mingming Li, Xinfeng Wang, Jiangong You, Yueqi Wang, Mingyue Zhao, Ping Sun, Jiani Fu, Yang Yu and Kuanzhen Mao
Sustainability 2025, 17(13), 5988; https://doi.org/10.3390/su17135988 - 29 Jun 2025
Viewed by 386
Abstract
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic [...] Read more.
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic perturbations. Groundwater exhibits weak alkalinity (pH 7.2–8.4), with porous aquifers showing markedly higher TDS (161.1–8203.5 mg/L) than fissured (147.7–1224.8 mg/L) and karst systems (361.1–4551.5 mg/L). Spatial heterogeneity reveals progressive hydrochemical transitions (HCO3-Ca → SO4-Ca·Mg → Cl-Na) in porous aquifers across the Dagu River Basin. While carbonate (calcite) and silicate weathering govern natural hydrochemistry, evaporite dissolution and seawater intrusion drive severe groundwater salinization in the western Pingdu City and the Dagu River Estuary (localized TDS up to 8203.5 mg/L). PMF source apportionment identifies acid deposition-enhanced dissolution of carbonate/silicate minerals, with nitrate contamination predominantly sourced from agricultural runoff and domestic sewage. Landfill leachate exerts pronounced impacts in Laixi and adjacent regions. This study offering actionable strategies for salinity mitigation and contaminant source regulation, thereby providing a scientific framework for sustainable groundwater management in rapidly urbanizing coastal zones. Full article
Show Figures

Figure 1

Back to TopTop