A Maternal Gene Regulator CPEB2 Is Involved in Mating-Induced Egg Maturation in the Cnaphalocrocis medinalis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing and Sample Preparation
2.2. Identification of CmCPEB2 and Bioinformatic Analysis
2.3. RNA Isolation and cDNA Synthesis
2.4. Spatial-Temporal Expression Analysis of CmCPEB2
2.5. Liposome-Facilitated RNA Interference of CmCPEB2
2.6. Effect of CmCPEB2 on Ovarian Development and Female Fecundity
2.7. Western Blot Analysis
2.8. Hormonal Culture and Upstream Regulator Analysis
2.9. cDNA Library Preparation and Illumina Sequencing
2.10. Transcriptome Analysis After Knockdown of CmCPEB2
2.11. Data Analysis
3. Results
3.1. Sequence Characterization and Phylogenetic Analysis of CmCPEB2
3.2. Ovary-Specific and Mating-Induced Expression of CmCPEB2
3.3. Liposome-Facilitated Knockdown of CmCPEB2 Impeded Female Reproduction
3.4. CmCPEB2 Was Regulated by the Juvenile Hormone Pathway
3.5. CmCPEB2 Was Likely Involved in Choriogenesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huynh, J.-R.; St Johnston, D. The Origin of Asymmetry: Early Polarisation of the Drosophila Germline Cyst and Oocyte. Curr. Biol. 2004, 14, R438–R449. [Google Scholar] [CrossRef]
- Spradling, A.C. Germline Cysts: Communes That Work. Cell 1993, 72, 649–651. [Google Scholar] [CrossRef]
- Roy, S.; Saha, T.T.; Zou, Z.; Raikhel, A.S. Regulatory Pathways Controlling Female Insect Reproduction. Annu. Rev. Entomol. 2018, 63, 489–511. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, L.; He, Q.; Zhou, S. Regulatory Mechanisms of Vitellogenesis in Insects. Front. Cell Dev. Biol. 2020, 8, 593613. [Google Scholar] [CrossRef] [PubMed]
- Kafatos, F.C.; Regier, J.C.; Mazur, G.D.; Nadel, M.R.; Blau, H.M.; Petri, W.H.; Wyman, A.R.; Gelinas, R.E.; Moore, P.B.; Paul, M.; et al. The Eggshell of Insects: Differentiation-Specific Proteins and the Control of Their Synthesis and Accumulation During Development. In Biochemical Differentiation in Insect Glands; Beermann, W., Ed.; Springer: Berlin/Heidelberg, Germany, 1977; pp. 45–145. ISBN 978-3-540-37332-2. [Google Scholar]
- Papantonis, A.; Swevers, L.; Iatrou, K. Chorion Genes: A Landscape of Their Evolution, Structure, and Regulation. Annu. Rev. Entomol. 2015, 60, 177–194. [Google Scholar] [CrossRef] [PubMed]
- King, R.C. The Meiotic Behavior of the Drosophila Oocyte. Int. Rev. Cytol. 1970, 28, 125–168. [Google Scholar] [CrossRef] [PubMed]
- Theurkauf, W.E.; Smiley, S.; Wong, M.L.; Alberts, B.M. Reorganization of the Cytoskeleton during Drosophila Oogenesis: Implications for Axis Specification and Intercellular Transport. Development 1992, 115, 923–936. [Google Scholar] [CrossRef]
- Engel, W.; Franke, W. Maternal Storage in the Mammalian Oocyte. In Developmental Biology and Pathology; Gropp, A., Benirschke, K., Eds.; Current Topics in Pathology; Springer: Berlin/Heidelberg, Germany, 1976; Volume 62, pp. 29–52. ISBN 978-3-642-66460-1. [Google Scholar]
- Johnstone, O.; Lasko, P. Translational Regulation and RNA Localization in Drosophila Oocytes and Embryos. Annu. Rev. Genet. 2001, 35, 365–406. [Google Scholar] [CrossRef]
