Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (242)

Search Parameters:
Keywords = juvenile hormones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1077 KiB  
Article
Expression of 15-PGDH Regulates Body Weight and Body Size by Targeting JH in Honeybees (Apis mellifera)
by Xinying Qu, Xinru Zhang, Hanbing Lu, Lingjun Xin, Ran Liu and Xiao Chen
Life 2025, 15(8), 1230; https://doi.org/10.3390/life15081230 - 3 Aug 2025
Viewed by 136
Abstract
Honeybees (Apis mellifera) are pollinators for most crops in nature and a core species for the production of bee products. Body size and body weight are crucial breeding traits, as colonies possessing individuals with large body weight tend to be healthier [...] Read more.
Honeybees (Apis mellifera) are pollinators for most crops in nature and a core species for the production of bee products. Body size and body weight are crucial breeding traits, as colonies possessing individuals with large body weight tend to be healthier and exhibit high productivity. In this study, small interfering RNA (siRNA) targeting 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) was incorporated into the feed for feeding worker bee larvae, thereby achieving the silencing of this gene’s expression. The research further analyzed the impact of the RNA expression level of the 15-PGDH gene on the juvenile hormone (JH) titer and its subsequent effects on the body weight and size of worker bees. The results show that inhibiting the expression of 15-PGDH in larvae could significantly increase JH titer, which in turn led to an increase in the body weight of worker bees (1.13-fold higher than that of the control group reared under normal conditions (CK group); p < 0.01; SE: 7.85) and a significant extension in femur (1.08-fold longer than that of the CK group; p < 0.01; SE: 0.18). This study confirms that 15-PGDH can serve as a molecular marker related to body weight and size in honey bees, providing an important basis for molecular marker-assisted selection in honey bee breeding. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

13 pages, 2838 KiB  
Article
Differential Effects of Two Herbivore-Induced Plant Volatiles on the Oviposition of Chilo suppressalis
by Xiaowei Yang, Chang Liu, Xixi Jia, Chen Zhang, Lanzhi Han, Wanlun Cai and Yunhe Li
Plants 2025, 14(15), 2384; https://doi.org/10.3390/plants14152384 - 2 Aug 2025
Viewed by 229
Abstract
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert [...] Read more.
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert opposing effects on the reproduction of Chilo suppressalis, a major rice pest. While both volatiles repelled adults, α-cedrene unexpectedly enhanced oviposition, whereas 2-heptanol significantly suppressed egg laying. To examine these effects, we conducted oviposition assays, preoviposition and longevity tests, combined with qPCR and transcriptome analyses to explore underlying molecular responses. Mechanistically, α-cedrene upregulated Kr-h1, a gene linked to juvenile hormone signaling and vitellogenesis, promoting reproductive investment. Transcriptomic profiling revealed divergent molecular responses: α-cedrene activated reproductive pathways, whereas 2-heptanol induced stress- and immune-related genes, suggesting a trade-off between stress defense and reproduction. These findings demonstrate that HIPVs can exert compound-specific reproductive effects beyond repellency. This work fills a key knowledge gap and highlights the potential of HIPVs as precision tools in pest management strategies that exploit behavioral and physiological vulnerabilities beyond repellency. Full article
Show Figures

