A Theoretical Link Between the GH/IGF-1 Axis and Cytokine Family in Children: Current Knowledge and Future Perspectives
Abstract
:1. Introduction
2. The Interplay Between GH-IGF-1 Axis and Cytokines
2.1. Growth Hormone Resistance: The Dysregulation of Growth Hormone Receptor and Suppressor of Cytokine Signaling
2.2. Insulin-like Growth Factor 1 and Insulin-like Growth Factor-Binding Proteins
2.3. The Potential Role of miRNA
2.4. Clinical Evidence Linking Cytokines Levels and Growth Impairment
3. Effect of Inflammatory Cytokines on Growth Plate
4. Growth Outcome in Chronic Inflammatory Diseases
4.1. Recombinant Human GH as Adjuvant Treatment
4.2. Anti-Cytokine Therapies and Growth Catch-Up
5. Puberty in Chronic Inflammatory Diseases
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wit, J.M.; Camacho-Hübner, C. Endocrine regulation of longitudinal bone growth. Endocr. Dev. 2011, 21, 30–41. [Google Scholar] [PubMed]
- Marcovecchio, M.L.; Mohn, A.; Chiarelli, F. Inflammatory cytokines and growth in childhood. Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Cammisa, I.; Rigante, D.; Cipolla, C. Growth outcomes and final height in children with acquired hypothyroidism: A systematic review. Children 2024, 11, 1510. [Google Scholar] [CrossRef]
- Wong, S.C.; Dobie, R.; Altowati, M.A.; Werther, G.A.; Farquharson, C.; Ahmed, S.F. Growth and the growth hormone-insulin like growth factor 1 axis in children with chronic inflammation: Current evidence, gaps in knowledge, and future directions. Endocr. Rev. 2016, 37, 62–110. [Google Scholar] [CrossRef]
- Witkowska-Sędek, E.; Pyrżak, B. Chronic inflammation and the growth hormone/insulin-like growth factor-1 axis. Cent. Eur. J. Immunol. 2020, 45, 469–475. [Google Scholar] [CrossRef]
- Cirillo, F.; Lazzeroni, P.; Sartori, C.; Street, M.E. Inflammatory diseases and growth: Effects on the GH-IGF axis and on growth plate. Int. J. Mol. Sci. 2017, 18, 1878. [Google Scholar] [CrossRef]
- MacRae, V.E.; Wong, S.C.; Farquharson, C.; Ahmed, S.F. Cytokine actions in growth disorders associated with pediatric chronic inflammatory diseases (review). Int. J. Mol. Med. 2006, 18, 1011–1018. [Google Scholar] [CrossRef]
- Simon, D. Inflammation and growth. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Walters, T.D.; Griffiths, A.M. Mechanisms of growth impairment in pediatric Crohn’s disease. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 513–523. [Google Scholar] [CrossRef]
- Soendergaard, C.; Young, J.A.; Kopchick, J.J. Growth hormone resistance-special focus on inflammatory bowel disease. Int. J. Mol. Sci. 2017, 18, 1019. [Google Scholar] [CrossRef]
- Cirillo, F.; Lazzeroni, P.; Catellani, C.; Sartori, C.; Amarri, S.; Street, M.E. MicroRNAs link chronic inflammation in childhood to growth impairment and insulin-resistance. Cytokine Growth Factor Rev. 2018, 39, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Szalecki, M.; Malinowska, A.; Prokop-Piotrkowska, M.; Janas, R. Interactions between the growth hormone and cytokines—A review. Adv. Med. Sci. 2018, 63, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Decker, M.L.; Gotta, V.; Wellmann, S.; Ritz, N. Cytokine profiling in healthy children shows association of age with cytokine concentrations. Sci. Rep. 2017, 7, 17842. [Google Scholar] [CrossRef] [PubMed]
- Wiegering, V.; Eyrich, M.; Wunder, C.; Günther, H.; Schlegel, P.G.; Winkler, B. Age-related changes in intracellular cytokine expression in healthy children. Eur. Cytokine Netw. 2009, 20, 75–80. [Google Scholar] [CrossRef]
- Sack, U.; Burkhardt, U.; Borte, M.; Schädlich, H.; Berg, K.; Emmrich, F. Age-dependent levels of select immunological mediators in sera of healthy children. Clin. Diagn. Lab. Immunol. 1998, 5, 28–32. [Google Scholar] [CrossRef]
- Pagani, S.; Meazza, C.; Travaglino, P.; Moretta, A.; Bozzola, M. Effect of growth hormone therapy on the proinflammatory cytokine profile in growth hormone-deficient children. Eur. Cytokine Netw. 2005, 16, 65–69. [Google Scholar]
- Ahmed, S.F.; Sävendahl, L. Promoting growth in chronic inflammatory disease: Lessons from studies of the growth plate. Horm. Res. 2009, 72, 42–47. [Google Scholar] [CrossRef]
- Levine, A.; Shamir, R.; Wine, E.; Weiss, B.; Karban, A.; Shaoul, R.R.; Reif, S.S.; Yakir, B.; Friedlander, M.; Kaniel, Y.; et al. TNF promoter polymorphisms and modulation of growth retardation and disease severity in pediatric Crohn’s disease. Am. J. Gastroenterol. 2005, 100, 1598–1604. [Google Scholar] [CrossRef]
- Sederquist, B.; Fernandez-Vojvodich, P.; Zaman, F.; Sävendahl, L. Recent research on the growth plate: Impact of inflammatory cytokines on longitudinal bone growth. J. Mol. Endocrinol. 2014, 53, T35–T44. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, X.; Frank, S.J.; Lin, H.Y.; Xia, Y. Distinct mechanisms of induction of hepatic growth hormone resistance by endogenous IL-6, TNF-α, and IL-1β. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E186–E198. [Google Scholar] [CrossRef]