- Sanders, J.R.; Jones, K.T. Regulation of the Meiotic Divisions of Mammalian Oocytes and Eggs. Biochem. Soc. Trans. 2018, 46, 797–806. [Google Scholar] [CrossRef]
- Richter, J.D. CPEB: A Life in Translation. Trends Biochem. Sci. 2007, 32, 279–285. [Google Scholar] [CrossRef]
- Winata, C.L.; Korzh, V. The Translational Regulation of Maternal mRNAs in Time and Space. FEBS Lett. 2018, 592, 3007–3023. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.D.; Lasko, P. Translational Control in Oocyte Development. Cold Spring Harb. Perspect. Biol. 2011, 3, a002758. [Google Scholar] [CrossRef] [PubMed]
- Mendez, R.; Richter, J.D. Translational Control by CPEB: A Means to the End. Nat. Rev. Mol. Cell Biol. 2001, 2, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Meijer, H.A.; Radford, H.E.; Wilson, L.S.; Lissenden, S.; de Moor, C.H. Translational Control of Maskin mRNA by Its 3′ Untranslated Region. Biol. Cell 2007, 99, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Stebbins-Boaz, B.; Cao, Q.; de Moor, C.H.; Mendez, R.; Richter, J.D. Maskin Is a CPEB-Associated Factor That Transiently Interacts with elF-4E. Mol. Cell 1999, 4, 1017–1027. [Google Scholar] [CrossRef]
- Rouhana, L.; Wang, L.; Buter, N.; Kwak, J.E.; Schiltz, C.A.; Gonzalez, T.; Kelley, A.E.; Landry, C.F.; Wickens, M. Vertebrate GLD2 Poly(A) Polymerases in the Germline and the Brain. RNA 2005, 11, 1117–1130. [Google Scholar] [CrossRef]
- Cao, Q.; Richter, J.D. Dissolution of the Maskin-eIF4E Complex by Cytoplasmic Polyadenylation and Poly(A)-Binding Protein Controls Cyclin B1 mRNA Translation and Oocyte Maturation. EMBO J. 2002, 21, 3852–3862. [Google Scholar] [CrossRef]
- Kim, J.H.; Richter, J.D. Opposing Polymerase-Deadenylase Activities Regulate Cytoplasmic Polyadenylation. Mol. Cell 2006, 24, 173–183. [Google Scholar] [CrossRef]
- Sarkissian, M.; Mendez, R.; Richter, J.D. Progesterone and Insulin Stimulation of CPEB-Dependent Polyadenylation Is Regulated by Aurora A and Glycogen Synthase Kinase-3. Genes Dev. 2004, 18, 48–61. [Google Scholar] [CrossRef]
- Lantz, V.; Ambrosio, L.; Schedl, P. The Drosophila Orb Gene Is Predicted to Encode Sex-Specific Germline RNA-Binding Proteins and Has Localized Transcripts in Ovaries and Early Embryos. Development 1992, 115, 75–88. [Google Scholar] [CrossRef]
- Blatt, P.; Martin, E.T.; Breznak, S.M.; Rangan, P. Post-Transcriptional Gene Regulation Regulates Germline Stem Cell to Oocyte Transition during Drosophila Oogenesis. In Current Topics in Developmental Biology; Marlow, F.L., Ed.; Maternal Effect Genes in Development; Academic Press: Cambridge, MA, USA, 2020; Volume 140, pp. 3–34. [Google Scholar]
- Lantz, V.; Chang, J.S.; Horabin, J.I.; Bopp, D.; Schedl, P. The Drosophila Orb RNA-Binding Protein Is Required for the Formation of the Egg Chamber and Establishment of Polarity. Genes Dev. 1994, 8, 598–613. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-S.; Mendez, R.; Fernandez, M.; Richter, J.D. CPEB and Translational Control by Cytoplasmic Polyadenylation: Impact on Synaptic Plasticity, Learning, and Memory. Mol. Psychiatry 2023, 28, 2728–2736. [Google Scholar] [CrossRef]
- Keleman, K.; Krüttner, S.; Alenius, M.; Dickson, B.J. Function of the Drosophila CPEB Protein Orb2 in Long-Term Courtship Memory. Nat. Neurosci. 2007, 10, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Si, K.; Giustetto, M.; Etkin, A.; Hsu, R.; Janisiewicz, A.M.; Miniaci, M.C.; Kim, J.-H.; Zhu, H.; Kandel, E.R. A Neuronal Isoform of CPEB Regulates Local Protein Synthesis and Stabilizes Synapse-Specific Long-Term Facilitation in Aplysia. Cell 2003, 115, 893–904. [Google Scholar] [CrossRef]
- Gangwar, R.K. Life Cycle and Abundance of Rice Leaf Folder, Cnaphalocrocis Medinalis (Guenee)—A Review. J. Nat. Sci. Res. 2015, 5, 103. [Google Scholar]
- Deitsch, K.W.; Chen, J.-S.; Raikhel, A.S. Indirect Control of Yolk Protein Genes by 20-Hydroxyecdysone in the Fat Body of the Mosquito, Aedes Aegypti. Insect Biochem. Mol. Biol. 1995, 25, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Riddiford, L.M.; Curtis, A.T.; Kiguchi, K. Culture of the Epidermis of the Tobacco hornwormManduca Sexta. TCA Man. Tissue Cult. Assoc. 1979, 5, 975–985. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Hervas, R.; Rau, M.J.; Park, Y.; Zhang, W.; Murzin, A.G.; Fitzpatrick, J.A.J.; Scheres, S.H.W.; Si, K. Cryo-EM Structure of a Neuronal Functional Amyloid Implicated in Memory Persistence in Drosophila. Science 2020, 367, 1230–1234. [Google Scholar] [CrossRef]
- Khan, M.; Li, L.; Pérez-Sánchez, C.; Saraf, A.; Florens, L.; Slaughter, B.; Unruh, J.; Si, K. Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator. Cell 2015, 163, 1468–1483. [Google Scholar] [CrossRef]
- Krüttner, S.; Stepien, B.; Noordermeer, J.; Mommaas, M.; Mechtler, K.; Dickson, B.; Keleman, K. Drosophila CPEB Orb2A Mediates Memory Independent of Its RNA-Binding Domain. Neuron 2012, 76, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, Y.; Tokuriki, M.; Myojin, R.; Hori, T.; Kuroiwa, A.; Matsuda, Y.; Sakurai, T.; Kimura, M.; Hecht, N.B.; Uesugi, S. CPEB2, a Novel Putative Translational Regulator in Mouse Haploid Germ Cells. Biol. Reprod. 2003, 69, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Castagnetti, S.; Ephrussi, A. Orb and a Long Poly(A) Tail Are Required for Efficient Oskar Translation at the Posterior Pole of the Drosophila Oocyte. Development 2003, 130, 835–843. [Google Scholar] [CrossRef]
- Tan, L.; Chang, J.S.; Costa, A.; Schedl, P. An Autoregulatory Feedback Loop Directs the Localized Expression of the Drosophila CPEB Protein Orb in the Developing Oocyte. Development 2001, 128, 1159–1169. [Google Scholar] [CrossRef]
- Hafer, N.; Xu, S.; Bhat, K.M.; Schedl, P. The Drosophila CPEB Protein Orb2 Has a Novel Expression Pattern and Is Important for Asymmetric Cell Division and Nervous System Function. Genetics 2011, 189, 907–921. [Google Scholar] [CrossRef]
- Xu, S. A Study of Drosophila CPEB Protein Orb2: Expression, Functions and Regulatory Mechanisms; Princeton University: Princeton, NJ, USA, 2011. [Google Scholar]
- Rouhana, L.; Tasaki, J.; Saberi, A.; Newmark, P.A. Genetic Dissection of the Planarian Reproductive System through Characterization of Schmidtea Mediterranea CPEB Homologs. Dev. Biol. 2017, 426, 43–55. [Google Scholar] [CrossRef]
- Telfer, W.H. Egg Formation in Lepidoptera. J. Insect Sci. 2009, 9, 50. [Google Scholar] [CrossRef]
- Mazur, G.D.; Regier, J.C.; Kafatos, F.C. Order and Defects in the Silkmoth Chorion, A Biological Analogue of a Cholesteric Liquid Crystal. In Insect Ultrastructure: Volume 1; King, R.C., Akai, H., Eds.; Springer: Boston, MA, USA, 1982; pp. 150–185. ISBN 978-1-4615-7266-4. [Google Scholar]
- Ye, Y.-X.; Pan, P.-L.; Xu, J.-Y.; Shen, Z.-F.; Kang, D.; Lu, J.-B.; Hu, Q.-L.; Huang, H.-J.; Lou, Y.-H.; Zhou, N.-M.; et al. Forkhead Box Transcription Factor L2 Activates Fcp3C to Regulate Insect Chorion Formation. Open Biol. 2017, 7, 170061. [Google Scholar] [CrossRef] [PubMed]
- Christerson, L.B.; McKearin, D.M. Orb Is Required for Anteroposterior and Dorsoventral Patterning during Drosophila Oogenesis. Genes Dev. 1994, 8, 614–628. [Google Scholar] [CrossRef]
- Chang, J.S.; Tan, L.; Wolf, M.R.; Schedl, P. Functioning of the Drosophila Orb Gene in Gurken mRNA Localization and Translation. Development 2001, 128, 3169–3177. [Google Scholar] [CrossRef]
- Peri, F.; Roth, S. Combined Activities of Gurken and Decapentaplegic Specify Dorsal Chorion Structures of the Drosophila Egg. Development 2000, 127, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Schüpbach, T. Germ Line and Soma Cooperate during Oogenesis to Establish the Dorsoventral Pattern of Egg Shell and Embryo in Drosophila Melanogaster. Cell 1987, 49, 699–707. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Gene Description | Log2FC |
---|---|---|
Unigene14375 | chorion class CB protein M5H4-like | −3.3596 |
Unigene15399 | chorion class CB protein M5H4-like | −2.6874 |
Unigene9048 | chorion class CB protein M5H4-like | −1.14 |
Unigene5435 | follicle cell protein 3C-1 | −3.7529 |
Unigene8510 | cuticle protein 19 | −1.6402 |
Unigene16156 | putative cuticle protein CPH43 | 0.8625 |
Unigene17732 | flexible cuticle protein 12-like | 0.2520 |
Unigene9909 | larval cuticle protein LCP-17-like | −0.2457 |
Unigene6040 | histone-lysine N-methyltransferase 2B-like, partial | −0.0795 |
Unigene11771 | pupal cuticle protein 20-like | 0.0296 |
Unigene2691 | protein naked cuticle homolog | 0.1379 |
Unigene12583 | cuticle protein 14 | 0.0134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Xiao, Y.; Cai, G.; Wang, K.; Zhao, C.; Liu, P. A Maternal Gene Regulator CPEB2 Is Involved in Mating-Induced Egg Maturation in the Cnaphalocrocis medinalis. Insects 2025, 16, 666. https://doi.org/10.3390/insects16070666
Duan Y, Xiao Y, Cai G, Wang K, Zhao C, Liu P. A Maternal Gene Regulator CPEB2 Is Involved in Mating-Induced Egg Maturation in the Cnaphalocrocis medinalis. Insects. 2025; 16(7):666. https://doi.org/10.3390/insects16070666
Chicago/Turabian StyleDuan, Yi, Yueran Xiao, Guo Cai, Kepeng Wang, Chenfan Zhao, and Pengcheng Liu. 2025. "A Maternal Gene Regulator CPEB2 Is Involved in Mating-Induced Egg Maturation in the Cnaphalocrocis medinalis" Insects 16, no. 7: 666. https://doi.org/10.3390/insects16070666
APA StyleDuan, Y., Xiao, Y., Cai, G., Wang, K., Zhao, C., & Liu, P. (2025). A Maternal Gene Regulator CPEB2 Is Involved in Mating-Induced Egg Maturation in the Cnaphalocrocis medinalis. Insects, 16(7), 666. https://doi.org/10.3390/insects16070666