Figure 1

14 pages, 3308 KiB  
Article
Dietary Sodium Butyrate Supplementation Enhances Silkworm Silk Yield by Simultaneously Promoting Larval Growth and Silk Gland Development
by Xiaoxiao Ren, Xingjiang He, Zhanfeng Ye, Zhuo Qing, Wanjun Yang, Chaobin Luo and Dan Xing
Insects 2025, 16(8), 761; https://doi.org/10.3390/insects16080761 - 24 Jul 2025
Viewed by 308
Abstract
Silk yield enhancement in sericulture has plateaued. Sodium butyrate (NaB) is known to improve production performance in livestock and poultry, yet its effects on silkworm silk yield remain uncharacterized. Here, we evaluated the impact of dietary NaB supplementation on silkworm growth, silk gland [...] Read more.
Silk yield enhancement in sericulture has plateaued. Sodium butyrate (NaB) is known to improve production performance in livestock and poultry, yet its effects on silkworm silk yield remain uncharacterized. Here, we evaluated the impact of dietary NaB supplementation on silkworm growth, silk gland development, and cocoon output. Mulberry leaves were immersed in NaB solutions at concentrations of 0, 2.5, 5, 10, 20, 40, or 80 mM, and subsequently provided as feed to third- to fifth-instar larvae. Among these, 10 mM NaB treatment most effectively promoted larval and pupal weight gain and increased food intake. Phenotypic and economic trait analyses revealed that 10 mM NaB treatment significantly enlarged the silk gland and boosted overall silk yield. Mechanistically, NaB enhanced body growth by increasing feeding intake and influencing the juvenile hormone and ecdysteroid signaling pathways; moreover, it promoted DNA replication in silk gland cells, thereby influencing silk gland development. Taken together, our findings demonstrate that dietary supplementation with an appropriate concentration of NaB concurrently enhances body growth and silk gland development, leading to higher silk production, and underscore the potential of short-chain fatty acid salts in advancing sericulture. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

14 pages, 1508 KiB  
Article
Effects of Trehalase on the Gene Expression of the Reproductive Regulation Pathway Network and Triglyceride Metabolism in Nilaparvata lugens (Stål)
by Bin Tang, Yuxin Ge, Yongkang Liu, Liwen Guan, Ye Han, Yang Zhu, Gao Hu and Yan Wu
Insects 2025, 16(7), 725; https://doi.org/10.3390/insects16070725 - 16 Jul 2025
Viewed by 389
Abstract
The high reproductive performance of Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is one of the key factors contributing to its serious damage. Studies have demonstrated that trehalose hydrolysis, catalyzed by trehalase (TRE), plays an important role in the reproductive regulation of N. lugens. [...] Read more.
The high reproductive performance of Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is one of the key factors contributing to its serious damage. Studies have demonstrated that trehalose hydrolysis, catalyzed by trehalase (TRE), plays an important role in the reproductive regulation of N. lugens. However, it remains unclear how TRE regulates the reproduction of N. lugens. To address this question, the current study was designed to investigate the effects of TRE on the reproductive regulatory network of N. lugens. Specifically, RNA interference (RNAi) was conducted by injecting double-stranded RNA (dsRNA) targeting the TRE genes, and a trehalase inhibitor, validamycin, was used to suppress TRE activity. Subsequently, the relative expression levels of key genes involved in the reproductive regulatory pathway, as well as the triglyceride content in the fat body and ovary, were determined. The results indicated that both dsTREs and validamycin treatment decreased the relative expression of Vitellogenin (Vg) without affecting the expression of its receptor, VgR. However, their impact on the reproductive regulatory network differed: dsTREs injection did not affect the relative expression of JHAMT and Met in the juvenile hormone signaling pathway, but resulted in the upregulation of USP and TOR, and inhibition of InR2 and S6K. In contrast, validamycin injection inhibited the expression of Met, USP, EcR, InR1, TOR, and S6K. Both dsTREs and validamycin inhibited the expression of Fas, but only validamycin decreased the ovarian triglyceride content. These findings suggest that the inhibition of TRE leads to alterations in reproductive regulatory signals, thereby reducing the reproductive capacity of N. lugens. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