- Denson, L.A.; Menon, R.K.; Shaufl, A.; Bajwa, H.S.; Williams, C.R.; Karpen, S.J. TNF-alpha downregulates murine hepatic growth hormone receptor expression by inhibiting Sp1 and Sp3 binding. J. Clin. Investig. 2001, 107, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, N.; Li, J.S.; Li, W.Q. The role of endotoxin, TNF-alpha, and IL-6 in inducing the state of growth hormone insensitivity. World J. Gastroenterol. 2002, 8, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Erman, A.; Wabitsch, M.; Goodyer, C.G. Human growth hormone receptor (GHR) expression in obesity: II. Regulation of the human GHR gene by obesity-related factors. Int. J. Obes. 2011, 35, 1520–1529. [Google Scholar] [CrossRef]
- Boisclair, Y.R.; Wang, J.; Shi, J.; Hurst, K.R.; Ooi, G.T. Role of the suppressor of cytokine signaling-3 in mediating the inhibitory effects of interleukin-1beta on the growth hormone-dependent transcription of the acid-labile subunit gene in liver cells. J. Biol. Chem. 2000, 275, 3841–3847. [Google Scholar] [CrossRef]
- Choukair, D.; Hügel, U.; Sander, A.; Uhlmann, L.; Tönshoff, B. Inhibition of IGF-I-related intracellular signaling pathways by proinflammatory cytokines in growth plate chondrocytes. Pediatr. Res. 2014, 76, 245–251. [Google Scholar] [CrossRef] [PubMed]
- MacRae, V.E.; Farquharson, C.; Ahmed, S.F. The restricted potential for recovery of growth plate chondrogenesis and longitudinal bone growth following exposure to pro-inflammatory cytokines. J. Endocrinol. 2006, 189, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Broussard, S.R.; McCusker, R.H.; Novakofski, J.E.; Strle, K.; Shen, W.H.; Johnson, R.W.; Dantzer, R.; Kelley, K.W. IL-1beta impairs insulin-like growth factor I-induced differentiation and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. J. Immunol. 2004, 172, 7713–7720. [Google Scholar] [CrossRef]
- Street, M.E.; de’Angelis, G.; Camacho-Hübner, C.; Giovannelli, G.; Ziveri, M.A.; Bacchini, P.L.; Bernasconi, S.; Sansebastiano, G.; Savage, M.O. Relationships between serum IGF-1, IGFBP-2, interleukin-1beta and interleukin-6 in inflammatory bowel disease. Horm. Res. 2004, 61, 159–164. [Google Scholar] [CrossRef]
- Beattie, R.M.; Camacho-Hübner, C.; Wacharasindhu, S.; Cotterill, A.M.; Walker-Smith, J.A.; Savage, M.O. Responsiveness of IGF-I and IGFBP-3 to therapeutic intervention in children and adolescents with Crohn’s disease. Clin. Endocrinol. 1998, 49, 483–489. [Google Scholar] [CrossRef]
- De Benedetti, F.; Meazza, C.; Oliveri, M.; Pignatti, P.; Vivarelli, M.; Alonzi, T.; Fattori, E.; Garrone, S.; Barreca, A.; Martini, A. Effect of IL-6 on IGF binding protein-3: A study in IL-6 transgenic mice and in patients with systemic juvenile idiopathic arthritis. Endocrinology 2001, 142, 4818–4826. [Google Scholar] [CrossRef]
- Cirillo, F.; Catellani, C.; Lazzeroni, P.; Sartori, C.; Street, M.E. The role of microRNAs in influencing body growth and development. Horm. Res. Paediatr. 2020, 93, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Catellani, C.; Ravegnini, G.; Sartori, C.; Righi, B.; Lazzeroni, P.; Bonvicini, L.; Poluzzi, S.; Cirillo, F.; Predieri, B.; Iughetti, L.; et al. Specific miRNAs Change After 3 Months of GH treatment and Contribute to Explain the Growth Response After 12 Months. Front. Endocrinol. 2022, 13, 896640. [Google Scholar] [CrossRef] [PubMed]
- Asirvatham, A.J.; Magner, W.J.; Tomasi, T.B. miRNA regulation of cytokine genes. Cytokine 2009, 45, 58–69. [Google Scholar] [CrossRef]
- Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.S. The Interplay among miRNAs, Major Cytokines, and Cancer-Related Inflammation. Mol. Ther. Nucleic Acids. 2020, 20, 606–620. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, Y.; Kawada, J.; Kawano, Y.; Torii, Y.; Kawabe, S.; Iwata, N.; Ito, Y. Serum microRNAs as potential biomarkers of juvenile idiopathic arthritis. Clin. Rheumatol. 2015, 34, 1705–1712. [Google Scholar] [CrossRef]
- Paraskevi, A.; Theodoropoulos, G.; Papaconstantinou, I.; Mantzaris, G.; Nikiteas, N.; Gazouli, M. Circulating microRNA in inflammatory bowel disease. J. Crohn’s Colitis 2012, 6, 900–904. [Google Scholar] [CrossRef]
- Fujioka, S.; Nakamichi, I.; Esaki, M.; Asano, K.; Matsumoto, T.; Kitazono, T. Serum microRNA levels in patients with Crohn’s disease during induction therapy by infliximab. J. Gastroenterol. Hepatol. 2014, 29, 1207–1214. [Google Scholar] [CrossRef]
- Polytarchou, C.; Oikonomopoulos, A.; Mahurkar, S.; Touroutoglou, A.; Koukos, G.; Hommes, D.W.; Iliopoulos, D. Assessment of circulating microRNAs for the diagnosis and disease activity evaluation in patients with ulcerative colitis by using the nanostring technology. Inflamm. Bowel Dis. 2015, 21, 2533–2539. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Yu, Q.; Yang, G.; Guo, J.; Li, M.; Zeng, Z.; He, Y.; Chen, B.; Chen, M. Circulating microRNA223 is a new biomarker for inflammatory bowel disease. Medicine 2016, 95, e2703. [Google Scholar] [CrossRef]
- Elia, L.; Contu, R.; Quintavalle, M.; Varrone, F.; Chimenti, C.; Russo, M.A.; Cimino, V.; De Marinis, L.; Frustaci, A.; Catalucci, D.; et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 2009, 120, 2377–2385. [Google Scholar] [CrossRef]
- Meyer, S.U.; Thirion, C.; Polesskaya, A.; Bauersachs, S.; Kaiser, S.; Krause, S.; Pfaffl, M.W. TNF-α and IGF1 modify the microRNA signature in skeletal muscle cell differentiation. Cell Commun. Signal. 2015, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Andiran, N.; Yordam, N. TNF-alpha levels in children with growth hormone deficiency and the effect of long-term growth hormone replacement therapy. Growth Horm. IGF Res. 2007, 17, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Meazza, C.; Elsedfy, H.H.; Pagani, S.; Bozzola, E.; El Kholy, M.; Bozzola, M. Metabolic parameters and adipokine profile in growth hormone deficient (GHD) children before and after 12-month GH treatment. Horm. Metab. Res. 2014, 46, 219–223. [Google Scholar] [CrossRef]
- Serri, O.; St-Jacques, P.; Sartippour, M.; Renier, G. Alterations of monocyte function in patients with growth hormone (GH) deficiency: Effect of substitutive GH therapy. J. Clin. Endocrinol. Metab. 1999, 84, 58–63. [Google Scholar] [CrossRef]
- Zezulak, K.M.; Green, H. The generation of insulin-like growth factor-1-sensitive cells by growth hormone action. Science 1986, 233, 551–553. [Google Scholar] [CrossRef] [PubMed]
- Isaksson, O.G.; Jansson, J.O.; Gause, I.A. Growth hormone stimulates longitudinal bone growth directly. Science 1982, 216, 1237–1239. [Google Scholar] [CrossRef]
- Mårtensson, K.; Chrysis, D.; Sävendahl, L. Interleukin-1beta and TNF-alpha act in synergy to inhibit longitudinal growth in fetal rat metatarsal bones. J. Bone Miner. Res. 2004, 19, 1805–1812. [Google Scholar] [CrossRef]
- Söder, O.; Madsen, K. Stimulation of chondrocyte DNA synthesis by interleukin-1. Br. J. Rheumatol. 1988, 27, 21–26. [Google Scholar] [CrossRef]
- Andrews, H.J.; Bunning, R.A.; Dinarello, C.A.; Russell, R.G. Modulation of human chondrocyte metabolism by recombinant human interferon gamma: In-vitro effects on basal and IL-1-stimulated proteinase production, cartilage degradation and DNA synthesis. Biochim. Biophys. Acta 1989, 1012, 128–134. [Google Scholar] [CrossRef]
- Fernandez-Vojvodich, P.; Palmblad, K.; Karimian, E.; Andersson, U.; Sävendahl, L. Pro-inflammatory cytokines produced by growth plate chondrocytes may act locally to modulate longitudinal bone growth. Horm. Res. Paediatr. 2012, 77, 180–187. [Google Scholar] [CrossRef]
- Rigante, D. The fresco of autoinflammatory diseases from the pediatric perspective. Autoimmun. Rev. 2012, 11, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Rigante, D. The protean visage of systemic autoinflammatory syndromes: A challenge for inter-professional collaboration. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 1–18. [Google Scholar]
- Cantarini, L.; Lucherini, O.M.; Frediani, B.; Brizi, M.G.; Bartolomei, B.; Cimaz, R.; Galeazzi, M.; Rigante, D. Bridging the gap between the clinician and the patient with cryopyrin-associated periodic syndromes. Int. J. Immunopathol. Pharmacol. 2011, 24, 827–836. [Google Scholar] [CrossRef]
- Rigante, D.; Lopalco, G.; Vitale, A.; Lucherini, O.M.; De Clemente, C.; Caso, F.; Emmi, G.; Costa, L.; Silvestri, E.; Andreozzi, L.; et al. Key facts and hot spots on tumor necrosis factor receptor-associated periodic syndrome. Clin. Rheumatol. 2014, 33, 1197–1207. [Google Scholar] [CrossRef]
- Nakajima, S.; Naruto, T.; Miyamae, T.; Imagawa, T.; Mori, M.; Nishimaki, S.; Yokota, S. Interleukin-6 inhibits early differentiation of ATDC5 chondrogenic progenitor cells. Cytokine 2009, 47, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Abraham, B.P.; Mehta, S.; El-Serag, H.B. Natural history of pediatric-onset inflammatory bowel disease: A systematic review. J. Clin. Gastroenterol. 2012, 46, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Simonini, G.; Giani, T.; Stagi, S.; de Martino, M.; Falcini, F. Bone status over 1 yr of etanercept treatment in juvenile idiopathic arthritis. Rheumatology 2005, 44, 777–780. [Google Scholar] [CrossRef]
