Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = k-body interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2347 KiB  
Article
Linking Life History Traits to the Threat Level of European Freshwater Fish
by Olga Petriki and Dimitra C. Bobori
Water 2025, 17(15), 2254; https://doi.org/10.3390/w17152254 - 29 Jul 2025
Viewed by 242
Abstract
Over 40% of freshwater fish species in Europe are currently at risk of extinction, highlighting the need for improved conservation planning. This study examines whether the threat status is associated with life-history and ecological traits across 580 autochthonous (native and endemic) freshwater fish [...] Read more.
Over 40% of freshwater fish species in Europe are currently at risk of extinction, highlighting the need for improved conservation planning. This study examines whether the threat status is associated with life-history and ecological traits across 580 autochthonous (native and endemic) freshwater fish species in European inland waters. Using data from FishBase and the IUCN Red List, we assessed associations between threat level and both categorical (e.g., migratory behavior, commercial importance, reproductive guild, and body shape) and numerical traits (e.g., maximum length, weight, age, growth parameters, and maturity traits). Significant, though modest, associations were identified between species threat level and migratory behavior and reproductive guild. Non-migratory species exhibited higher median threat levels, while amphidromous species showed a non-significant trend toward higher threat, suggesting that limited dispersal ability and dependence on fragmented freshwater networks may increase extinction vulnerability. Species with unclassified reproductive strategies also showed elevated threat levels, possibly reflecting both actual risk and underlying data gaps. In contrast, body shape and trophic level were not significantly associated with threat status. Critically Endangered species tend to be larger, heavier, and mature later—traits characteristic of slow life history strategies that limit population recovery. Although length at maturity and maximum age did not differ significantly among IUCN categories, age at maturity was significantly higher in more threatened species, and growth rate (K) was negatively correlated with threat level. Together, these patterns suggest that slower-growing, later-maturing species face elevated extinction risk. Overall, the findings underscore that the threat level in European freshwater fish is shaped by complex interactions between intrinsic biological traits and external pressures. Trait-based approaches can enhance extinction risk assessments and conservation prioritization, especially in data-deficient freshwater ecosystems facing multifaceted environmental challenges. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

23 pages, 869 KiB  
Article
Cognitive Behavioral Therapy for Muscle Dysmorphia and Anabolic Steroid-Related Psychopathology: A Randomized Controlled Trial
by Metin Çınaroğlu, Eda Yılmazer, Selami Varol Ülker and Gökben Hızlı Sayar
Pharmaceuticals 2025, 18(8), 1081; https://doi.org/10.3390/ph18081081 - 22 Jul 2025
Viewed by 412
Abstract
Background/Objectives: Muscle dysmorphia (MD), a subtype of body dysmorphic disorder, is prevalent among males who engage in the non-medical use of anabolic–androgenic steroids (AASs) and performance-enhancing drugs (PEDs). These individuals often experience severe psychopathology, including mood instability, compulsivity, and a distorted body [...] Read more.
Background/Objectives: Muscle dysmorphia (MD), a subtype of body dysmorphic disorder, is prevalent among males who engage in the non-medical use of anabolic–androgenic steroids (AASs) and performance-enhancing drugs (PEDs). These individuals often experience severe psychopathology, including mood instability, compulsivity, and a distorted body image. Despite its clinical severity, no randomized controlled trials (RCTs) have evaluated structured psychological treatments in this subgroup. This study aimed to assess the efficacy of a manualized cognitive behavioral therapy (CBT) protocol in reducing MD symptoms and associated psychological distress among male steroid users. Results: Participants in the CBT group showed significant reductions in MD symptoms from the baseline to post-treatment (MDDI: p < 0.001, d = 1.12), with gains sustained at follow-up. Large effect sizes were also observed in secondary outcomes including depressive symptoms (PHQ-9: d = 0.98), psychological distress (K10: d = 0.93), disordered eating (EDE-Q: d = 0.74), and exercise addiction (EAI: d = 1.07). No significant changes were observed in the control group. Significant group × time interactions were found for all outcomes (all p < 0.01), indicating CBT’s specific efficacy. Discussion: This study provides the first RCT evidence that CBT significantly reduces both core MD symptoms and steroid-related psychopathology in men engaged in AAS/PED misuse. Improvements extended to mood, body image perception, and compulsive exercise behaviors. These findings support CBT’s transdiagnostic applicability in addressing both the cognitive–behavioral and affective dimensions of MD. Materials and Methods: In this parallel-group, open-label RCT, 59 male gym-goers with DSM-5-TR diagnoses of MD and a history of AAS/PED use were randomized to either a 12-week CBT intervention (n = 30) or a waitlist control group (n = 29). CBT sessions were delivered weekly online and targeted distorted muscularity beliefs, compulsive behaviors, and emotional dysregulation. Primary and secondary outcomes—Muscle Dysmorphic Disorder Inventory (MDDI), PHQ-9, K10, EDE-Q, EAI, and BIG—were assessed at the baseline, post-treatment, and 3-month follow-up. A repeated-measures ANOVA and paired t-tests were used to analyze time × group interactions. Conclusions: CBT offers an effective, scalable intervention for individuals with muscle dysmorphia complicated by anabolic steroid use. It promotes broad psychological improvement and may serve as a first-line treatment option in high-risk male fitness populations. Future studies should examine long-term outcomes and investigate implementation in diverse clinical and cultural contexts. Full article
Show Figures