19 pages, 6101 KiB  
Article
A High-Calorie Diet Aggravates Lipopolysaccharide-Induced Pulmonary Inflammation in Juvenile Rats via Hypothalamic-Pituitary-Adrenal Axis-Related Pathways
by Qianqian Li, Hui Liu, Chen Bai, Lin Jiang, Chen Su, Xueying Qin, Tiegang Liu and Xiaohong Gu
Int. J. Mol. Sci. 2025, 26(14), 6554; https://doi.org/10.3390/ijms26146554 - 8 Jul 2025
Viewed by 304
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays an important regulatory role in inflammatory responses to systemic or local infection in the host. A high-calorie diet, which can aggravate pediatric pneumonia and delay recovery, is intimately associated with HPA axis disorder; however, its underlying mechanisms remain [...] Read more.
The hypothalamic-pituitary-adrenal (HPA) axis plays an important regulatory role in inflammatory responses to systemic or local infection in the host. A high-calorie diet, which can aggravate pediatric pneumonia and delay recovery, is intimately associated with HPA axis disorder; however, its underlying mechanisms remain unknown. This study examined whether the mechanism by which a high-calorie diet aggravates pneumonia is related to HPA axis disorder. In this study, juvenile rats were fed a high-calorie diet and/or nebulized with lipopolysaccharide (LPS) for model construction. Our data shows that a high-calorie diet increases interleukin-1 beta(IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels in lung tissues and aggravates LPS-induced inflammatory injury in the lungs of juvenile rats. Additionally, we found that a high-calorie diet decreases the expression level of serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in juvenile rats with pneumonia, resulting in HPA axis disorder. Hypothalamus proteomics and Western blot results proved that a high-calorie diet upregulated the expression level of hypothalamus hypoxia-inducible factor-1 alpha (HIF-1α) in juvenile rats with pneumonia, and this mechanism is associated with reduced HIF-1α ubiquitination. We further observed that HPA axis disorder was significantly abated and inflammatory damage in rat lung tissues was significantly alleviated after in vivo HIF-1α pathway inhibition. This shows that pneumonia aggravation by a high-calorie diet is associated with interference in the HIF-1α-mediated HPA axis. A high-calorie diet boosts HIF-1α signaling in the hypothalamus and exacerbates LPS-induced pneumonia by disrupting the HPA axis. This sheds light on lung inflammation and strengthens the lung-brain connection. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 2576 KiB  
Article
A Maternal Gene Regulator CPEB2 Is Involved in Mating-Induced Egg Maturation in the Cnaphalocrocis medinalis
by Yi Duan, Yueran Xiao, Guo Cai, Kepeng Wang, Chenfan Zhao and Pengcheng Liu
Insects 2025, 16(7), 666; https://doi.org/10.3390/insects16070666 - 26 Jun 2025
Viewed by 403
Abstract
Cytoplasmic polyadenylation element-binding proteins (CPEBs) are critical regulators of maternal mRNA translation during oogenesis, yet their roles in insect reproduction remain underexplored. Here, we characterized CmCPEB2, a CPEB homolog in the rice leaf roller Cnaphalocrocis medinalis, a destructive lepidopteran pest insect, and [...] Read more.
Cytoplasmic polyadenylation element-binding proteins (CPEBs) are critical regulators of maternal mRNA translation during oogenesis, yet their roles in insect reproduction remain underexplored. Here, we characterized CmCPEB2, a CPEB homolog in the rice leaf roller Cnaphalocrocis medinalis, a destructive lepidopteran pest insect, and elucidated its role in mating-induced oviposition. The CmCPEB2 protein harbored conserved RNA recognition motifs and a ZZ-type zinc finger domain and was phylogenetically clustered with lepidopteran orthologs. Spatiotemporal expression profiling revealed CmCPEB2 was predominantly expressed in ovaries post-mating, peaking at 12 h with a 6.75-fold increase in transcript levels. Liposome-mediated RNA interference targeting CmCPEB2 resulted in a 52% reduction in transcript abundance, leading to significant defects in ovarian maturation, diminished vitellogenin deposition, and a 36.7% decline in fecundity. The transcriptomic analysis of RNAi-treated ovaries identified 512 differentially expressed genes, with downregulated genes enriched in chorion formation and epithelial cell development. Tissue culture-based hormonal assays demonstrated the juvenile hormone-dependent regulation of CmCPEB2, as JH treatment induced its transcription, while knockdown of the JH-responsive transcription factor CmKr-h1 in the moths suppressed CmCPEB2 expression post-mating. These findings established CmCPEB2 as a juvenile hormone-dependent regulator of mating-induced oviposition that orchestrates vitellogenesis through yolk protein synthesis and ovarian deposition and choriogenesis via transcriptional control of chorion-related genes. This study provides novel evidence of CPEB2-mediated reproductive regulation in Lepidoptera, highlighting its dual role in nutrient allocation and structural eggshell formation during insect oogenesis and oviposition. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