- Sulz, M.C.; Doulberis, M.; Fournier, N.; Biedermann, L.; Zeitz, J.; Misselwitz, B.; Imthurn, B.; Rogler, G.; SIBDCS Group. Childlessness in Patients with Inflammatory Bowel Disease—Data from the Prospective Multi-center Swiss IBD Cohort Study. J. Gastrointestin. Liver Dis. 2023, 32, 460–468. [Google Scholar] [CrossRef]
- Falcini, F.; Bindi, G.; Simonini, G.; Stagi, S.; Galluzzi, F.; Masi, L.; Cimaz, R. Bone status evaluation with calcaneal ultrasound in children with chronic rheumatic diseases. A one year follow-up study. J. Rheumatol. 2003, 30, 179–184. [Google Scholar]
- Sylvester, F.A.; Wyzga, N.; Hyams, J.S.; Gronowicz, G.A. Effect of Crohn’s disease on bone metabolism in vitro: A role for interleukin-6. J. Bone Miner. Res. 2002, 17, 695–702. [Google Scholar] [CrossRef]
- Ou, L.S.; See, L.C.; Wu, C.J.; Kao, C.C.; Lin, Y.L.; Huang, J.L. Association between serum inflammatory cytokines and disease activity in juvenile idiopathic arthritis. Clin. Rheumatol. 2002, 21, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Gaspari, S.; Marcovecchio, M.L.; Breda, L.; Chiarelli, F. Growth in juvenile idiopathic arthritis: The role of inflammation. Clin. Exp. Rheumatol. 2011, 29, 104–110. [Google Scholar] [PubMed]
- Kutukculer, N.; Caglayan, S.; Aydogdu, F. Study of pro-inflammatory (TNF-alpha, IL-1alpha, IL-6) and T-cell-derived (IL-2, IL-4) cytokines in plasma and synovial fluid of patients with juvenile chronic arthritis: Correlations with clinical and laboratory parameters. Clin. Rheumatol. 1998, 17, 288–292. [Google Scholar] [CrossRef]
- Kaminiarczyk-Pyzalka, D.; Adamczak, K.; Mikos, H.; Klimecka, I.; Moczko, J.; Niedziela, M. Proinflammatory cytokines in monitoring the course of disease and effectiveness of treatment with etanercept (ETN) of children with oligo- and polyarticular juvenile idiopathic arthritis (JIA). Clin. Lab. 2014, 60, 1481–1490. [Google Scholar] [CrossRef]
- Romagnani, P.; Annunziato, F.; Baccari, M.C.; Parronchi, P. T cells and cytokines in Crohn’s disease. Curr. Opin. Immunol. 1997, 9, 793–799. [Google Scholar] [CrossRef]
- Schmitt, H.; Neurath, M.F.; Atreya, R. Role of the IL23/IL17 pathway in Crohn’s disease. Front. Immunol. 2021, 12, 622934. [Google Scholar] [CrossRef]
- Ito, H. IL-6 and Crohn’s disease. Curr. Drug Targets Inflamm. Allergy 2003, 2, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.S.; Hart, A.; De Cruz, P. Systematic review: Predicting and optimising response to anti-TNF therapy in Crohn’s disease—Algorithm for practical management. Aliment. Pharmacol. Ther. 2016, 43, 30–51. [Google Scholar] [CrossRef]
- Davies, U.M.; Rooney, M.; Preece, M.A.; Ansell, B.M.; Woo, P. Treatment of growth retardation in juvenile chronic arthritis with recombinant human growth hormone. J. Rheumatol. 1994, 21, 153–158. [Google Scholar]
- Davies, U.M.; Jones, J.; Reeve, J.; Camacho-Hubner, C.; Charlett, A.; Ansell, B.M.; Preece, M.A.; Woo, P.M. Juvenile rheumatoid arthritis. Effects of disease activity and recombinant human growth hormone on insulin-like growth factor 1, insulin-like growth factor binding proteins 1 and 3, and osteocalcin. Arthritis Rheum. 1997, 40, 332–340. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Klibanski, A. Determinants of GH resistance in malnutrition. J. Endocrinol. 2014, 220, R57–R65. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, B.T.; Einarsdóttir, I.E.; Johansson, M.; Gong, N. The impact of initial energy reserves on growth hormone resistance and plasma growth hormone-binding protein levels in rainbow trout under feeding and fasting conditions. Front. Endocrinol. 2018, 9, 231. [Google Scholar] [CrossRef]
- Bozzola, E.; Pagani, S.; Meazza, C.; Cortis, E.; Lisini, D.; Laarej, K.; Bozzola, M. Changes in growth hormone receptor gene expression during therapy in children with juvenile idiopathic arthritis. Horm. Res. Paediatr. 2012, 77, 52–58. [Google Scholar] [CrossRef]
- Bechtold, S.; Beyerlein, A.; Ripperger, P.; Roeb, J.; Dalla Pozza, R.; Häfner, R.; Haas, J.P.; Schmidt, H. Total pubertal growth in patients with juvenile idiopathic arthritis treated with growth hormone: Analysis of a single center. Growth Horm. IGF Res. 2012, 22, 180–185. [Google Scholar] [CrossRef]
- Grote, F.K.; Van Suijlekom-Smit, L.W.; Mul, D.; Hop, W.C.; Ten Cate, R.; Oostdijk, W.; Van Luijk, W.; Jansen-van Wijngaarden, C.J.; De Muinck Keizer-Schrama, S.M. Growth hormone treatment in children with rheumatic disease, corticosteroid induced growth retardation, and osteopenia. Arch. Dis. Child. 2006, 91, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.C.; Macrae, V.E.; McGrogan, P.; Ahmed, S.F. The role of pro-inflammatory cytokines in inflammatory bowel disease growth retardation. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.C.; Smyth, A.; McNeill, E.; Galloway, P.J.; Hassan, K.; McGrogan, P.; Ahmed, S.F. The growth hormone insulin-like growth factor 1 axis in children and adolescents with inflammatory bowel disease and growth retardation. Clin. Endocrinol. 2010, 73, 220–228. [Google Scholar] [CrossRef]
- Thomas, A.G.; Holly, J.M.; Taylor, F.; Miller, V. Insulin like growth factor-I, insulin like growth factor binding protein-1, and insulin in childhood Crohn’s disease. Gut 1993, 34, 944–947. [Google Scholar] [CrossRef]
- Svantesson, H. Treatment of growth failure with human growth hormone in patients with juvenile chronic arthritis. A pilot study. Clin. Exp. Rheumatol. 1991, 9, 47–50. [Google Scholar]
- Touati, G.; Prieur, A.M.; Ruiz, J.C.; Noel, M.; Czernichow, P. Beneficial effects of one-year growth hormone administration to children with juvenile chronic arthritis on chronic steroid therapy. I. Effects on growth velocity and body composition. J. Clin. Endocrinol. Metab. 1998, 83, 403–409. [Google Scholar]
- Saha, M.T.; Haapasaari, J.; Hannula, S.; Sarna, S.; Lenko, H.L. Growth hormone is effective in the treatment of severe growth retardation in children with juvenile chronic arthritis. Double blind placebo-controlled followup study. J. Rheumatol. 2004, 31, 1413–1417. [Google Scholar]
- Bechtold, S.; Ripperger, P.; Häfner, R.; Said, E.; Schwarz, H.P. Growth hormone improves height in patients with juvenile idiopathic arthritis: 4-year data of a controlled study. J. Pediatr. 2003, 143, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.; Lucidarme, N.; Prieur, A.M.; Ruiz, J.C.; Czernichow, P. Linear growth in children suffering from juvenile idiopathic arthritis requiring steroid therapy: Natural history and effects of growth hormone treatment on linear growth. J. Pediatr. Endocrinol. Metab. 2001, 14 (Suppl. S6), 1483–1486. [Google Scholar] [PubMed]
- Simon, D.; Lucidarme, N.; Prieur, A.M.; Ruiz, J.C.; Czernichow, P. Treatment of growth failure in juvenile chronic arthritis. Horm. Res. 2002, 58, 28–32. [Google Scholar] [CrossRef]
- Simon, D.; Lucidarme, N.; Prieur, A.M.; Ruiz, J.C.; Czernichow, P. Effects on growth and body composition of growth hormone treatment in children with juvenile idiopathic arthritis requiring steroid therapy. J. Rheumatol. 2003, 30, 2492–2499. [Google Scholar] [PubMed]
- Vortia, E.; Kay, M.; Wyllie, R. The role of growth hormone and insulin-like growth factor-1 in Crohn’s disease: Implications for therapeutic use of human growth hormone in pediatric patients. Curr. Opin. Pediatr. 2011, 23, 545–551. [Google Scholar] [CrossRef]
- Mauras, N.; George, D.; Evans, J.; Milov, D.; Abrams, S.; Rini, A.; Welch, S.; Haymond, M.W. Growth hormone has anabolic effects in glucocorticosteroid-dependent children with inflammatory bowel disease: A pilot study. Metabolism 2002, 51, 127–135. [Google Scholar] [CrossRef]
- Denson, L.A.; Kim, M.O.; Bezold, R.; Carey, R.; Osuntokun, B.; Nylund, C.; Willson, T.; Bonkowski, E.; Li, D.; Ballard, E.; et al. A randomized controlled trial of growth hormone in active pediatric Crohn disease. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 130–139. [Google Scholar] [CrossRef]
- Wong, S.C.; Kumar, P.; Galloway, P.J.; Blair, J.C.; Didi, M.; Dalzell, A.M.; Hassan, K.; McGrogan, P.; Ahmed, S.F. A preliminary trial of the effect of recombinant human growth hormone on short-term linear growth and glucose homeostasis in children with Crohn’s disease. Clin. Endocrinol. 2011, 74, 599–607. [Google Scholar] [CrossRef]
- Prince, F.H.; Otten, M.H.; van Suijlekom-Smit, L.W. Diagnosis and management of juvenile idiopathic arthritis. BMJ 2010, 341, c6434. [Google Scholar] [CrossRef]
- Breda, L.; Del Torto, M.; De Sanctis, S.; Chiarelli, F. Biologics in children’s autoimmune disorders: Efficacy and safety. Eur. J. Pediatr. 2011, 170, 157–167. [Google Scholar] [CrossRef]
- Visvanathan, S.; Wagner, C.; Marini, J.C.; Lovell, D.J.; Martini, A.; Petty, R.; Cuttica, R.; Woo, P.; Espada, G.; Gattorno, M.; et al. The effect of infliximab plus methotrexate on the modulation of inflammatory disease markers in juvenile idiopathic arthritis: Analyses from a randomized, placebo-controlled trial. Pediatr. Rheumatol. Online J. 2010, 8, 24. [Google Scholar] [CrossRef]
- Schmeling, H.; Seliger, E.; Horneff, G. Growth reconstitution in juvenile idiopathic arthritis treated with etanercept. Clin. Exp. Rheumatol. 2003, 21, 779–784. [Google Scholar]
- Tynjälä, P.; Lahdenne, P.; Vähäsalo, P.; Kautiainen, H.; Honkanen, V. Impact of anti-TNF treatment on growth in severe juvenile idiopathic arthritis. Ann. Rheum. Dis. 2006, 65, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Federico, G.; Rigante, D.; Pugliese, A.L.; Ranno, O.; Catania, S.; Stabile, A. Etanercept induces improvement of arthropathy in chronic infantile neurological cutaneous articular (CINCA) syndrome. Scand. J. Rheumatol. 2003, 32, 312–314. [Google Scholar] [CrossRef] [PubMed]
- Cantarini, L.; Rigante, D.; Lucherini, O.M.; Cimaz, R.; Laghi Pasini, F.; Baldari, C.T.; Benucci, M.; Simonini, G.; Di Sabatino, V.; Brizi, M.G.; et al. Role of etanercept in the treatment of tumor necrosis factor receptor-associated periodic syndrome: Personal experience and review of the literature. Int. J. Immunopathol. Pharmacol. 2010, 23, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Miyamae, T.; Yokoya, S.; Yamanaka, H.; Yokota, S. Effect of tocilizumab on growth impairment in systemic juvenile idiopathic arthritis with long-term corticosteroid therapy. Mod. Rheumatol. 2014, 24, 567–571. [Google Scholar] [CrossRef]
- Bharucha, K.N.; Brunner, H.I.; Calvo Penadés, I.; Nikishina, I.; Rubio-Pérez, N.; Oliveira, S.; Kobusinska, K.; Schmeling, H.; Sztajnbok, F.; Weller-Heinemann, F.; et al. Growth During Tocilizumab Therapy for Polyarticular-course Juvenile Idiopathic Arthritis: 2-year Data from a Phase III Clinical Trial. J. Rheumatol. 2018, 45, 1173–1179. [Google Scholar] [CrossRef]
- Hyams, J.; Crandall, W.; Kugathasan, S.; Griffiths, A.; Olson, A.; Johanns, J.; Liu, G.; Travers, S.; Heuschkel, R.; Markowitz, J.; et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn’s disease in children. Gastroenterology 2007, 132, 863–873. [Google Scholar] [CrossRef]
- Hyams, J.; Walters, T.D.; Crandall, W.; Kugathasan, S.; Griffiths, A.; Blank, M.; Johanns, J.; Lang, Y.; Markowitz, J.; Cohen, S.; et al. Safety and efficacy of maintenance infliximab therapy for moderate-to-severe Crohn’s disease in children: REACH open-label extension. Curr. Med. Res. Opin. 2011, 27, 651–662. [Google Scholar] [CrossRef]
- Malik, S.; Wong, S.C.; Bishop, J.; Hassan, K.; McGrogan, P.; Ahmed, S.F.; Russell, R.K. Improvement in growth of children with Crohn disease following anti-TNF-α therapy can be independent of pubertal progress and glucocorticoid reduction. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Sinitsky, D.M.; Lemberg, D.A.; Leach, S.T.; Bohane, T.D.; Jackson, R.; Day, A.S. Infliximab improves inflammation and anthropometric measures in pediatric Crohn’s disease. J. Gastroenterol. Hepatol. 2010, 25, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Pichler, J.; Hanslik, A.; Huber, W.D.; Aufricht, C.; Bidmon-Fliegenschnee, B. Paediatric patients with inflammatory bowel disease who received infliximab experienced improved growth and bone health. Acta Paediatr. 2014, 103, e69–e75. [Google Scholar] [CrossRef]
- Borrelli, O.; Bascietto, C.; Viola, F.; Bueno de Mesquita, M.; Barbato, M.; Mancini, V.; Bosco, S.; Cucchiara, S. Infliximab heals intestinal inflammatory lesions and restores growth in children with Crohn’s disease. Dig. Liver Dis. 2004, 36, 342–347. [Google Scholar] [CrossRef]
- Ezri, J.; Marques-Vidal, P.; Nydegger, A. Impact of disease and treatments on growth and puberty of pediatric patients with inflammatory bowel disease. Digestion 2012, 85, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Maiter, D.; Thissen, J.P.; Underwood, L.E.; Ketelslegers, J.M. Contributions of growth hormone receptor and postreceptor defects to growth hormone resistance in malnutrition. Trends Endocrinol. Metab. 1991, 2, 92–97. [Google Scholar] [CrossRef]
- Tenuta, M.; Carlomagno, F.; Cangiano, B.; Kanakis, G.; Pozza, C.; Sbardella, E.; Isidori, A.M.; Krausz, C.; Gianfrilli, D. Somatotropic-Testicular Axis: A crosstalk between GH/IGF-I and gonadal hormones during development, transition, and adult age. Andrology 2021, 9, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Juul, A.; Andersson, A.M.; Pedersen, S.A.; Jørgensen, J.O.; Christiansen, J.S.; Groome, N.P.; Skakkebaek, N.E. Effects of growth hormone replacement therapy on IGF-related parameters and on the pituitary-gonadal axis in GH-deficient males. A double-blind, placebo-controlled crossover study. Horm. Res. 1998, 49, 269–278. [Google Scholar]
- Cannarella, R.; Crafa, A.; La Vignera, S.; Condorelli, R.A.; Calogero, A.E. Role of the GH-IGF1 axis on the hypothalamus-pituitary-testicular axis function: Lessons from Laron syndrome. Endocr. Connect. 2021, 25, 1006–1017. [Google Scholar] [CrossRef]
- Hiney, J.K.; Srivastava, V.K.; Pine, M.D.; Les Dees, W. Insulin-like growth factor-I activates KiSS-1 gene expression in the brain of the prepubertal female rat. Endocrinology 2009, 150, 376–384. [Google Scholar] [CrossRef]
- Hashizume, T.; Kumahara, A.; Fujino, M.; Okada, K. Insulin-like growth factor I enhances gonadotropin-releasing hormone-stimulated luteinizing hormone release from bovine anterior pituitary cells. Anim. Reprod. Sci. 2002, 70, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Joseph D’Ercole, A.; Ye, P. Expanding the mind: Insulin-like growth factor I and brain development. Endocrinology 2008, 149, 5958–5962. [Google Scholar] [CrossRef] [PubMed]
- Martha, P.M., Jr.; Gorman, K.M.; Blizzard, R.M.; Rogol, A.D.; Veldhuis, J.D. Endogenous growth hormone secretion and clearance rates in normal boys, as determined by deconvolution analysis: Relationship to age, pubertal status, and body mass. J. Clin. Endocrinol. Metab. 1992, 74, 336–344. [Google Scholar]
- Rochira, V.; Zirilli, L.; Maffei, L.; Premrou, V.; Aranda, C.; Baldi, M.; Ghigo, E.; Aimaretti, G.; Carani, C.; Lanfranco, F. Tall stature without growth hormone: Four male patients with aromatase deficiency. J. Clin. Endocrinol. Metab. 2010, 95, 1626–1633. [Google Scholar] [CrossRef] [PubMed]
- Veldhuis, J.D.; Norman, C.; Miles, J.M.; Bowers, C.Y. Sex steroids, GHRH, somatostatin, IGF-I, and IGFBP-1 modulate ghrelin’s dose-dependent drive of pulsatile GH secretion in healthy older men. J. Clin. Endocrinol. Metab. 2012, 97, 4753–4760. [Google Scholar] [CrossRef]
- Fernández, L.; Flores-Morales, A.; Lahuna, O.; Sliva, D.; Norstedt, G.; Haldosén, L.A.; Mode, A.; Gustafsson, J.A. Desensitization of the growth hormone-induced Janus kinase 2 (Jak 2)/signal transducer and activator of transcription 5 (Stat5)-signaling pathway requires protein synthesis and phospholipase C. Endocrinology 1998, 139, 1815–1824. [Google Scholar] [CrossRef]
- Tanaka, S.; Fukuda, I.; Hizuka, N.; Takano, K. Gender differences in serum GH and IGF-I levels and the GH response to dynamic tests in patients with acromegaly. Endocr. J. 2010, 57, 477–483. [Google Scholar] [CrossRef]
- D’Angelo, D.M.; Di Donato, G.; Breda, L. Growth and puberty in children with juvenile idiopathic arthritis. Pediatr. Rheumatol. 2021, 19, 28. [Google Scholar] [CrossRef]
- Rusconi, R.; Corona, F.; Grassi, A.; Carnelli, V. Age at menarche in juvenile rheumatoid arthritis. J. Pediatr. Endocrinol. Metab. 2003, 16, 285–288. [Google Scholar]
- Maher, S.E.; Ali, F.I. Sexual maturation in Egyptian boys and girls with juvenile rheumatoid arthritis. Rheumatol. Int. 2013, 33, 2123–2126. [Google Scholar] [CrossRef]
- Amaro, F.; Chiarelli, F. Growth and Puberty in Children with Inflammatory Bowel Diseases. Biomedicines 2020, 8, 458. [Google Scholar] [CrossRef]
- Ballinger, A.B.; Savage, M.O.; Sanderson, I.R. Delayed puberty associated with inflammatory bowel disease. Pediatr. Res. 2003, 53, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.; Sedgwick, D.M. Juvenile onset inflammatory bowel disease: Height and body mass index in adult life. BMJ 1994, 308, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.Y.; Lim, J.S.; Lee, Y.; Choi, Y.; Oh, S.H.; Kim, K.M.; Yoo, H.W.; Choi, J.H. Growth, puberty, and bone health in children and adolescents with inflammatory bowel disease. BMC Pediatr. 2021, 21, 35. [Google Scholar] [CrossRef]
- Brain, C.E.; Savage, M.O. Growth and puberty in chronic inflammatory bowel disease. Baillieres Clin. Gastroenterol. 1994, 8, 83–100. [Google Scholar] [CrossRef]
- Casazza, K.; Hanks, L.J.; Alvarez, J.A. Role of various cytokines and growth factors in pubertal development. Med. Sport Sci. 2010, 55, 14–31. [Google Scholar]
- Mantzoros, C.S.; Flier, J.S.; Rogol, A.D. A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty. J. Clin. Endocrinol. Metab. 1997, 82, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.Y.; Park, J.H.; Ahn, R.S.; Im, S.Y.; Choi, H.S.; Soh, J.; Mellon, S.H.; Lee, K. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol. Cell. Biol. 2004, 24, 2593–2604. [Google Scholar] [CrossRef]
- Rettori, V.; Belova, N.; Kamat, A.; Lyson, K.; Gimeno, M.; McCann, S.M. Blockade by interleukin-1-alpha of nitricoxidergic control of luteinizing hormone-releasing hormone release in vivo and in vitro. Neuroimmunomodulation 1994, 1, 86–91. [Google Scholar] [CrossRef]
Study | Study Design | Sample Size (N) | Mean Age (Years) | Patient Population | Treatment | Growth Outcome |
---|---|---|---|---|---|---|
Svantesson et al. (1991) [79] | Prospective study | 6 | 11.7–17.1 | JIA | rhGH (0.07–0.2 U/kg/day) | The mean pretreatment GR was 2.8 cm (range 0.3 to 5.7), increased to 6.7 cm/year (range 2.8 to 12.4) after 1 year of treatment. |
Touati et al. (1998) [80] | Prospective study | 14 | 9.8 | JIA | rhGH (1.4 U/kg/week) | Mean GV increased from 1.9 to 5.4 cm/year. After 1 year of rhGH discontinuation, it returned to pretreatment values (1.1 cm/year) |
Saha et al. (2004) [81] | Randomized controlled study | 25 | 9 | JIA | rhGH (0.1 U/kg/day) | The median SDS for HV was +2.09 (ranging from −7.18 to +9.49) during the 6-month rhGH therapy period and −1.11 (ranging from −10.00 to +1.11) during the placebo phase. The median SDS for height improved from −2.08 to −1.79 during GH treatment and from −2.18 to −2.02 during placebo |
Bechtold et al. (2003) [82] | Case–control study | 18 | 10.1 | JIA | rhGH (0.20–0.33 mg/kg/week) | The average GV in the rhGH-treated group increased from 2.9 cm/year at the beginning of the study to 7.2 cm/year after 1 year, while it remained stable in the control group at 2.6 cm/year and 3.3 cm/year, respectively. The average height increase in the treated group was 1 SD, while patients in the control group experienced a decrease of 0.7 SD. |
Simon et al. (2002) [84] | Retrospective study | 24 | 3.4 ± 2.4 | JIA | rhGH (0.46 mg/kg/week) | In the first year of treatment there was an increase in GC from 2.1 to 6.0 cm/year; the effectiveness decreased over time and the final HSDS did not show a significant improvement (–4.6 SDS at baseline compared to –4.3 SDS at the end of treatment) |
Mauras et al. (2002) [87] | Prospective study | 10 | 11.9 ± 0.9 | CD | rhGH (0.05 mg/kg/day) | Linear GV improved from 3.5 ± 0.4 cm/year with prednisone treatment alone to 7.7 ± 0.9 cm/year after 6 months of rhGH |
Denson et al. (2010) [88] | Randomized Controlled Trial | 20 | 7–18 | CD | rhGH (0.075 mg/kg/day) | The rhGH group experienced an increase in HV after one year (height z-score improved from −1.1 to −0.4, whereas the control group showed no significant change |
Wong et al. (2011) [89] | Randomized Controlled Trial | 22 | 14.7 | CD | rhGH (0.067 mg/kg/day) | In the rhGH group, the median HV increased from 4.5 cm/year (range 0.6 to 8.9) at baseline to 10.8 cm/year (range 6.1 to 15.0) at 6 months. The control group showed a median HV of 3.8 cm/year (range 1.4 to 6.7) at baseline, which changed to 3.5 cm/year (range 2.0 to 9.6) at 6 months |
Schmeling et al. (2003) [93] | Comparative study | 18 | NA | JIA | Etanercept | GV improved from 3.7 ± 1.2 cm before therapy to 7.6 ± 1.2 cm in the first year of treatment. The average length-SDS increased from −2.4 ± 1.0 to −1.9 ± 0.9 after one year, and further to −1.1 ± 0.9 after two years |
Tynjälä et al. (2006) [94] | Retrospective study | 71 | 9.9 | JIA | Etanercept (0.4 mg/kg) Infliximab (3–5 mg/kg) | Patients with previously delayed growth showed an increase in growth rate of +1.8 cm/year while no change was detected in the growth rate for patients who had normal growth prior to treatment. |
Miyamae et al. (2014) [97] | Randomized controlled trial | 45 | 8.1 ± 4.2 | JIA | Tocilizumab (8 mg/kg) | HVSDS increased from 1 year before to 1 year after baseline (−6.0 ± 4.0 to −2.5 ± 3.9) |
Bharucha et al. (2018) [98] | Randomized Controlled Trial | 187 | 11.0 ± 4.0 | JIA | Tocilizumab (8–10 mg/kg) | Mean HSDS increased significantly from baseline at –0.6 ± 1.1 to Year 1 at –0.4 ± 1.2 and to Year 2 at –0.2 ± 1.1. The mean HV was 6.7 ± 2.0 cm/year |
Hyams et al. (2011) [100] | Randomized Controlled Trial | 112 | 13.3 | CD | Infliximab (5–10 mg/kg) | The median height z-score at baseline in the main study was 1.64, which improved by 0.45 |
Malik et al. (2011) [101] | Retrospective study | 28 | 13.1 | CD | Infliximab (5–7 mg/kg) | HV increased from 3.6 cm/year (range 0.4–7.8) to 5.5 cm/year (range 2.1–9.2). In infliximab responders, HV rose from 2 cm/year to 6.4 cm/year, while in non-responders HV remained unchanged |
Sinitsky et al. (2010) [102] | Retrospective case series review | 16 | 13 | CD | Infliximab (5 mg/kg) | The median height Z score changed from −0.5 (range −2.5 to 0.6) to −0.8 (range −2.8 to 1.4) |
Borrelli et al. (2004) [104] | Prospective study | 18 | 13 | CD | Infliximab (5 mg/kg) | Height z-score increased from −1.15 ± 0.81 to −0.62 ± 0.99 |
Picher et al. (2014) [103] | Retrospective study | 33 | 13.5 | IBD | Infliximab (5 mg/kg) | Height SDS changed from −0.2 ± 0.2 to 0 ± 0.4. Height SDS in children in remission was notably higher than in those with mild and moderate-to-severe inflammation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cammisa, I.; Rigante, D.; Cipolla, C. A Theoretical Link Between the GH/IGF-1 Axis and Cytokine Family in Children: Current Knowledge and Future Perspectives. Children 2025, 12, 495. https://doi.org/10.3390/children12040495
Cammisa I, Rigante D, Cipolla C. A Theoretical Link Between the GH/IGF-1 Axis and Cytokine Family in Children: Current Knowledge and Future Perspectives. Children. 2025; 12(4):495. https://doi.org/10.3390/children12040495
Chicago/Turabian StyleCammisa, Ignazio, Donato Rigante, and Clelia Cipolla. 2025. "A Theoretical Link Between the GH/IGF-1 Axis and Cytokine Family in Children: Current Knowledge and Future Perspectives" Children 12, no. 4: 495. https://doi.org/10.3390/children12040495
APA StyleCammisa, I., Rigante, D., & Cipolla, C. (2025). A Theoretical Link Between the GH/IGF-1 Axis and Cytokine Family in Children: Current Knowledge and Future Perspectives. Children, 12(4), 495. https://doi.org/10.3390/children12040495