Graphical abstract

16 pages, 5442 KiB  
Communication
Analysis of the Impact of Frog Wear on the Wheel–Rail Dynamic Performance in Turnout Zones of Urban Rail Transit Lines
by Yanlei Li, Dongliang Zeng, Xiuqi Wei, Xiaoyu Hu and Kaiyun Wang
Lubricants 2025, 13(7), 317; https://doi.org/10.3390/lubricants13070317 - 20 Jul 2025
Viewed by 334
Abstract
To investigate how severe wear at No. 12 turnout frogs in an urban rail transit line operating at speeds over 120 km/h on the dynamic performance of the vehicle, a vehicle–frog coupled dynamic model was established by employing the 2021 version of SIMPACK [...] Read more.
To investigate how severe wear at No. 12 turnout frogs in an urban rail transit line operating at speeds over 120 km/h on the dynamic performance of the vehicle, a vehicle–frog coupled dynamic model was established by employing the 2021 version of SIMPACK software. Profiles of No. 12 alloy steel frogs and metro wheel rims were measured to simulate wheel–rail interactions as the vehicle traverses the turnout, using both brand-new and worn frog conditions. The experimental results indicate that increased service life deepens frog wear, raises equivalent conicity, and intensifies wheel–rail forces. When a vehicle passes through the frog serviced for over 17 months at the speed of 120 km/h, the maximum derailment coefficient, lateral acceleration of the car body, and lateral and vertical wheel–rail forces increased by 0.14, 0.17 m/s2, 9.52 kN, and 105.76 kN, respectively. The maximum contact patch area grew by 35.73%, while peak contact pressure rose by 236 MPa. To prevent dynamic indicators from exceeding safety thresholds and ensure train operational safety, it is recommended that the frog maintenance cycle be limited to 12 to 16 months. Full article
Show Figures