27 pages, 12102 KiB  
Article
Genome Annotation of Molting-Related Protein-Coding Genes in Propsilocerus akamusi Reveals Transcriptomic Responses to Heavy Metal Contamination
by Wenbin Liu, Anmo Zhou, Ziming Shao, Jiaxin Nie, Chuncai Yan, Shaobo Gao and Yiwen Wang
Insects 2025, 16(6), 636; https://doi.org/10.3390/insects16060636 - 17 Jun 2025
Viewed by 719
Abstract
The exoskeleton of insects, known as the cuticle, necessitates regular renewal during molting and metamorphosis, with chitin being its primary structural component. Consequently, the molting and metamorphosis processes in insects are characterized by periodic degradation and synthesis of chitin, which are tightly regulated [...] Read more.
The exoskeleton of insects, known as the cuticle, necessitates regular renewal during molting and metamorphosis, with chitin being its primary structural component. Consequently, the molting and metamorphosis processes in insects are characterized by periodic degradation and synthesis of chitin, which are tightly regulated by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Propsilocerus akamusi, a species that plays a crucial role in freshwater ecosystems, demonstrates remarkable resilience to environmental pollutants, including metallic elements found in industrial waste. In this investigation, we systematically analyzed and summarized the metabolic pathways associated with JH, 20E, chitin, and heavy metal transport in P. akamusi. Based on previous genome assembly, we conducted a systematic annotation and functional analysis of genes involved in these metabolic pathways in P. akamusi. This was achieved by querying conserved domains using Pfam and SMART, as well as identifying gene-specific classical consensus regions through amino acid sequence alignment using DNAMAN. Through our validation, a total of 109 genes were definitively categorized into four distinct metabolic pathways: 27 genes were involved in the JH metabolic pathway, 24 in the 20E metabolic pathway, 27 in the chitin metabolic pathway, and 31 in metal transport pathways. A total of 30 genes failed our validation and were temporarily excluded. Furthermore, through RNA sequencing (RNA-seq)-based transcriptome analysis, we observed that under copper (Cu) stress, the expression levels of the majority of genes participating in these metabolic pathways in P. akamusi were altered. This finding suggests that copper exposure influences the molting process in P. akamusi. Full article
(This article belongs to the Special Issue Aquatic Insects Biodiversity and eDNA Monitoring)
Show Figures

Figure 1

16 pages, 3031 KiB  
Article
Histopathological and Transcriptional Changes in Silkworm Larval Gonads in Response to Chlorfenapyr Exposure
by Tao Li, Changxiong Hu, Zenghu Liu, Qiongyan Li, Yonghui Fan, Pengfei Liao, Min Liu, Weike Yang, Xingxing Li and Zhanpeng Dong
Insects 2025, 16(6), 619; https://doi.org/10.3390/insects16060619 - 11 Jun 2025
Viewed by 1236
Abstract
Chlorfenapyr is a widely used insecticide known to harm non-target insects, but its effects on reproductive development in the silkworm (Bombyx mori L.) remain incompletely understood. In this study, we investigated the histopathological and transcriptional changes in the gonads (ovaries and testes) [...] Read more.
Chlorfenapyr is a widely used insecticide known to harm non-target insects, but its effects on reproductive development in the silkworm (Bombyx mori L.) remain incompletely understood. In this study, we investigated the histopathological and transcriptional changes in the gonads (ovaries and testes) of newly molted fifth-instar silkworm larvae exposed to chlorfenapyr. Histopathological analysis revealed delayed gonadal development, a reduction in oogonia and oocytes in the ovaries, and decreased numbers of spermatocytes in the testes. Transcriptome analysis identified significant differentially expressed genes (DEGs), mainly enriched in pathways such as “Drug metabolism—cytochrome P450”, “Insect hormone biosynthesis”, and “Ribosome”. Key up-regulated genes included members of the cytochrome P450 family (CYP6B5, CYP9f2, CYP6B6), glutathione S-transferases (GSTT1, GST1), and juvenile hormone-related enzymes (JHAMT, JHEH), indicating active detoxification and hormonal regulation responses. Several transcription factor families, particularly C2H2, HB-other, and TRAF, exhibited altered expression, suggesting roles in stress adaptation. Protein–protein interaction (PPI) network analysis identified hub genes such as EcR, Kr-h1, and various ribosomal proteins, highlighting their potential involvement in reproductive development. Quantitative PCR (qPCR) validated the transcriptomic data, confirming the reliability of the results. Overall, these findings enhance our understanding of chlorfenapyr’s impact on silkworm reproductive development and the underlying molecular mechanisms, providing valuable insights for sustainable pest management and ecological risk assessment of insecticides. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

11 pages, 3785 KiB  
Article
Sesquiterpenoid Hormones Farnesoic Acid and Methyl Farnesoate Regulate Different Gene Sets in Shrimp Neocaridina davidi Hepatopancreas
by Yehui Luan, Wenyan Nong, Wai Lok So and Jerome Ho Lam Hui
Biomolecules 2025, 15(6), 815; https://doi.org/10.3390/biom15060815 - 4 Jun 2025
Viewed by 559
Abstract
Sesquiterpenoid hormones such as the juvenile hormone and methyl farnesoate (MF) are well known to respectively control the development and reproduction in insects and crustaceans (such as shrimp, crabs, and lobsters). In recent years, the sesquiterpenoid hormone farnesoic acid (FA) has also been [...] Read more.
Sesquiterpenoid hormones such as the juvenile hormone and methyl farnesoate (MF) are well known to respectively control the development and reproduction in insects and crustaceans (such as shrimp, crabs, and lobsters). In recent years, the sesquiterpenoid hormone farnesoic acid (FA) has also been identified in other non-insect/crustacean invertebrates; despite this, their regulatory roles remain poorly understood. Here, we carried out the in vitro treatments of MF and FA on the hepatopancreas of female adult shrimps Neocaridina davidi. Transcriptomic analyses revealed a total of 65 and 112 differentially expressed genes in the MF- and FA-treated hepatopancreas at 3 h post-treatment, respectively. Gene pathway enrichment analyses further suggested that the two sesquiterpenoid hormones regulate different sets of genes, with the gene pathway involved in pancreatic secretion enriched only in the FA-treated hepatopancreas. This study demonstrates the differential regulatory roles between sesquiterpenoid forms, which warrants further investigation into the functions of FA in crustaceans. Full article
Show Figures

Figure 1

20 pages, 2142 KiB  
Article
Roles of a Y-Linked iDmrt1 Paralogue and Insulin-like Androgenic Gland Hormone in Sexual Development in the Tropical Rock Lobster, Panulirus ornatus
by Ai Hang Tran Nguyen, Jihye Yoon, Wenyan Nong, Susan Glendinning, Quinn P. Fitzgibbon, Gregory G. Smith, Jerome H. L. Hui, Ka Hou Chu, Volker Herzig and Tomer Ventura
Int. J. Mol. Sci. 2025, 26(11), 5149; https://doi.org/10.3390/ijms26115149 - 27 May 2025
Viewed by 623
Abstract
Understanding the mechanisms of sexual development would pave the way for producing mono-sex populations to aid the aquaculture industry. This study investigates the functions of the Y-linked iDmrt1 paralogue (Po-iDMY) and insulin-like androgenic gland hormone (Po-IAG) in the process of sexual development [...] Read more.
Understanding the mechanisms of sexual development would pave the way for producing mono-sex populations to aid the aquaculture industry. This study investigates the functions of the Y-linked iDmrt1 paralogue (Po-iDMY) and insulin-like androgenic gland hormone (Po-IAG) in the process of sexual development in the tropical rock lobster, Panulirus ornatus (TRL). Previously, we identified that Po-iDMY, a male-specific heterogametic (Y-linked) paralogue of the autosomal Po-iDmrt1 found in TRL, is a second sex-linked iDmrt gene identified in invertebrates. Using 5′ and 3′ rapid amplification of cDNA ends and data from a draft male genome (with an assembly genome size of approximately 2.446 Gbp and 87% BUSCO completeness), we obtained the full-length Po-iDMY gene (encoding a protein of 312 amino acids). A 411 bp male-specific sequence located at the 3′ untranslated region of Po-iDMY mRNA was used as a sex marker, which was reported for the first time in our draft genome. However, Po-iDMY is not a master sex-determining factor since it was not expressed across developmental stages of embryos, juveniles and adults. Instead, we silenced Po-IAG at an early juvenile stage, generating two potential neo-females, implying that sexual manipulation could be a promising technique in TRL. Full article
(This article belongs to the Special Issue Recent Advances in Crustacean Aquaculture)
Show Figures

Figure 1

18 pages, 9829 KiB  
Article
Effects of Methyl Farnesoate on the Growth and Antioxidant Capacity of Neocaridina denticulata
by Ying Chen, Xiaojuan Sun, Jiahao Du, Jingjie Hu, Zhenmin Bao and Zhe Qu
Antioxidants 2025, 14(6), 635; https://doi.org/10.3390/antiox14060635 - 25 May 2025
Viewed by 649
Abstract
Sesquiterpenoid hormones are widely present in arthropods and play crucial roles in growth, molting and reproduction. Methyl farnesoate (MF) functions similarly to juvenile hormone (JH) in crustaceans, playing a broad regulatory role in their growth and development. However, compared to insects, systematic studies [...] Read more.
Sesquiterpenoid hormones are widely present in arthropods and play crucial roles in growth, molting and reproduction. Methyl farnesoate (MF) functions similarly to juvenile hormone (JH) in crustaceans, playing a broad regulatory role in their growth and development. However, compared to insects, systematic studies on the mechanisms of sesquiterpenoid hormones in crustaceans are still lacking. Neocaridina denticulata, a small freshwater shrimp known for its fast growth, high reproductive capacity and ease of maintenance, is an ideal model organism for crustacean research. To investigate the effects of MF on the growth and development of juvenile N. denticulata, MF feeding experiments were conducted and the changes at the phenotypic and molecular levels were examined. In this experiment, the basal diet was used as a control, with 40 μg/kg, 4 μg/kg and 0.4 μg/kg of MF added to the feed. The MF-enriched diets were fed to juvenile N. denticulata and the growth in body length was measured every 10 days. After 40 days of feeding experiment, the activities of amylase (AMS), lipase (LPS), trypsin (Try), superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-PX) were assessed, and transcriptome analysis was performed. We found that MF showed an initial inhibitory effect on body length (day 30), but by day 40, the low-concentration group exhibited significantly enhanced growth compared to the control, indicating a dose- and time-dependent effect. Activities of AMS, LPS, Try and SOD generally decreased, whereas MDA levels and GSH-PX activity increased after 40 days of MF exposure. Moreover, transcriptomic analysis revealed that MF regulated various biological processes including growth, metabolism and immune responses. High concentration group appeared to restrict growth via modulation of exoskeleton-related and cellular stress genes. Medium concentration group enhanced growth by optimizing metabolic and signaling pathways. Low concentration group preferentially up-regulated genes related to muscle function, potentially supporting locomotion and competitive ability. This study provides new insights into the regulatory mechanism of sesquiterpenoid hormones in crustaceans and their potential applications in aquaculture in the future. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Aquaculture)
Show Figures

Figure 1

15 pages, 1830 KiB  
Article
Reproduction and Wing Differentiation of Gynoparae Are Regulated by Juvenile Hormone Signaling in Aphis gossypii
by Liuyu Wang, Jingli Lv, Xiangzhen Zhu, Kaixin Zhang, Qingyu Shi, Li Wang, Weihua Ma, Jichao Ji, Junyu Luo and Jinjie Cui
Insects 2025, 16(6), 559; https://doi.org/10.3390/insects16060559 - 25 May 2025
Viewed by 661
Abstract
Gynopara is a specific winged type in the life history of Aphis gossypii. As a key reproduction mode between parthenogenesis and sexual reproduction, it lays sexual females in late autumn. However, little is known about gynoparae because of its rare presence in [...] Read more.
Gynopara is a specific winged type in the life history of Aphis gossypii. As a key reproduction mode between parthenogenesis and sexual reproduction, it lays sexual females in late autumn. However, little is known about gynoparae because of its rare presence in the wild and the lack of its detailed descriptions. In this study, we investigated the morphological characteristics, ovary maturation process, and key signaling pathways during the development of gynoparae of A. gossypii. With the extension of development stage, the gynoparae exhibited gradually enlarged and thickened abdomen, deepened color. Obviously differentiated wing primordia in the second instar nymphs. Two nested U-shaped zones containing a series of waxy secreta spots were present on the abdomen of the fourth instar nymphs, and these morphological characteristics could be used as important markers for identifying gynoparae. Temporal transcriptomic analysis suggested that juvenile hormone (JH) might be involved in regulating the development of gynoparae. After the application JH analog kinoprene to the first instar nymphs, almost all treated individuals failed to complete wing differentiation, and most lost the ability to produce progeny, suggesting the destructive effect of JH on wing differentiation and reproduction of gynoparae. Moreover, exogenous addition of kinoprene also significantly altered the expression levels of four key genes responsible for the synthesis and degradation of JH. Our findings reveal the mechanism by which JH regulated wing differentiation and reproductive capacity of gynoparae, which lay a foundation for the further research on reproduction mode switch in aphids in the future. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

14 pages, 1599 KiB  
Article
Chronic Low-Dose Phoxim Exposure Impairs Silk Production in Bombyx mori L. (Lepidoptera: Bombycidae) by Disrupting Juvenile Hormone Signaling-Mediated Fibroin Synthesis
by Xinyi Xie, Jiayin Hou, Meng Li, Zhiyu Liu, Mengai He, Chenxi Li, Xiaohua Du and Liezhong Chen
Toxics 2025, 13(6), 427; https://doi.org/10.3390/toxics13060427 - 23 May 2025
Viewed by 336
Abstract
Phoxim is a pesticide extensively applied in mulberry fields, and residues may persist on leaves even after the recommended pre-harvest interval. However, the potential risks of these residues to Bombyx mori L. (Lepidoptera: Bombycidae) have long been overlooked. The results demonstrated that chronic [...] Read more.
Phoxim is a pesticide extensively applied in mulberry fields, and residues may persist on leaves even after the recommended pre-harvest interval. However, the potential risks of these residues to Bombyx mori L. (Lepidoptera: Bombycidae) have long been overlooked. The results demonstrated that chronic low-dose exposure from the second to fifth instars significantly impaired silkworm development and silk production. Specifically, larvae in the 0.316 μg/mL treatment group (1/2 LC50) exhibited a significant reduction in body weight, while the cocoon shell ratio was significantly decreased in both the 0.079 μg/mL (1/8 LC50) and 1/2 LC50 groups. Cocoon deformities were observed in the 0.032 μg/mL (1/20 LC50), 1/8 LC50, and 1/2 LC50 groups. Histopathological analysis revealed silk gland damage in the treatment groups, with severity increasing with higher phoxim concentrations. Biochemical analyses indicated elevated malondialdehyde (MDA) levels accompanied by increased superoxide dismutase (SOD) and peroxidase (POD) activities. Notably, phoxim exposure selectively reduced juvenile hormone (JH) titers without affecting ecdysone titers. JH-regulated genes including the receptors Met1 and Met2, and transcription factors Kr-h1 and Dimm were downregulated, accompanied by suppressed expression of the fibroin synthesis gene Fib-H. These results collectively indicate that chronic low-concentration phoxim exposure disrupts endocrine regulation, damages silk gland integrity, and ultimately reduces silk production in silkworm. Full article
(This article belongs to the Special Issue Impacts of Agrochemicals on Insects and Soil Organisms)
Show Figures

Graphical abstract

18 pages, 4356 KiB  
Article
Rainbow Trout (Oncorhynchus mykiss) Pre-Smolts Treated with 11-Deoxycorticosterone Regulate Liver Carbohydrate Metabolism and Gill Osmoregulation
by Rodrigo Zuloaga, Luciano Ahumada-Langer, Jorge Eduardo Aedo, Katalina Llanos-Azócar, Alfredo Molina and Juan Antonio Valdés
Int. J. Mol. Sci. 2025, 26(8), 3725; https://doi.org/10.3390/ijms26083725 - 15 Apr 2025
Cited by 1 | Viewed by 654
Abstract
Smoltification is stressful for salmonids, and cortisol is one of the central endocrine regulators for seawater adaptation. It has been established that cortisol plays both mineralocorticoid and glucocorticoid functions by MR and GR, respectively, since the aldosterone hormone is absent. Recently, investigations have [...] Read more.
Smoltification is stressful for salmonids, and cortisol is one of the central endocrine regulators for seawater adaptation. It has been established that cortisol plays both mineralocorticoid and glucocorticoid functions by MR and GR, respectively, since the aldosterone hormone is absent. Recently, investigations have proposed that the 11-deoxycorticosterone (DOC) mineralocorticoid precursor might support cortisol effects, but this mechanism remains unclear. Hence, we assessed the early effects of DOC on rainbow trout pre-smolts, the key smoltification stage, via metabolic and transcriptomic approaches. Thirty-six juveniles (~120 g) were treated for 3 h with DOC (1 mg/kg) and/or mineralocorticoid (eplerenone) or glucocorticoid (mifepristone) receptor antagonists (n = 6 for each group). DOC decreased plasma glucose and pyruvate and increased phosphate and liver glycogen. DOC also downregulated carbohydrate metabolism-related genes in the liver. Finally, gill RNA-seq analysis presented 1660 differentially expressed transcripts in DOC versus vehicle, 1022 for eplerenone + DOC versus DOC and 3324 for mifepristone + DOC versus DOC. The enrichment analysis mainly revealed the upregulation of ion transmembrane transport and carbohydrate metabolism and the downregulation of stress and innate immune responses. This suggests a significant role of DOC in liver carbohydrate metabolism and gill osmoregulation of pre-smolts through both receptors. Hence, this could contribute to improving animal welfare monitoring during smoltification by featuring novel and potential biomarkers. Full article
(This article belongs to the Special Issue Fish Nutrition, Metabolism and Physiology)
Show Figures

Figure 1

21 pages, 1619 KiB  
Review
A Theoretical Link Between the GH/IGF-1 Axis and Cytokine Family in Children: Current Knowledge and Future Perspectives
by Ignazio Cammisa, Donato Rigante and Clelia Cipolla
Children 2025, 12(4), 495; https://doi.org/10.3390/children12040495 - 11 Apr 2025
Cited by 1 | Viewed by 1053
Abstract
Background/Objectives: Growth in childhood and adolescence is influenced by a complex interaction of genetic, environmental, and hormonal factors, with growth hormone (GH) and insulin-like growth factor 1 (IGF-1) playing crucial roles in linear growth and development. However, chronic inflammation, often detected in situations [...] Read more.
Background/Objectives: Growth in childhood and adolescence is influenced by a complex interaction of genetic, environmental, and hormonal factors, with growth hormone (GH) and insulin-like growth factor 1 (IGF-1) playing crucial roles in linear growth and development. However, chronic inflammation, often detected in situations like inflammatory bowel disease and juvenile idiopathic arthritis, can significantly disrupt the GH/IGF-1 axis, causing a relevant growth impairment. Methods: We conducted a retrospective review focusing on the role of cytokines in the GH-IGF-1 axis and growth. Results: Inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 have been shown to contribute to GH resistance through an array of mechanisms that involve the downregulation of GH receptors and alterations in IGF-1 metabolism. This disruption negatively impacts the growth plate, particularly by impairing chondrocyte proliferation and differentiation, which are essential for proper bone elongation. This review delves into the intricate relationship among growth, chronic inflammation, and GH-IGF-1 axis, emphasizing the contribution of inflammatory cytokines in modulating GH signaling. It also highlights how cytokines can interfere with the molecular pathways that regulate skeletal growth, ultimately leading to growth disturbances in children suffering from chronic inflammatory diseases. Conclusions: The findings underscore the importance of controlling inflammation in affected individuals to mitigate its detrimental effects on growth and ensure that children may reach their growth full potential. Full article
(This article belongs to the Section Pediatric Endocrinology & Diabetes)
Show Figures

Figure 1

Back to TopTop