Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (824)

Search Parameters:
Keywords = joint feature extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3474 KiB  
Article
Research on Unsupervised Domain Adaptive Bearing Fault Diagnosis Method Based on Migration Learning Using MSACNN-IJMMD-DANN
by Xiaoxu Li, Jiahao Wang, Jianqiang Wang, Jixuan Wang, Qinghua Li, Xuelian Yu and Jiaming Chen
Machines 2025, 13(7), 618; https://doi.org/10.3390/machines13070618 - 17 Jul 2025
Abstract
To address the problems of feature extraction, cost of obtaining labeled samples, and large differences in domain distribution in bearing fault diagnosis on variable operating conditions, an unsupervised domain-adaptive bearing fault diagnosis method based on migration learning using MSACNN-IJMMD-DANN (multi-scale and attention-based convolutional [...] Read more.
To address the problems of feature extraction, cost of obtaining labeled samples, and large differences in domain distribution in bearing fault diagnosis on variable operating conditions, an unsupervised domain-adaptive bearing fault diagnosis method based on migration learning using MSACNN-IJMMD-DANN (multi-scale and attention-based convolutional neural network, MSACNN, improved joint maximum mean discrepancy, IJMMD, domain adversarial neural network, DANN) is proposed. Firstly, in order to extract fault-type features from the source domain and target domain, this paper establishes a MSACNN based on multi-scale and attention mechanisms. Secondly, to reduce the feature distribution difference between the source and target domains and address the issue of domain distribution differences, the joint maximum mean discrepancy and correlation alignment approaches are used to create the metric criterion. Then, the adversarial loss mechanism in DANN is introduced to reduce the interference of weakly correlated domain features for better fault diagnosis and identification. Finally, the method is validated using bearing datasets from Case Western Reserve University, Jiangnan University, and our laboratory. The experimental results demonstrated that the method achieved higher accuracy across different migration tasks, providing an effective solution for bearing fault diagnosis in industrial environments with varying operating conditions. Full article
Show Figures

Figure 1

29 pages, 4633 KiB  
Article
Failure Detection of Laser Welding Seam for Electric Automotive Brake Joints Based on Image Feature Extraction
by Diqing Fan, Chenjiang Yu, Ling Sha, Haifeng Zhang and Xintian Liu
Machines 2025, 13(7), 616; https://doi.org/10.3390/machines13070616 - 17 Jul 2025
Abstract
As a key component in the hydraulic brake system of automobiles, the brake joint directly affects the braking performance and driving safety of the vehicle. Therefore, improving the quality of brake joints is crucial. During the processing, due to the complexity of the [...] Read more.
As a key component in the hydraulic brake system of automobiles, the brake joint directly affects the braking performance and driving safety of the vehicle. Therefore, improving the quality of brake joints is crucial. During the processing, due to the complexity of the welding material and welding process, the weld seam is prone to various defects such as cracks, pores, undercutting, and incomplete fusion, which can weaken the joint and even lead to product failure. Traditional weld seam detection methods include destructive testing and non-destructive testing; however, destructive testing has high costs and long cycles, and non-destructive testing, such as radiographic testing and ultrasonic testing, also have problems such as high consumable costs, slow detection speed, or high requirements for operator experience. In response to these challenges, this article proposes a defect detection and classification method for laser welding seams of automotive brake joints based on machine vision inspection technology. Laser-welded automotive brake joints are subjected to weld defect detection and classification, and image processing algorithms are optimized to improve the accuracy of detection and failure analysis by utilizing the high efficiency, low cost, flexibility, and automation advantages of machine vision technology. This article first analyzes the common types of weld defects in laser welding of automotive brake joints, including craters, holes, and nibbling, and explores the causes and characteristics of these defects. Then, an image processing algorithm suitable for laser welding of automotive brake joints was studied, including pre-processing steps such as image smoothing, image enhancement, threshold segmentation, and morphological processing, to extract feature parameters of weld defects. On this basis, a welding seam defect detection and classification system based on the cascade classifier and AdaBoost algorithm was designed, and efficient recognition and classification of welding seam defects were achieved by training the cascade classifier. The results show that the system can accurately identify and distinguish pits, holes, and undercutting defects in welds, with an average classification accuracy of over 90%. The detection and recognition rate of pit defects reaches 100%, and the detection accuracy of undercutting defects is 92.6%. And the overall missed detection rate is less than 3%, with both the missed detection rate and false detection rate for pit defects being 0%. The average detection time for each image is 0.24 s, meeting the real-time requirements of industrial automation. Compared with infrared and ultrasonic detection methods, the proposed machine-vision-based detection system has significant advantages in detection speed, surface defect recognition accuracy, and industrial adaptability. This provides an efficient and accurate solution for laser welding defect detection of automotive brake joints. Full article
Show Figures