Figure 1

19 pages, 3486 KiB  
Article
3-O Sulfated Heparan Sulfate (G2) Peptide Ligand Impairs the Infectivity of Chlamydia muridarum
by Weronika Hanusiak, Purva Khodke, Jocelyn Mayen, Kennedy Van, Ira Sigar, Balbina J. Plotkin, Amber Kaminski, James Elste, Bajarang Vasant Kumbhar and Vaibhav Tiwari
Biomolecules 2025, 15(7), 999; https://doi.org/10.3390/biom15070999 - 12 Jul 2025
Viewed by 522
Abstract
Background: Heparan sulfate (HS) is widely implicated as a receptor for Chlamydia cell attachment and infectivity. However, the enzymatic modification of HS modified by the 3-O sulfotransferase-3 (3-OST-3) enzyme in chlamydial cell entry remains unknown. Methodology: To rule out the possibility that host [...] Read more.
Background: Heparan sulfate (HS) is widely implicated as a receptor for Chlamydia cell attachment and infectivity. However, the enzymatic modification of HS modified by the 3-O sulfotransferase-3 (3-OST-3) enzyme in chlamydial cell entry remains unknown. Methodology: To rule out the possibility that host cell 3-O sulfated heparan sulfate (3-OS HS) plays a significant role in C. muridarum entry, a Chinese hamster ovary (CHO-K1) cell model lacking endogenous 3-OST-3 was used. In addition, we further tested the efficacy of the phage-display-derived cationic peptides recognizing heparan sulfate (G1 peptide) and the moieties of 3-O sulfated heparan sulfate (G2 peptide) against C. muridarum entry using human cervical adenocarcinoma (HeLa 229) and human vaginal epithelial (VK2/E6E7) cell lines. Furthermore, molecular dynamics simulations were conducted to investigate the interactions of the Chlamydia lipid bilayer membrane with the G1 and G2 peptides, focusing on their binding modes and affinities. Results: The converse effect of 3-OST-3 expression in the CHO-K1 cells had no enhancing effect on C. muridarum entry. The G2 peptide significantly (>80%) affected the cell infectivity of the elementary bodies (EBs) at all the tested concentrations, as evident from the reduced fluorescent staining in the number of inclusion bodies. The observed neutralization effect of G2 peptide on C. muridarum entry suggests the possibility of sulfated-like domains being present on the EBs. In addition, data generated from our in silico computational structural modeling indicated that the G2 peptide ligand had significant affinity towards the C. muridarum lipid bilayer. Conclusions: Taken together, our findings show that the pretreatment of C. muridarum with 3-O sulfated heparan sulfate recognizing G2 peptide significantly prevents the entry of EBs into host cells. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

21 pages, 9209 KiB  
Article
Effects of Exchange, Anisotropic, and External Field Couplings on a Nanoscale Spin-2 and Spin-3/2 System: A Thermomagnetic Analysis
by Julio Cesar Madera, Elisabeth Restrepo-Parra and Nicolás De La Espriella
Magnetochemistry 2025, 11(7), 56; https://doi.org/10.3390/magnetochemistry11070056 - 30 Jun 2025
Viewed by 290
Abstract
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in [...] Read more.
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in body-centered cubic (BCC) lattices interact within their relevant nanostructures. To determine the thermomagnetic behaviors of the nanoparticle, numerical simulations using Monte Carlo techniques and thermal bath class algorithms are performed. The results exhibit the effects of exchange couplings (J1,J2), magnetocrystalline anisotropies (D3/2,D2), and external magnetic fields (h) on the finite-temperature phase diagrams of magnetization (MT), magnetic susceptibility (χT), and thermal energy (kBT). The influences of the exchange, anisotropic, and external field parameters are clearly reflected in the compensation, hysteretic, and pseudocritical phenomena presented by the quasi-spherical nanoparticle. When the parameter reflecting ferromagnetic second-neighbor exchanges in the nanosphere (J2) increases, for a given value of the external magnetic field, the compensation (Tcomp) and pseudocritical (Tpc) temperatures increase. Similarly, in the ranges 0<J24.5 and 15h15 at a specific temperature, an increase in J2 results in the appearance of exchange anisotropies (exchange bias) and and increased hysteresis loop areas in the nanomodel. Full article
Show Figures

Figure 1

15 pages, 3061 KiB  
Article
A Tool for the Assessment of Electromagnetic Compatibility in Active Implantable Devices: The Pacemaker Physical Twin
by Cecilia Vivarelli, Eugenio Mattei, Federica Ricci, Sara D'Eramo and Giovanni Calcagnini
Bioengineering 2025, 12(7), 689; https://doi.org/10.3390/bioengineering12070689 - 24 Jun 2025
Viewed by 506
Abstract
Background: The increasing use of technologies operating between 10 and 200 kHz, such as RFID, wireless power transfer systems, and induction cooktops, raises concerns about electromagnetic interference (EMI) with cardiac implantable electronic devices (CIEDs). The mechanisms of interaction within this frequency range have [...] Read more.
Background: The increasing use of technologies operating between 10 and 200 kHz, such as RFID, wireless power transfer systems, and induction cooktops, raises concerns about electromagnetic interference (EMI) with cardiac implantable electronic devices (CIEDs). The mechanisms of interaction within this frequency range have been only partially addressed by both the scientific and regulatory communities. Methods: A physical twin of a pacemaker/implantable defibrillator (PM/ICD) was developed to experimentally assess voltages induced at the input stage by low-to-mid-frequency magnetic fields. The setup simulates the two sensing modalities programmable in PMs/ICDs and allows for the analysis of different implant configurations, lead geometries, and positions within a human body phantom. Results: Characterization of the physical twin demonstrated its capability to reliably measure induced voltages in the range of 5 mV to 1.5 V. Its application enabled the identification of factors beyond the implant’s induction area that contribute to the induced voltage, such as the electrode-tissue interface and body-induced currents. Conclusions: This physical twin represents a valuable tool for experimentally validating the mechanisms of EMI in CIEDs, providing insights beyond current standards. The data obtained can serve as a reference for the validation of numerical models and patient-specific digital twins. Moreover, it offers valuable information to guide future updates and revisions of international electromagnetic compatibility standards for CIEDs. Full article
Show Figures

Figure 1

19 pages, 6811 KiB  
Article
Application of Fe2O3 Catalytic Sludge Ceramics in the Control of Eutrophication in Water Bodies
by Xiangyu Song, Gang Meng, Jiacheng Cui, Haoyan Yuan, Siyi Luo and Zongliang Zuo
Catalysts 2025, 15(6), 540; https://doi.org/10.3390/catal15060540 - 29 May 2025
Viewed by 551
Abstract
The excessive input of nitrogen and phosphorus pollutants into surface water bodies poses a serious threat to the aquatic ecosystem. As an efficient porous adsorbent material, ceramsite shows remarkable potential in the field of simultaneous nitrogen and phosphorus removal. In this study, Fe [...] Read more.
The excessive input of nitrogen and phosphorus pollutants into surface water bodies poses a serious threat to the aquatic ecosystem. As an efficient porous adsorbent material, ceramsite shows remarkable potential in the field of simultaneous nitrogen and phosphorus removal. In this study, Fe2O3 catalyzed the decomposition of K2CO3 to generate CO and CO2 gases, leading to the formation of a large number of pore structures in the composite ceramsite. Subsequently, adsorption experiments were conducted on the obtained ceramsite. The regulatory mechanisms of the ceramsite dosage and solution pH on its adsorption performance were revealed. The experiments show that as the ceramsite dosage increased from 2.1 g/L to 9.6 g/L, the adsorption capacities of ammonia–nitrogen and phosphorus decreased from 0.4521 mg/g and 0.4280 mg/g to 0.1430 mg/g and 0.1819 mg/g, respectively, while the removal rates increased to 68.66% and 58.22%, respectively. This indicates that the competition between the utilization efficiency of adsorption sites and the mass-transfer limitation between particles dominates this process. An analysis of the pH effect reveals that the adsorption of ammonia–nitrogen reached a peak at pH = 10 (adsorption capacity of 0.4429 mg/g and removal rate of 81.58%), while the optimal adsorption of phosphorus occurred at pH = 7 (adsorption capacity of 0.3446 mg/g and removal rate of 86.40%). This phenomenon is closely related to the interaction between the existing forms of pollutants and the surface charge. Kinetic and thermodynamic studies show that the pseudo-second-order kinetic model (R2 > 0.99) and the Langmuir isothermal model can accurately describe the adsorption behavior of the ceramsite for ammonia–nitrogen and phosphorus, confirming that the adsorption is dominated by a monolayer chemical adsorption mechanism. This study explores the dosage–efficiency relationship and pH response mechanism of Fe2O3-catalyzed porous ceramsite for nitrogen and phosphorus adsorption, revealing the interface reaction pathway dominated by Fe2O3 catalysis and chemical adsorption. It provides theoretical support for the construction of porous ceramsite and the development of an efficient technology system for the synergistic removal of nitrogen and phosphorus. Full article
Show Figures