Figure 1

22 pages, 4882 KiB  
Article
Dual-Branch Spatio-Temporal-Frequency Fusion Convolutional Network with Transformer for EEG-Based Motor Imagery Classification
by Hao Hu, Zhiyong Zhou, Zihan Zhang and Wenyu Yuan
Electronics 2025, 14(14), 2853; https://doi.org/10.3390/electronics14142853 - 17 Jul 2025
Abstract
The decoding of motor imagery (MI) electroencephalogram (EEG) signals is crucial for motor control and rehabilitation. However, as feature extraction is the core component of the decoding process, traditional methods, often limited to single-feature domains or shallow time-frequency fusion, struggle to comprehensively capture [...] Read more.
The decoding of motor imagery (MI) electroencephalogram (EEG) signals is crucial for motor control and rehabilitation. However, as feature extraction is the core component of the decoding process, traditional methods, often limited to single-feature domains or shallow time-frequency fusion, struggle to comprehensively capture the spatio-temporal-frequency characteristics of the signals, thereby limiting decoding accuracy. To address these limitations, this paper proposes a dual-branch neural network architecture with multi-domain feature fusion, the dual-branch spatio-temporal-frequency fusion convolutional network with Transformer (DB-STFFCNet). The DB-STFFCNet model consists of three modules: the spatiotemporal feature extraction module (STFE), the frequency feature extraction module (FFE), and the feature fusion and classification module. The STFE module employs a lightweight multi-dimensional attention network combined with a temporal Transformer encoder, capable of simultaneously modeling local fine-grained features and global spatiotemporal dependencies, effectively integrating spatiotemporal information and enhancing feature representation. The FFE module constructs a hierarchical feature refinement structure by leveraging the fast Fourier transform (FFT) and multi-scale frequency convolutions, while a frequency-domain Transformer encoder captures the global dependencies among frequency domain features, thus improving the model’s ability to represent key frequency information. Finally, the fusion module effectively consolidates the spatiotemporal and frequency features to achieve accurate classification. To evaluate the feasibility of the proposed method, experiments were conducted on the BCI Competition IV-2a and IV-2b public datasets, achieving accuracies of 83.13% and 89.54%, respectively, outperforming existing methods. This study provides a novel solution for joint time-frequency representation learning in EEG analysis. Full article
(This article belongs to the Special Issue Artificial Intelligence Methods for Biomedical Data Processing)
Show Figures

Figure 1

23 pages, 6348 KiB  
Article
A Framework for Predicting Winter Wheat Yield in Northern China with Triple Cross-Attention and Multi-Source Data Fusion
by Shuyan Pan and Liqun Liu
Plants 2025, 14(14), 2206; https://doi.org/10.3390/plants14142206 - 16 Jul 2025
Viewed by 56
Abstract
To solve the issue that existing yield prediction methods do not fully capture the interaction between multiple factors, we propose a winter wheat yield prediction framework with triple cross-attention for multi-source data fusion. This framework consists of three modules: a multi-source data processing [...] Read more.
To solve the issue that existing yield prediction methods do not fully capture the interaction between multiple factors, we propose a winter wheat yield prediction framework with triple cross-attention for multi-source data fusion. This framework consists of three modules: a multi-source data processing module, a multi-source feature fusion module, and a yield prediction module. The multi-source data processing module collects satellite, climate, and soil data based on the winter wheat planting range, and constructs a multi-source feature sequence set by combining statistical data. The multi-source feature fusion module first extracts deeper-level feature information based on the characteristics of different data, and then performs multi-source feature fusion through a triple cross-attention fusion mechanism. The encoder part in the production prediction module adds a graph attention mechanism, forming a dual branch with the original multi-head self-attention mechanism to ensure the capture of global dependencies while enhancing the preservation of local feature information. The decoder section generates the final predicted output. The results show that: (1) Using 2021 and 2022 as test sets, the mean absolute error of our method is 385.99 kg/hm2, and the root mean squared error is 501.94 kg/hm2, which is lower than other methods. (2) It can be concluded that the jointing-heading stage (March to April) is the most crucial period affecting winter wheat production. (3) It is evident that our model has the ability to predict the final winter wheat yield nearly a month in advance. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

60 pages, 3898 KiB  
Review
The Therapeutic Potential of Phytochemicals Unlocks New Avenues in the Management of Rheumatoid Arthritis
by Kalina A. Nikolova-Ganeva, Nikolina M. Mihaylova, Lidiya A. Kechidzhieva, Kristina I. Ivanova, Alexander S. Zarkov, Daniel L. Parzhanov, Momchil M. Ivanov and Andrey S. Marchev
Int. J. Mol. Sci. 2025, 26(14), 6813; https://doi.org/10.3390/ijms26146813 - 16 Jul 2025
Viewed by 93
Abstract
Rheumatoid arthritis (RA) is a progressive and systemic autoimmune disease, characterized by a chronic inflammatory process, affecting the lining of the synovial joints, many body organs/systems, and blood vessels. Its pathological hallmarks are hyperplasic synovium, bone erosion, and progressive joint destruction. Rheumatoid arthritis [...] Read more.
Rheumatoid arthritis (RA) is a progressive and systemic autoimmune disease, characterized by a chronic inflammatory process, affecting the lining of the synovial joints, many body organs/systems, and blood vessels. Its pathological hallmarks are hyperplasic synovium, bone erosion, and progressive joint destruction. Rheumatoid arthritis affects over 20 million people, with a worldwide prevalence of 0.5–1.0%, exhibiting gender, ethnic, and geographical differences. The progressive disability severely impairs physical motion and quality of life and is finally leading to a shortened life span. The pathogenesis of RA is a complex and still poorly understood process in which genetic and environmental factors are principally associated. Current treatment mostly relies on conventional/non-biological disease-modifying anti-rheumatic drugs (cDMARDs), analgesics, non-steroidal anti-inflammatory drugs, glucocorticoids, steroids, immunosuppresants, and biologic DMARDs, which only control inflammation and pain. Along with side effects (drug toxicity and intolerance), these anti-rheumatic drugs possess limited efficacy. Therefore, the discovery of novel multi-target therapeutics with an improved safety profile that function as inhibitors of RA-linked signaling systems are in high demand, and this is in the interest of both patients and clinicians. Plant-derived extracts, nutritional supplements, dietary medicine, and molecules with anti-inflammatory activity represent promising adjuvant agents or alternatives for RA therapeutics. This review not only aims to discuss the basic features of RA pathogenesis, risk factors, and signaling pathways but also highlights the research progress in pre-clinical RA in in vitro and in vivo models, revealing new avenues in the management of the disease in terms of comprehensive multidisciplinary strategies originating from medicinal plants and plant-derived molecules. Full article
(This article belongs to the Special Issue Natural Products as Multitarget Agents in Human Diseases)
Show Figures

Graphical abstract

19 pages, 709 KiB  
Article
Fusion of Multimodal Spatio-Temporal Features and 3D Deformable Convolution Based on Sign Language Recognition in Sensor Networks
by Qian Zhou, Hui Li, Weizhi Meng, Hua Dai, Tianyu Zhou and Guineng Zheng
Sensors 2025, 25(14), 4378; https://doi.org/10.3390/s25144378 - 13 Jul 2025
Viewed by 141
Abstract
Sign language is a complex and dynamic visual language that requires the coordinated movement of various body parts, such as the hands, arms, and limbs—making it an ideal application domain for sensor networks to capture and interpret human gestures accurately. To address the [...] Read more.
Sign language is a complex and dynamic visual language that requires the coordinated movement of various body parts, such as the hands, arms, and limbs—making it an ideal application domain for sensor networks to capture and interpret human gestures accurately. To address the intricate task of precise and expedient SLR from raw videos, this study introduces a novel deep learning approach by devising a multimodal framework for SLR. Specifically, feature extraction models are built based on two modalities: skeleton and RGB images. In this paper, we firstly propose a Multi-Stream Spatio-Temporal Graph Convolutional Network (MSGCN) that relies on three modules: a decoupling graph convolutional network, a self-emphasizing temporal convolutional network, and a spatio-temporal joint attention module. These modules are combined to capture the spatio-temporal information in multi-stream skeleton features. Secondly, we propose a 3D ResNet model based on deformable convolution (D-ResNet) to model complex spatial and temporal sequences in the original raw images. Finally, a gating mechanism-based Multi-Stream Fusion Module (MFM) is employed to merge the results of the two modalities. Extensive experiments are conducted on the public datasets AUTSL and WLASL, achieving competitive results compared to state-of-the-art systems. Full article
(This article belongs to the Special Issue Intelligent Sensing and Artificial Intelligence for Image Processing)
Show Figures

Figure 1

21 pages, 21215 KiB  
Article
ES-Net Empowers Forest Disturbance Monitoring: Edge–Semantic Collaborative Network for Canopy Gap Mapping
by Yutong Wang, Zhang Zhang, Jisheng Xia, Fei Zhao and Pinliang Dong
Remote Sens. 2025, 17(14), 2427; https://doi.org/10.3390/rs17142427 - 12 Jul 2025
Viewed by 256
Abstract
Canopy gaps are vital microhabitats for forest carbon cycling and species regeneration, whose accurate extraction is crucial for ecological modeling and smart forestry. However, traditional monitoring methods have notable limitations: ground-based measurements are inefficient; remote-sensing interpretation is susceptible to terrain and spectral interference; [...] Read more.
Canopy gaps are vital microhabitats for forest carbon cycling and species regeneration, whose accurate extraction is crucial for ecological modeling and smart forestry. However, traditional monitoring methods have notable limitations: ground-based measurements are inefficient; remote-sensing interpretation is susceptible to terrain and spectral interference; and traditional algorithms exhibit an insufficient feature representation capability. Aiming at overcoming the bottleneck issues of canopy gap identification in mountainous forest regions, we constructed a multi-task deep learning model (ES-Net) integrating an edge–semantic collaborative perception mechanism. First, a refined sample library containing multi-scale interference features was constructed, which included 2808 annotated UAV images. Based on this, a dual-branch feature interaction architecture was designed. A cross-layer attention mechanism was embedded in the semantic segmentation module (SSM) to enhance the discriminative ability for heterogeneous features. Meanwhile, an edge detection module (EDM) was built to strengthen geometric constraints. Results from selected areas in Yunnan Province (China) demonstrate that ES-Net outperforms U-Net, boosting the Intersection over Union (IoU) by 0.86% (95.41% vs. 94.55%), improving the edge coverage rate by 3.14% (85.32% vs. 82.18%), and reducing the Hausdorff Distance by 38.6% (28.26 pixels vs. 46.02 pixels). Ablation studies further verify that the synergy between SSM and EDM yields a 13.0% IoU gain over the baseline, highlighting the effectiveness of joint semantic–edge optimization. This study provides a terrain-adaptive intelligent interpretation method for forest disturbance monitoring and holds significant practical value for advancing smart forestry construction and ecosystem sustainable management. Full article
Show Figures

Graphical abstract

31 pages, 529 KiB  
Review
Advances and Challenges in Respiratory Sound Analysis: A Technique Review Based on the ICBHI2017 Database
by Shaode Yu, Jieyang Yu, Lijun Chen, Bing Zhu, Xiaokun Liang, Yaoqin Xie and Qiurui Sun
Electronics 2025, 14(14), 2794; https://doi.org/10.3390/electronics14142794 - 11 Jul 2025
Viewed by 276
Abstract
Respiratory diseases present significant global health challenges. Recent advances in respiratory sound analysis (RSA) have shown great potential for automated disease diagnosis and patient management. The International Conference on Biomedical and Health Informatics 2017 (ICBHI2017) database stands as one of the most authoritative [...] Read more.
Respiratory diseases present significant global health challenges. Recent advances in respiratory sound analysis (RSA) have shown great potential for automated disease diagnosis and patient management. The International Conference on Biomedical and Health Informatics 2017 (ICBHI2017) database stands as one of the most authoritative open-access RSA datasets. This review systematically examines 135 technical publications utilizing the database, and a comprehensive and timely summary of RSA methodologies is offered for researchers and practitioners in this field. Specifically, this review covers signal processing techniques including data resampling, augmentation, normalization, and filtering; feature extraction approaches spanning time-domain, frequency-domain, joint time–frequency analysis, and deep feature representation from pre-trained models; and classification methods for adventitious sound (AS) categorization and pathological state (PS) recognition. Current achievements for AS and PS classification are summarized across studies using official and custom data splits. Despite promising technique advancements, several challenges remain unresolved. These include a severe class imbalance in the dataset, limited exploration of advanced data augmentation techniques and foundation models, a lack of model interpretability, and insufficient generalization studies across clinical settings. Future directions involve multi-modal data fusion, the development of standardized processing workflows, interpretable artificial intelligence, and integration with broader clinical data sources to enhance diagnostic performance and clinical applicability. Full article
Show Figures

Figure 1

19 pages, 14033 KiB  
Article
SCCA-YOLO: Spatial Channel Fusion and Context-Aware YOLO for Lunar Crater Detection
by Jiahao Tang, Boyuan Gu, Tianyou Li and Ying-Bo Lu
Remote Sens. 2025, 17(14), 2380; https://doi.org/10.3390/rs17142380 - 10 Jul 2025
Viewed by 281
Abstract
Lunar crater detection plays a crucial role in geological analysis and the advancement of lunar exploration. Accurate identification of craters is also essential for constructing high-resolution topographic maps and supporting mission planning in future lunar exploration efforts. However, lunar craters often suffer from [...] Read more.
Lunar crater detection plays a crucial role in geological analysis and the advancement of lunar exploration. Accurate identification of craters is also essential for constructing high-resolution topographic maps and supporting mission planning in future lunar exploration efforts. However, lunar craters often suffer from insufficient feature representation due to their small size and blurred boundaries. In addition, the visual similarity between craters and surrounding terrain further exacerbates background confusion. These challenges significantly hinder detection performance in remote sensing imagery and underscore the necessity of enhancing both local feature representation and global semantic reasoning. In this paper, we propose a novel Spatial Channel Fusion and Context-Aware YOLO (SCCA-YOLO) model built upon the YOLO11 framework. Specifically, the Context-Aware Module (CAM) employs a multi-branch dilated convolutional structure to enhance feature richness and expand the local receptive field, thereby strengthening the feature extraction capability. The Joint Spatial and Channel Fusion Module (SCFM) is utilized to fuse spatial and channel information to model the global relationships between craters and the background, effectively suppressing background noise and reinforcing feature discrimination. In addition, the improved Channel Attention Concatenation (CAC) strategy adaptively learns channel-wise importance weights during feature concatenation, further optimizing multi-scale semantic feature fusion and enhancing the model’s sensitivity to critical crater features. The proposed method is validated on a self-constructed Chang’e 6 dataset, covering the landing site and its surrounding areas. Experimental results demonstrate that our model achieves an mAP0.5 of 96.5% and an mAP0.5:0.95 of 81.5%, outperforming other mainstream detection models including the YOLO family of algorithms. These findings highlight the potential of SCCA-YOLO for high-precision lunar crater detection and provide valuable insights into future lunar surface analysis. Full article
Show Figures

Figure 1

32 pages, 6788 KiB  
Article
Knee Osteoarthritis Detection and Classification Using Autoencoders and Extreme Learning Machines
by Jarrar Amjad, Muhammad Zaheer Sajid, Ammar Amjad, Muhammad Fareed Hamid, Ayman Youssef and Muhammad Irfan Sharif
AI 2025, 6(7), 151; https://doi.org/10.3390/ai6070151 - 8 Jul 2025
Viewed by 390
Abstract
Background/Objectives: Knee osteoarthritis (KOA) is a prevalent disorder affecting both older adults and younger individuals, leading to compromised joint function and mobility. Early and accurate detection is critical for effective intervention, as treatment options become increasingly limited as the disease progresses. Traditional diagnostic [...] Read more.
Background/Objectives: Knee osteoarthritis (KOA) is a prevalent disorder affecting both older adults and younger individuals, leading to compromised joint function and mobility. Early and accurate detection is critical for effective intervention, as treatment options become increasingly limited as the disease progresses. Traditional diagnostic methods rely heavily on the expertise of physicians and are susceptible to errors. The demand for utilizing deep learning models in order to automate and improve the accuracy of KOA image classification has been increasing. In this research, a unique deep learning model is presented that employs autoencoders as the primary mechanism for feature extraction, providing a robust solution for KOA classification. Methods: The proposed model differentiates between KOA-positive and KOA-negative images and categorizes the disease into its primary severity levels. Levels of severity range from “healthy knees” (0) to “severe KOA” (4). Symptoms range from typical joint structures to significant joint damage, such as bone spur growth, joint space narrowing, and bone deformation. Two experiments were conducted using different datasets to validate the efficacy of the proposed model. Results: The first experiment used the autoencoder for feature extraction and classification, which reported an accuracy of 96.68%. Another experiment using autoencoders for feature extraction and Extreme Learning Machines for actual classification resulted in an even higher accuracy value of 98.6%. To test the generalizability of the Knee-DNS system, we utilized the Butterfly iQ+ IoT device for image acquisition and Google Colab’s cloud computing services for data processing. Conclusions: This work represents a pioneering application of autoencoder-based deep learning models in the domain of KOA classification, achieving remarkable accuracy and robustness. Full article
(This article belongs to the Special Issue AI in Bio and Healthcare Informatics)
Show Figures

Figure 1

19 pages, 3207 KiB  
Article
Pose-Driven Body Shape Prediction Algorithm Based on the Conditional GAN
by Jiwon Jang, Jiseong Byeon, Daewon Jung, Jihun Chang and Sekyoung Youm
Appl. Sci. 2025, 15(14), 7643; https://doi.org/10.3390/app15147643 - 8 Jul 2025
Viewed by 177
Abstract
Reconstructing accurate human body shapes from clothed images remains a challenge due to occlusion by garments and limitations of the existing methods. Traditional parametric models often require minimal clothing and involve high computational costs. To address these issues, we propose a lightweight algorithm [...] Read more.
Reconstructing accurate human body shapes from clothed images remains a challenge due to occlusion by garments and limitations of the existing methods. Traditional parametric models often require minimal clothing and involve high computational costs. To address these issues, we propose a lightweight algorithm that predicts body shape from clothed RGB images by leveraging pose estimation. Our method simultaneously extracts major joint positions and body features to reconstruct complete 3D body shapes, even in regions hidden by clothing or obscured from view. This approach enables real-time, non-invasive body modeling suitable for practical applications. Full article
Show Figures

Figure 1

36 pages, 11404 KiB  
Article
Synchronous Acquisition and Processing of Electro- and Phono-Cardiogram Signals for Accurate Systolic Times’ Measurement in Heart Disease Diagnosis and Monitoring
by Roberto De Fazio, Ilaria Cascella, Şule Esma Yalçınkaya, Massimo De Vittorio, Luigi Patrono, Ramiro Velazquez and Paolo Visconti
Sensors 2025, 25(13), 4220; https://doi.org/10.3390/s25134220 - 6 Jul 2025
Viewed by 356
Abstract
Cardiovascular diseases remain one of the leading causes of mortality worldwide, highlighting the importance of effective monitoring and early diagnosis. While electrocardiography (ECG) is the standard technique for evaluating the heart’s electrical activity and detecting rhythm and conduction abnormalities, it alone is insufficient [...] Read more.
Cardiovascular diseases remain one of the leading causes of mortality worldwide, highlighting the importance of effective monitoring and early diagnosis. While electrocardiography (ECG) is the standard technique for evaluating the heart’s electrical activity and detecting rhythm and conduction abnormalities, it alone is insufficient for identifying certain conditions, such as valvular disorders. Phonocardiography (PCG) allows the recording and analysis of heart sounds and improves the diagnostic accuracy when combined with ECG. In this study, ECG and PCG signals were simultaneously acquired from a resting adult subject using a compact system comprising an analog front-end (model AD8232, manufactured by Analog Devices, Wilmington, MA, USA) for ECG acquisition and a digital stethoscope built around a condenser electret microphone (model HM-9250, manufactured by HMYL, Anqing, China). Both the ECG electrodes and the microphone were positioned on the chest to ensure the spatial alignment of the signals. An adaptive segmentation algorithm was developed to segment PCG and ECG signals based on their morphological and temporal features. This algorithm identifies the onset and peaks of S1 and S2 heart sounds in the PCG and the Q, R, and S waves in the ECG, enabling the extraction of the systolic time intervals such as EMAT, PEP, LVET, and LVST parameters proven useful in the diagnosis and monitoring of cardiovascular diseases. Based on the segmented signals, the measured averages (EMAT = 74.35 ms, PEP = 89.00 ms, LVET = 244.39 ms, LVST = 258.60 ms) were consistent with the reference standards, demonstrating the reliability of the developed method. The proposed algorithm was validated on synchronized ECG and PCG signals from multiple subjects in an open-source dataset (BSSLAB Localized ECG Data). The systolic intervals extracted using the proposed method closely matched the literature values, confirming the robustness across different recording conditions; in detail, the mean Q–S1 interval was 40.45 ms (≈45 ms reference value, mean difference: −4.85 ms, LoA: −3.42 ms and −6.09 ms) and the R–S1 interval was 14.09 ms (≈15 ms reference value, mean difference: −1.2 ms, LoA: −0.55 ms and −1.85 ms). In conclusion, the results demonstrate the potential of the joint ECG and PCG analysis to improve the long-term monitoring of cardiovascular diseases. Full article
Show Figures

Figure 1

15 pages, 1009 KiB  
Article
Quantitative Detection of Mixed Gas Infrared Spectra Based on Joint SAE and PLS Downscaling with XGBoost
by Xichao Zhou, Baigen Wang, Xingjiang Bao, Hongtao Qi, Yong Peng, Zishang Xu and Fan Zhang
Processes 2025, 13(7), 2112; https://doi.org/10.3390/pr13072112 - 3 Jul 2025
Viewed by 284
Abstract
In view of the bottleneck problems of serious spectral peak cross-interference, redundant data dimensions, and inefficient traditional dimensionality reduction methods in the infrared spectral analysis of mixed gases, this paper studies a joint dimensionality reduction strategy combining stacked self encoder (SAE) and partial [...] Read more.
In view of the bottleneck problems of serious spectral peak cross-interference, redundant data dimensions, and inefficient traditional dimensionality reduction methods in the infrared spectral analysis of mixed gases, this paper studies a joint dimensionality reduction strategy combining stacked self encoder (SAE) and partial least squares (PLS) and constructs an XGBoost regression model for quantitative detection. The experimental data are from the real infrared spectrum dataset of the National Institute of Standards and Technology (NIST) database, covering key industrial gases such as CO, CH4, etc. Compared with the traditional principal component analysis (PCA), which relies on the variance contribution rate and leads to dimensional redundancy, and the calculation efficiency of dimension parameters that need to be cross-verified for PLS dimension reduction alone, the SAE-PLS joint strategy has two advantages: first, the optimal dimension reduction is automatically determined by SAE’s nonlinear compression mechanism, which effectively overcomes the limitations of linear methods in spectral nonlinear feature extraction; and second, the feature selection is carried out by combining the variable importance projection index of PLS. Compared with SAE, the compression efficiency is significantly improved. The XGBoost model was selected because of its adaptability to high-dimensional sparse data. Its regularization term and feature importance weighting mechanism can suppress the interference of spectral noise. The experimental results show that the mean square error (MSE) on the test set is reduced to 0.012% (71.4% lower than that of random forest), and the correlation coefficient (R2) is 0.987. By integrating deep feature optimization and ensemble learning, this method provides a new solution with high efficiency and high precision for industrial process gas monitoring. Full article
Show Figures

Figure 1

37 pages, 8636 KiB  
Article
Attitude Estimation of Spinning Space Targets Utilizing Multistatic ISAR Joint Observation
by Jishun Li, Canbin Yin, Can Xu, Jun He, Pengju Li and Yasheng Zhang
Remote Sens. 2025, 17(13), 2263; https://doi.org/10.3390/rs17132263 - 1 Jul 2025
Viewed by 205
Abstract
When a space target malfunctions and is no longer controlled by its attitude control system, it usually tumbles in orbit and exhibits a slow spinning state. Accurately estimating the on-orbit attitude of spinning space targets is of vital importance for ensuring the operation [...] Read more.
When a space target malfunctions and is no longer controlled by its attitude control system, it usually tumbles in orbit and exhibits a slow spinning state. Accurately estimating the on-orbit attitude of spinning space targets is of vital importance for ensuring the operation of space assets. Moreover, it plays a significant role in tasks such as reentry observation and collision avoidance. Currently, most existing methods estimate the attitude of space targets by using a single inverse synthetic aperture radar (ISAR) for long-term observation. However, this approach not only requires a long observation time but also fails to estimate the attitude of spinning targets. To address these limitations, this paper proposes a novel approach for estimating the attitude of spinning space targets, which utilizes the joint observations of a multiple-station ISAR. Specifically, the proposed method fully exploits the projection principle of ISAR imaging and uses an ISAR high-resolution network (ISAR-HRNet) to automatically extract the projection features of typical components of the target. Then, the analytical expressions for the target’s instantaneous attitude and spin vector under the multi-station observation imaging projection model are derived. Based on the extracted features of the typical components, the lengths, orientations, and spin vectors of the space target are determined. Importantly, the proposed method can achieve the attitude estimation of the spinning space targets within a single observation period, without the need for manual intervention or prior information about the target’s three-dimensional (3D) model. Additionally, the analytical method for solving the spin vector offers high efficiency and accuracy. Finally, the effectiveness of the proposed attitude estimation algorithm is verified by experiments on simulated data, and the performance of the ISAR-HRNet is also tested in the key point extraction experiments using measured data. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

26 pages, 7645 KiB  
Article
Prediction of Rice Chlorophyll Index (CHI) Using Nighttime Multi-Source Spectral Data
by Cong Liu, Lin Wang, Xuetong Fu, Junzhe Zhang, Ran Wang, Xiaofeng Wang, Nan Chai, Longfeng Guan, Qingshan Chen and Zhongchen Zhang
Agriculture 2025, 15(13), 1425; https://doi.org/10.3390/agriculture15131425 - 1 Jul 2025
Viewed by 384
Abstract
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring [...] Read more.
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring at the canopy level. This study aimed to explore the feasibility of predicting rice canopy CHI using nighttime multi-source spectral data combined with machine learning models. In this study, ground truth CHI values were obtained using a SPAD-502 chlorophyll meter. Canopy spectral data were acquired under nighttime conditions using a high-throughput phenotyping platform (HTTP) equipped with active light sources in a greenhouse environment. Three types of sensors—multispectral (MS), visible light (RGB), and chlorophyll fluorescence (ChlF)—were employed to collect data across different growth stages of rice, ranging from tillering to maturity. PCA and LASSO regression were applied for dimensionality reduction and feature selection of multi-source spectral variables. Subsequently, CHI prediction models were developed using four machine learning algorithms: support vector regression (SVR), random forest (RF), back-propagation neural network (BPNN), and k-nearest neighbors (KNNs). The predictive performance of individual sensors (MS, RGB, and ChlF) and sensor fusion strategies was evaluated across multiple growth stages. The results demonstrated that sensor fusion models consistently outperformed single-sensor approaches. Notably, during tillering (TI), maturity (MT), and the full growth period (GP), fused models achieved high accuracy (R2 > 0.90, RMSE < 2.0). The fusion strategy also showed substantial advantages over single-sensor models during the jointing–heading (JH) and grain-filling (GF) stages. Among the individual sensor types, MS data achieved relatively high accuracy at certain stages, while models based on RGB and ChlF features exhibited weaker performance and lower prediction stability. Overall, the highest prediction accuracy was achieved during the full growth period (GP) using fused spectral data, with an R2 of 0.96 and an RMSE of 1.99. This study provides a valuable reference for developing CHI prediction models based on nighttime multi-source spectral data. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

Back to TopTop