Graphical abstract

15 pages, 7728 KiB  
Article
Integrated Application of Transcriptomics and Metabolomics Provides Insights into the Different Body-Size Growth in Chinese Mitten Crab (Eriocheir sinensis)
by Silu Che, Jiancao Gao, Haojun Zhu, Jinliang Du, Liping Cao, Yao Zheng, Gangchun Xu and Bo Liu
Int. J. Mol. Sci. 2025, 26(10), 4617; https://doi.org/10.3390/ijms26104617 - 12 May 2025
Viewed by 574
Abstract
The Chinese mitten crab, Eriocheir sinensis, is a water-dwelling crustacean that is widely distributed in northern hemisphere water systems. Body size is one of the crucial indicators determining the economic value of E. sinensis. However, research on the genetic basis and [...] Read more.
The Chinese mitten crab, Eriocheir sinensis, is a water-dwelling crustacean that is widely distributed in northern hemisphere water systems. Body size is one of the crucial indicators determining the economic value of E. sinensis. However, research on the genetic basis and regulatory mechanisms of body size in this species is limited, with only a few relevant genes reported. Therefore, it is imperative to investigate the regulatory pathways associated with its growth. This study first utilized transcriptomic profiling and metabolomic sequencing to construct gene expression profiles and metabolite profiles of E. sinensis of different body sizes. Subsequently, through integrated omics analysis, the key genes and regulatory pathways involved in controlling the growth and size of crabs were preliminarily identified. This study found that larger female crabs exhibited significantly enhanced digestive functions, primarily reflected in the upregulation of trypsin-1 expression, suggesting its potentially pivotal role in regulating the growth and development of crabs. Interestingly, a variety of tissue-specific proteins such as APOLPP, RICK A, AGMO, and NEPHRIN, as well as REXO1L1P and ZCCHC24, indirectly influence the growth and development of crabs through their respective functional pathways. In addition, the key KEGG pathways, such as ECM–receptor interaction, cell adhesion, and the PI3K-Akt signaling pathway, were revealed to play central roles in the growth regulation of E. sinensis. These findings expand our understanding of the growth regulation mechanisms in crustaceans and offer potential molecular targets for body-size improvement in aquaculture. Full article
(This article belongs to the Special Issue Recent Advances in Crustacean Aquaculture)
Show Figures

Figure 1

19 pages, 8359 KiB  
Article
Driving Effects of Coal Mining Activities on Microbial Communities and Hydrochemical Characteristics in Different Zones
by Zongkui Zhu, Yating Gao, Li Zhang and Yajun Sun
Sustainability 2025, 17(9), 4000; https://doi.org/10.3390/su17094000 - 29 Apr 2025
Viewed by 350
Abstract
Elucidating the microbial–hydrochemical interactions in distinct functional zones of coal mines holds significant implications for groundwater pollution mitigation strategies in mining regions. Taking Xinji No. 2 Coal Mine as an example, 15 water samples (including surface water, goaf water, sump water, working face [...] Read more.
Elucidating the microbial–hydrochemical interactions in distinct functional zones of coal mines holds significant implications for groundwater pollution mitigation strategies in mining regions. Taking Xinji No. 2 Coal Mine as an example, 15 water samples (including surface water, goaf water, sump water, working face drainage, rock roadway water, and coal roadway water) were collected from six surface and underground areas for hydrochemical and microbial detection analysis. The results show that bacterial genera such as Exiguobacterium and Mycobacterium cannot adapt to high-salinity environments with elevated K+ + Na+ concentrations, showing negative correlation with TDS. Microbial communities related to sulfate serve as important indicators for microbial technology-based pollution control in coal mine groundwater, where sulfate-reducing bacteria (e.g., norank_f__Desulfuromonadaceae) can reduce SO42− concentrations and improve mine water quality. Low dissolved oxygen (DO) concentrations lead to decreased abundance of aerobic microorganisms, hindering the formation of stable microbial communities in mines. Affected by mine water quality, the confluence of mine drainage into rivers results in HCO3 and SO42− concentrations at the confluence being higher than upstream, which gradually return to upstream concentrations after entering the downstream. However, due to the influx of nitrogen cycle-related bacteria and organic matter from mine water into surface water, increased microbial physiological activities and carbon sources cause NO3 concentrations to increase more than tenfold. The formation stages of mine water quality exhibit regional characteristics, with goaf areas showing distinct hydrochemical components and microbial communities compared to other zones. Based on this research, new microbial approaches for groundwater pollution control in coal mining areas are proposed: (1) selecting and cultivating functional microorganisms (such as SRB and organic matter-degrading bacteria) to develop biological materials for mine water remediation; (2) regulating the transformation of elements by adjusting carbon sources and oxygen supply according to indigenous microbial requirements, thereby reducing pollutant concentrations in water bodies. Full article
Show Figures

Figure 1

17 pages, 3587 KiB  
Article
Volvariella volvacea Polypeptide Mitigates Alcohol-Induced Liver Injury: A Multi-Omics Study
by Bingzhi Chen, Juanqin Chen, Huihua Wu, Fangyi Zhang, Lili Chen, Weibin Zhang, Jing Yang, Li Yuan, Yuji Jiang and Youjin Deng
Foods 2025, 14(9), 1557; https://doi.org/10.3390/foods14091557 - 29 Apr 2025
Viewed by 542
Abstract
This study investigated the hepatoprotective mechanisms of Volvariella volvacea fruiting body polypeptide (VVFP, 1–3 kDa) against acute alcohol-induced liver injury using multi-omics approaches. Male ICR mice pretreated with VVFP (100–400 mg/kg) showed significantly prolonged alcohol tolerance latency (p < 0.05) and accelerated [...] Read more.
This study investigated the hepatoprotective mechanisms of Volvariella volvacea fruiting body polypeptide (VVFP, 1–3 kDa) against acute alcohol-induced liver injury using multi-omics approaches. Male ICR mice pretreated with VVFP (100–400 mg/kg) showed significantly prolonged alcohol tolerance latency (p < 0.05) and accelerated sobriety recovery compared to controls. Integrated transcriptomics and metabolomics revealed VVFP’s dual regulatory effects: (1) transcriptional regulation of 36 endoplasmic reticulum stress genes (e.g., ERP57, Derl) through protein processing pathways (KEGG:04141), and (2) metabolic modulation of 23 hepatic metabolites, particularly phosphatidylcholines and organic acids, via amino acid biosynthesis and glycerophospholipid metabolism. Cross-omics analysis identified eight coregulated genes (Got1, Arg2, Srm, etc.) interacting with key metabolites (4-guanidinobutyric acid, GABA) through linoleic acid metabolism. These findings demonstrate VVFP’s therapeutic potential as a functional food ingredient by highlighting its ability to simultaneously target hepatic stress responses and metabolic homeostasis during alcohol detoxification. Full article
Show Figures

Figure 1

19 pages, 16029 KiB  
Article
Antibiotic Cocktail Exacerbates Esomeprazole-Induced Intestinal Dysmotility While Ameliorating Gastric Dyspepsia in Mice
by Jing-Hua Wang, Song-Yi Han, Kyungjae Lee, Uijeong Han, Si-Kyung Cho and Hojun Kim
Antibiotics 2025, 14(5), 442; https://doi.org/10.3390/antibiotics14050442 - 27 Apr 2025
Viewed by 652
Abstract
Background/Objectives: Esomeprazole, a proton pump inhibitor (PPI), is commonly prescribed for gastric-acid-related disorders but has been associated with impaired gastrointestinal (GI) motility with long-term use. However, the effect of concurrent antibiotic administration on this dysfunction remains unclear. Therefore, this study aimed to investigate [...] Read more.
Background/Objectives: Esomeprazole, a proton pump inhibitor (PPI), is commonly prescribed for gastric-acid-related disorders but has been associated with impaired gastrointestinal (GI) motility with long-term use. However, the effect of concurrent antibiotic administration on this dysfunction remains unclear. Therefore, this study aimed to investigate the effects of antibiotics on esomeprazole-induced GI motility dysfunction and explore the underlying mechanisms in a mouse model. Methods: Male C57BL/6 mice were orally administered esomeprazole (160 mg/kg) five times per week for 4 weeks. Three days before initiating esomeprazole treatment, a broad-spectrum antibiotic cocktail (ABX) consisting of ampicillin (1 g/kg), neomycin (1 g/kg), metronidazole (1 g/kg), and vancomycin (0.5 g/kg) was provided in drinking water and maintained throughout the experimental period. Mosapride (3 mg/kg), a prokinetic agent, was used as a positive control. Results: Neither esomeprazole alone nor in combination with ABX affected body weight or food intake. Compared to normal controls, esomeprazole treatment significantly delayed both intestinal transit and gastric emptying. However, ABX co-administration further pronounced intestinal transit time and improved gastric motility. The potential mechanisms may involve interactions among gastric H+/K+-ATPase, CYP3A11, gastrointestinal hormones (secretin and motilin), and the gut microbiome. Conclusions: Long-term esomeprazole use can impair both gastric and intestinal motility, and ABX co-treatment further exacerbates intestinal transit delay while paradoxically enhancing gastric emptying. These findings highlight the critical role of the gut microbiota in esomeprazole-induced GI motility dysfunction and suggest that antibiotic use should be approached with caution, particularly when combined with PPI therapy. Full article
Show Figures

Figure 1

33 pages, 2532 KiB  
Review
Quitting Your Day Job in Response to Stress: Cell Survival and Cell Death Require Secondary Cytoplasmic Roles of Cyclin C and Med13
by Justin R. Bauer, Tamaraty L. Robinson, Randy Strich and Katrina F. Cooper
Cells 2025, 14(9), 636; https://doi.org/10.3390/cells14090636 - 25 Apr 2025
Cited by 1 | Viewed by 1050
Abstract
Following unfavorable environmental cues, cells reprogram pathways that govern transcription, translation, and protein degradation systems. This reprogramming is essential to restore homeostasis or commit to cell death. This review focuses on the secondary roles of two nuclear transcriptional regulators, cyclin C and Med13, [...] Read more.
Following unfavorable environmental cues, cells reprogram pathways that govern transcription, translation, and protein degradation systems. This reprogramming is essential to restore homeostasis or commit to cell death. This review focuses on the secondary roles of two nuclear transcriptional regulators, cyclin C and Med13, which play key roles in this decision process. Both proteins are members of the Mediator kinase module (MKM) of the Mediator complex, which, under normal physiological conditions, positively and negatively regulates a subset of stress response genes. However, cyclin C and Med13 translocate to the cytoplasm following cell death or cell survival cues, interacting with a host of cell death and cell survival proteins, respectively. In the cytoplasm, cyclin C is required for stress-induced mitochondrial hyperfission and promotes regulated cell death pathways. Cytoplasmic Med13 stimulates the stress-induced assembly of processing bodies (P-bodies) and is required for the autophagic degradation of a subset of P-body assembly factors by cargo hitchhiking autophagy. This review focuses on these secondary, a.k.a. “night jobs” of cyclin C and Med13, outlining the importance of these secondary functions in maintaining cellular homeostasis following stress. Full article
(This article belongs to the Collection Feature Papers in Autophagy)
Show Figures

Graphical abstract

30 pages, 13376 KiB  
Article
Numerical Study of the Basic Finner Model in Rolling Motion
by Ionuț Bunescu, Mihai-Vlăduț Hothazie, Mihăiță-Gilbert Stoican, Mihai-Victor Pricop, Alexandru-Iulian Onel and Tudorel-Petronel Afilipoae
Aerospace 2025, 12(5), 371; https://doi.org/10.3390/aerospace12050371 - 24 Apr 2025
Cited by 1 | Viewed by 399
Abstract
A numerical investigation of the roll motion characteristics of the Basic Finner Model was performed. The study of roll motion is essential in the design and performance evaluation of aerospace vehicles, particularly for stability and maneuverability purposes. The numerical investigation was conducted employing [...] Read more.
A numerical investigation of the roll motion characteristics of the Basic Finner Model was performed. The study of roll motion is essential in the design and performance evaluation of aerospace vehicles, particularly for stability and maneuverability purposes. The numerical investigation was conducted employing the Unsteady Reynolds-Averaged Navier-Stokes (URANS) solver coupled with k-ε realizable turbulence model. The simulations were performed for a range of Mach numbers and angles of attack to assess the influence of these parameters on the model’s roll motion characteristics. The CFD procedure was validated based on an experimental database from previous work and the literature. The influence of roll motion on aerodynamic forces and moments at different flow conditions were analyzed to obtain a better understanding of the physics. The variation of forces and moments with roll angle, Mach number, and angle of attack, as well as the pressure distribution at different flow conditions, are discussed, also covering aerodynamic interactions between the fins and body. This numerical investigation contributes to understanding the aerodynamic behavior of the Basic Finner Model during roll motion. The findings are valuable for the design and optimization of aerospace vehicles, aiding in the development of more efficient and stable configurations. Future research can be based upon these results to explore additional factors that may impact roll motion characteristics and can further refine the design and performance evaluation processes for aerospace vehicles. Full article
Show Figures

Figure 1

19 pages, 11511 KiB  
Article
Numerical Study on the Influence of Catamaran Hull Arrangement and Demihull Angle on Calm Water Resistance
by Sumin Guo, Xianhe Yang, Hongyu Li, Weizhuang Ma, Qunhong Tian, Qingfeng Ma, Xin Su and Zongsheng Wang
J. Mar. Sci. Eng. 2025, 13(4), 815; https://doi.org/10.3390/jmse13040815 - 19 Apr 2025
Viewed by 553
Abstract
This study investigates the WAM-V (Wave Adaptive Modular Vessel) catamaran configuration, focusing on the hydrodynamic interaction between its articulated hulls. The unique hinged connection mechanism induces a relative angular displacement between the demihulls during operation, significantly modifying the calm water resistance characteristics. Such [...] Read more.
This study investigates the WAM-V (Wave Adaptive Modular Vessel) catamaran configuration, focusing on the hydrodynamic interaction between its articulated hulls. The unique hinged connection mechanism induces a relative angular displacement between the demihulls during operation, significantly modifying the calm water resistance characteristics. Such resistance variations critically influence both vessel maneuverability and the operational effectiveness of onboard acoustic detection systems. This study using computational fluid dynamics (CFD) technology, the effects of varying demihull spacing and the angles of the demihulls on resistance were calculated. Numerical simulations were performed using STAR-CCM+, employing the Reynolds-averaged Navier–Stokes equations (RANS) method combined with the k-epsilon turbulence model. The study investigates the free surface and double body viscous flow at different Froude numbers in the range of 0.3 to 0.75. The analysis focuses on the effects of the demihull spacing ratio (BS/LPP, Demihull spacing/Length between perpendiculars) on calm water resistance. Specifically, the resistance coefficient at BS/LPP = 0.2 is on average 14% higher than that at BS/LPP = 0.5. Additionally, the influence of demihull angles on resistance was simulated at BS/LPP = 0.42. The results indicate that inner demihull angles result in higher resistance compared to outer angles, with the maximum increase in resistance being approximately 9%, with specific outer angles effectively reducing resistance. This study provides a scientific basis for optimizing catamaran design and offers valuable insights for enhancing sailing performance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 4948 KiB  
Article
Five-Cavity Resonance Inspired, rGO Nano-Sheet Reinforced, Multi-Site Voice Synergetic Detection Hydrogel Sensors with Diverse Self-Adhesion and Robust Wireless Transmissibility
by Yue Wu, Kewei Zhao, Jingliu Wang, Chunhui Li, Xubao Jiang, Yudong Wang and Xiangling Gu
Gels 2025, 11(4), 233; https://doi.org/10.3390/gels11040233 - 23 Mar 2025
Cited by 1 | Viewed by 560
Abstract
The practical application of flexible sensors in sound detection is significantly hindered by challenges such as information isolation, fragmentation, and low fidelity. To address these challenges, this work developed a composite hydrogel via a one-pot method, employing polyvinyl alcohol (PVA) as the first [...] Read more.
The practical application of flexible sensors in sound detection is significantly hindered by challenges such as information isolation, fragmentation, and low fidelity. To address these challenges, this work developed a composite hydrogel via a one-pot method, employing polyvinyl alcohol (PVA) as the first network, polyacrylic acid (PAA) as the second network, and two-dimensional nanomaterials—reduced graphene oxide (rGO)—generated through the redox reaction of polydopamine (PDA) and graphene oxide (GO) as conductive fillers. The uniformly distributed rGO within the hydrogel forms an efficient conductive network, endowing the material with high sensitivity (GF = 0.64), excellent conductivity (8.15 S m−1), rapid response time (350 ms), and outstanding stability. The synergistic interaction between PDA and PAA modulates the hydrogel’s adhesion (0.89 kPa), enabling conformal attachment to skin surfaces. The designed rGO@PVA-PAA hydrogel-based flexible sensor effectively monitors vibrations across diverse frequencies originating from five vocal cavities (head, nasal, oral, laryngeal, and thoracic cavities) during singing. Integrated with multi-position synchronization and Bluetooth wireless sensing technologies, the system achieves coordinated and efficient monitoring of multiple vocal cavities. Furthermore, the hydrogel sensor demonstrates versatility in detecting physiological signals, including electrocardiograms, subtle vibrations, and multi-scale body movements, highlighting its broad applicability in biomedical and motion-sensing applications. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop