Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = joint distribution adaptation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 642 KiB  
Article
Policy Tools, Policy Perception, and Compliance with Urban Waste Sorting Policies: Evidence from 34 Cities in China
by Yingqian Lin, Shuaikun Lu, Guanmao Yin and Baolong Yuan
Sustainability 2025, 17(15), 6787; https://doi.org/10.3390/su17156787 - 25 Jul 2025
Viewed by 230
Abstract
Promoting municipal solid waste (MSW) sorting is critical to advancing sustainable and low-carbon urban development. While existing research often focuses separately on external policy tools or internal behavioral drivers, limited attention has been given to their joint effects within an integrated framework. This [...] Read more.
Promoting municipal solid waste (MSW) sorting is critical to advancing sustainable and low-carbon urban development. While existing research often focuses separately on external policy tools or internal behavioral drivers, limited attention has been given to their joint effects within an integrated framework. This study addresses this gap by analyzing micro-survey data from 1983 residents across 34 prefecture-level and above cities in China, using a bivariate probit model to examine how policy tools and policy perception—both independently and interactively—shape residents’ active and passive compliance with MSW sorting policies. The findings reveal five key insights. First, the adoption and spatial distribution of policy tools are uneven: environment-type tools dominate, supply-type tools are moderately deployed, and demand-type tools are underutilized. Second, both policy tools and policy perception significantly promote compliance behaviors, with policy cognition exerting the strongest effect. Third, differential effects are observed—policy cognition primarily drives active compliance, whereas policy acceptance more strongly predicts passive compliance. Fourth, synergistic effects emerge when supply-type tools are combined with environment-type or demand-type tools. Finally, policy perception not only directly enhances compliance but also moderates the effectiveness of policy tools, with notable heterogeneity among residents with higher cognitive or emotional alignment. These findings contribute to a deeper understanding of compliance mechanisms and offer practical implications for designing perception-sensitive and regionally adaptive MSW governance strategies. Full article
Show Figures

Figure 1

17 pages, 2690 KiB  
Article
Impact Analysis of Price Cap on Bidding Strategies of VPP Considering Imbalance Penalty Structures
by Youngkook Song, Yongtae Yoon and Younggyu Jin
Energies 2025, 18(15), 3927; https://doi.org/10.3390/en18153927 - 23 Jul 2025
Viewed by 179
Abstract
Virtual power plants (VPPs) enable the efficient participation of distributed renewable energy resources in electricity markets by aggregating them. However, the profitability of VPPs is challenged by market volatility and regulatory constraints, such as price caps and imbalance penalties. This study examines the [...] Read more.
Virtual power plants (VPPs) enable the efficient participation of distributed renewable energy resources in electricity markets by aggregating them. However, the profitability of VPPs is challenged by market volatility and regulatory constraints, such as price caps and imbalance penalties. This study examines the joint impact of varying price cap levels and imbalance penalty structures on the bidding strategies and revenues of VPPs. A stochastic optimization model was developed, where a three-stage scenario tree was utilized to capture the uncertainty in electricity prices and renewable generation output. Simulations were performed under various market conditions using real-world price and generation data from the Korean electricity market. The analysis reveals that higher price cap coefficients lead to greater revenue and more segmented bidding strategies, especially under asymmetric penalty structures. Segment-wise analysis of bid price–quantity pairs shows that over-bidding is preferred under upward-only penalty schemes, while under-bidding is preferred under downward-only ones. Notably, revenue improvement tapers off beyond a price cap coefficient of 0.8, which indicates that there exists an optimal threshold for regulatory design. The findings of this study suggest the need for coordination between price caps and imbalance penalties to maintain market efficiency while supporting renewable energy integration. The proposed framework also offers practical insights for market operators and policymakers seeking to balance profitability, adaptability, and stability in VPP-integrated electricity markets. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

24 pages, 3474 KiB  
Article
Research on Unsupervised Domain Adaptive Bearing Fault Diagnosis Method Based on Migration Learning Using MSACNN-IJMMD-DANN
by Xiaoxu Li, Jiahao Wang, Jianqiang Wang, Jixuan Wang, Qinghua Li, Xuelian Yu and Jiaming Chen
Machines 2025, 13(7), 618; https://doi.org/10.3390/machines13070618 - 17 Jul 2025
Viewed by 265
Abstract
To address the problems of feature extraction, cost of obtaining labeled samples, and large differences in domain distribution in bearing fault diagnosis on variable operating conditions, an unsupervised domain-adaptive bearing fault diagnosis method based on migration learning using MSACNN-IJMMD-DANN (multi-scale and attention-based convolutional [...] Read more.
To address the problems of feature extraction, cost of obtaining labeled samples, and large differences in domain distribution in bearing fault diagnosis on variable operating conditions, an unsupervised domain-adaptive bearing fault diagnosis method based on migration learning using MSACNN-IJMMD-DANN (multi-scale and attention-based convolutional neural network, MSACNN, improved joint maximum mean discrepancy, IJMMD, domain adversarial neural network, DANN) is proposed. Firstly, in order to extract fault-type features from the source domain and target domain, this paper establishes a MSACNN based on multi-scale and attention mechanisms. Secondly, to reduce the feature distribution difference between the source and target domains and address the issue of domain distribution differences, the joint maximum mean discrepancy and correlation alignment approaches are used to create the metric criterion. Then, the adversarial loss mechanism in DANN is introduced to reduce the interference of weakly correlated domain features for better fault diagnosis and identification. Finally, the method is validated using bearing datasets from Case Western Reserve University, Jiangnan University, and our laboratory. The experimental results demonstrated that the method achieved higher accuracy across different migration tasks, providing an effective solution for bearing fault diagnosis in industrial environments with varying operating conditions. Full article
Show Figures

Figure 1

24 pages, 4085 KiB  
Article
A Joint Optimization Method for Power and Array of Multi-Point Sources System
by Zhihao Cai, Shiqi Xing, Xinyuan Su, Junpeng Wang, Weize Meng and Ziwen Xiao
Remote Sens. 2025, 17(14), 2445; https://doi.org/10.3390/rs17142445 - 14 Jul 2025
Viewed by 218
Abstract
In a multi-point source system, increasing the jamming power can expand the distribution area of the equivalent radiation center, but significantly increases the system exposure risk. Therefore, in order to achieve an optimal balance between the two, this paper proposes a joint optimization [...] Read more.
In a multi-point source system, increasing the jamming power can expand the distribution area of the equivalent radiation center, but significantly increases the system exposure risk. Therefore, in order to achieve an optimal balance between the two, this paper proposes a joint optimization method for jamming power and an array of multi-point source systems. First, based on determining the spatial geometric relationship between the triplet antenna and the target, the distribution law of the equivalent radiation center of the triplet antenna under the condition of the target echo is derived. Second, by introducing the angle factor, the jamming power and equivalent radiation center distribution area are combined to construct the joint optimization model of jamming power and array in omnidirectional and non-omnidirectional situations. Third, based on the non-dominated sorting whale optimization algorithm (NSWOA), an adaptive inertia weight based on the cosine function and logistic chaotic map is introduced to obtain the optimal arrangement. The experimental results show that in the omnidirectional case, when the average jamming-to-signal ratio is 13.83 dB, the equilateral triangle array can achieve the goal of protecting the target while avoiding the exposure of the triplet antenna position. In the non-omnidirectional case, when the average jamming-to-signal ratio is 13.90 dB, the equilateral triangle array can achieve the optimal balance between the jamming power and the area of the distribution area of the equivalent radiation center, and control the distribution of the equivalent radiation center to strictly meet the preset angular domain constraints. Furthermore, the optimal JSR value was reduced by an average of 1.14 dB compared with that of the conventional selection scheme. Full article
Show Figures

Figure 1

24 pages, 2253 KiB  
Article
Modeling Spatial Data with Heteroscedasticity Using PLVCSAR Model: A Bayesian Quantile Regression Approach
by Rongshang Chen and Zhiyong Chen
Entropy 2025, 27(7), 715; https://doi.org/10.3390/e27070715 - 1 Jul 2025
Viewed by 290
Abstract
Spatial data not only enables smart cities to visualize, analyze, and interpret data related to location and space, but also helps departments make more informed decisions. We apply a Bayesian quantile regression (BQR) of the partially linear varying coefficient spatial autoregressive (PLVCSAR) model [...] Read more.
Spatial data not only enables smart cities to visualize, analyze, and interpret data related to location and space, but also helps departments make more informed decisions. We apply a Bayesian quantile regression (BQR) of the partially linear varying coefficient spatial autoregressive (PLVCSAR) model for spatial data to improve the prediction of performance. It can be used to capture the response of covariates to linear and nonlinear effects at different quantile points. Through an approximation of the nonparametric functions with free-knot splines, we develop a Bayesian sampling approach that can be applied by the Markov chain Monte Carlo (MCMC) approach and design an efficient Metropolis–Hastings within the Gibbs sampling algorithm to explore the joint posterior distributions. Computational efficiency is achieved through a modified reversible-jump MCMC algorithm incorporating adaptive movement steps to accelerate chain convergence. The simulation results demonstrate that our estimator exhibits robustness to alternative spatial weight matrices and outperforms both quantile regression (QR) and instrumental variable quantile regression (IVQR) in a finite sample at different quantiles. The effectiveness of the proposed model and estimation method is demonstrated by the use of real data from the Boston median house price. Full article
(This article belongs to the Special Issue Bayesian Hierarchical Models with Applications)
Show Figures

Figure 1

24 pages, 29179 KiB  
Article
SAR 3D Reconstruction Based on Multi-Prior Collaboration
by Yangyang Wang, Zhenxiao Zhou, Zhiming He, Xu Zhan, Jiapan Yu, Xingcheng Han, Xiaoling Zhang, Zhiliang Yang and Jianping An
Remote Sens. 2025, 17(12), 2105; https://doi.org/10.3390/rs17122105 - 19 Jun 2025
Viewed by 416
Abstract
Array synthetic aperture radar (SAR) three-dimensional (3D) image reconstruction enables the extraction of target distribution information in 3D space, supporting scattering characteristic analysis and structural interpretation. SAR image reconstruction remains challenging due to issues such as noise contamination and incomplete echo data. By [...] Read more.
Array synthetic aperture radar (SAR) three-dimensional (3D) image reconstruction enables the extraction of target distribution information in 3D space, supporting scattering characteristic analysis and structural interpretation. SAR image reconstruction remains challenging due to issues such as noise contamination and incomplete echo data. By introducing sparse priors such as L1 regularization functions, image quality can be improved to a certain extent and the impact of noise can be reduced. However, in scenarios involving distributed targets, the aforementioned methods often fail to maintain continuous structural features such as edges and contours, thereby limiting their reconstruction performance and adaptability. Recent studies have introduced geometric regularization functions to preserve the structural continuity of targets, yet these lack multi-prior consensus, resulting in limited reconstruction quality and robustness in complex scenarios. To address the above issues, a novel array SAR 3D reconstruction method based on multi-prior collaboration (ASAR-MPC) is proposed in this article. In this method, firstly, each optimization module in 3D reconstruction based on multi-prior is treated as an independent function module, and these modules are reformulated as parallel operations rather than sequential utilization. During the reconstruction process, the solution is constrained within the solution space of the module, ensuring that the SAR image simultaneously satisfies multiple prior conditions and achieves a coordinated balance among different priors. Then, a collaborative equilibrium framework based on Mann iteration is presented to solve the optimization problem of 3D reconstruction, which can ensure convergence to an equilibrium point and achieve the joint optimization of all modules. Finally, a series of simulation and experimental tests are described to validate the proposed method. The experimental results show that under limited echo and noise conditions, the proposed method outperforms existing methods in reconstructing complex target structures. Full article
Show Figures

Figure 1

28 pages, 4916 KiB  
Article
Research on Bearing Fault Diagnosis Method for Varying Operating Conditions Based on Spatiotemporal Feature Fusion
by Jin Wang, Yan Wang, Junhui Yu, Qingping Li, Hailin Wang and Xinzhi Zhou
Sensors 2025, 25(12), 3789; https://doi.org/10.3390/s25123789 - 17 Jun 2025
Viewed by 397
Abstract
In real-world scenarios, the rotational speed of bearings is variable. Due to changes in operating conditions, the feature distribution of bearing vibration data becomes inconsistent, which leads to the inability to directly apply the training model built under one operating condition (source domain) [...] Read more.
In real-world scenarios, the rotational speed of bearings is variable. Due to changes in operating conditions, the feature distribution of bearing vibration data becomes inconsistent, which leads to the inability to directly apply the training model built under one operating condition (source domain) to another condition (target domain). Furthermore, the lack of sufficient labeled data in the target domain further complicates fault diagnosis under varying operating conditions. To address this issue, this paper proposes a spatiotemporal feature fusion domain-adaptive network (STFDAN) framework for bearing fault diagnosis under varying operating conditions. The framework constructs a feature extraction and domain adaptation network based on a parallel architecture, designed to capture the complex dynamic characteristics of vibration signals. First, the Fast Fourier Transform (FFT) and Variational Mode Decomposition (VMD) are used to extract the spectral and modal features of the signals, generating a joint representation with multi-level information. Then, a parallel processing mechanism of the Convolutional Neural Network (SECNN) based on the Squeeze-and-Excitation module and the Bidirectional Long Short-Term Memory network (BiLSTM) is employed to dynamically adjust weights, capturing high-dimensional spatiotemporal features. The cross-attention mechanism enables the interaction and fusion of spatial and temporal features, significantly enhancing the complementarity and coupling of the feature representations. Finally, a Multi-Kernel Maximum Mean Discrepancy (MKMMD) is introduced to align the feature distributions between the source and target domains, enabling efficient fault diagnosis under varying bearing conditions. The proposed STFDAN framework is evaluated using bearing datasets from Case Western Reserve University (CWRU), Jiangnan University (JNU), and Southeast University (SEU). Experimental results demonstrate that STFDAN achieves high diagnostic accuracy across different load conditions and effectively solves the bearing fault diagnosis problem under varying operating conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

16 pages, 8564 KiB  
Article
Robotic Tack Welding Path and Trajectory Optimization Using an LF-IWOA
by Bingqi Jia, Haihong Pan, Lei Zhang, Yifan Yang, Huaxin Chen and Lin Chen
Actuators 2025, 14(6), 287; https://doi.org/10.3390/act14060287 - 10 Jun 2025
Viewed by 698
Abstract
Robotic tack welding poses challenges in path optimization due to local optimum entrapment, limited adaptability, and high-dimensional complexity. To overcome these challenges, a Lévy flight-enhanced improved whale optimization algorithm (LF-IWOA) was developed. The algorithm combines elite opposition-based learning (EOBL), differential evolution (DE), and [...] Read more.
Robotic tack welding poses challenges in path optimization due to local optimum entrapment, limited adaptability, and high-dimensional complexity. To overcome these challenges, a Lévy flight-enhanced improved whale optimization algorithm (LF-IWOA) was developed. The algorithm combines elite opposition-based learning (EOBL), differential evolution (DE), and Lévy flight (LF) to improve global exploration capability, increase population diversity, and improve convergence. Additionally, a dynamic trajectory optimization model is designed to consider joint-level constraints, including velocity, acceleration, and jerk. The performance of LF-IWOA was evaluated using two industrial workpieces with varying welding point distributions. Comparative experiments with metaheuristic algorithms, such as the genetic algorithm (GA), WOA and other recent nature-inspired methods, show that LF-IWOA consistently achieves shorter paths and faster convergence. For Workpiece 1, the algorithm reduces the welding path by up to 25.53% compared to the genetic algorithm, with an average reduction of 14.82% across benchmarks. For Workpiece 2, the optimized path is 18.41% shorter than the baseline. Moreover, the dynamic trajectory optimization strategy decreases execution time by 26.83% and reduces mechanical energy consumption by 15.40% while maintaining smooth and stable joint motion. Experimental results demonstrated the effectiveness and practical applicability of the LF-IWOA in robotic welding tasks. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

20 pages, 3580 KiB  
Article
Optimizing PV Panel Segmentation in Complex Environments Using Pre-Training and Simulated Annealing Algorithm: The JSWPVI
by Rui Zhang, Ruikai Hong, Qiannan Li, Xu He, Age Shama, Jichao Lv and Renzhe Wu
Land 2025, 14(6), 1245; https://doi.org/10.3390/land14061245 - 10 Jun 2025
Viewed by 373
Abstract
Photovoltaic (PV) technology, as a crucial source of clean energy, can effectively mitigate the impact of climate change caused by fossil fuel-based power generation. However, improper use of PV installations may encroach upon agricultural land, grasslands, and other land uses, thereby affecting local [...] Read more.
Photovoltaic (PV) technology, as a crucial source of clean energy, can effectively mitigate the impact of climate change caused by fossil fuel-based power generation. However, improper use of PV installations may encroach upon agricultural land, grasslands, and other land uses, thereby affecting local ecosystems. Exploring the spatial characteristics of centralized or distributed PV installations is essential for quantifying the development of clean energy and protecting agricultural land. Due to the distinct characteristics of centralized and distributed PV installations, large-scale mapping methods based on satellite remote sensing are insufficient for creating detailed PV distribution maps. This study proposes a model called Joint Semi-Supervised Weighted Adaptive PV Panel Recognition Model (JSWPVI)to achieve reliable PV mapping using UAV datasets. The JSWPVI employs a semi-supervised approach to construct and optimize a comprehensive segmentation network, incorporating the Spatial and Channel Weight Adaptive Model (SCWA) module to integrate different feature layers by reconstructing the spatial and channel weights of feature maps. Finally, a guided filtering algorithm is used to minimize non-edge noise while preserving edge integrity. Our results demonstrate that JSWPVI can accurately extract PV panels in both centralized and distributed scenarios, with an average extraction accuracy of 91.1% and a mean Intersection over Union of 77.7%. The findings of this study will assist regional policymakers in better quantifying renewable energy potential and assessing environmental impacts. Full article
Show Figures

Figure 1

17 pages, 3709 KiB  
Article
Track-Before-Detect Algorithm Based on Particle Filter with Sub-Band Adaptive Weighting
by Xiaolin Wang, Yaowu Chen and Kaiyue Zhang
Electronics 2025, 14(12), 2349; https://doi.org/10.3390/electronics14122349 - 8 Jun 2025
Viewed by 420
Abstract
In the realm of underwater acoustic signal processing, challenges such as random missing measurements due to low signal-to-noise ratios, merging–splitting contacts in the measurement space, and prolonged trajectory losses due to target interference pose significant difficulties for passive sonar tracking. Conventional tracking methods [...] Read more.
In the realm of underwater acoustic signal processing, challenges such as random missing measurements due to low signal-to-noise ratios, merging–splitting contacts in the measurement space, and prolonged trajectory losses due to target interference pose significant difficulties for passive sonar tracking. Conventional tracking methods often struggle with tracking losses or association errors in these scenarios. However, particle filter (PF)-based track-before-detect (TBD) methods have demonstrated significant advantages in avoiding association challenges. The PF-TBD method calculates the posterior density distribution using the energy accumulation of multiple pings along the particle trajectories, thereby circumventing the association problem between measurements. Consequently, this method is less sensitive to missing measurements but relies on trajectory continuity. When a weak target crosses paths with a strong one, it can be submerged by strong interference for an extended period, leading to discontinuities in the tracking results. To address these issues, this study proposes a TBD algorithm based on particle states and band features. The algorithm employs frequency-band adaptive matching for each tracking target to enhance the continuity of the target trajectories. This joint processing improves tracking outcomes for weak targets, particularly in crossing scenarios processed by PF-TBD. The effectiveness of the algorithm is validated using experimental data obtained at sea. The proposed algorithm demonstrates superior performance in terms of tracking accuracy and trajectory continuity compared to existing methods, making it a valuable addition to the field of underwater target tracking. Full article
Show Figures

Figure 1

26 pages, 5508 KiB  
Article
Enhanced Prediction of the Remaining Useful Life of Rolling Bearings Under Cross-Working Conditions via an Initial Degradation Detection-Enabled Joint Transfer Metric Network
by Lingfeng Qi, Jiafang Pan, Tianping Huang, Zhenfeng Zhou and Faguo Huang
Appl. Sci. 2025, 15(12), 6401; https://doi.org/10.3390/app15126401 - 6 Jun 2025
Viewed by 375
Abstract
Remaining useful life (RUL) prediction of rolling bearings is of significance for improving the reliability and durability of rotating machinery. Aiming at the problem of suboptimal RUL prediction precision under cross-working conditions due to distribution discrepancies between training and testing data, enhanced cross-working [...] Read more.
Remaining useful life (RUL) prediction of rolling bearings is of significance for improving the reliability and durability of rotating machinery. Aiming at the problem of suboptimal RUL prediction precision under cross-working conditions due to distribution discrepancies between training and testing data, enhanced cross-working condition RUL prediction for rolling bearings via an initial degradation detection-enabled joint transfer metric network is proposed. Specifically, the health indicator, called reconstruction along projection pathway (RAPP), is calculated for initial degradation detection (IDD), in which RAPP is obtained from a novel deep adversarial convolution autoencoder network (DACAEN) and compares discrepancies between the input and the reconstruction by DACAEN, not only in the input space, but also in the hidden spaces, and then RUL prediction is triggered after IDD via RAPP. After that, a joint transfer metric network is proposed for cross-working condition RUL prediction. Joint domain adaptation loss, which combines representation subspace distance and variance discrepancy representation, is designed to act on the final layer of the mapping regression network to decrease data distribution discrepancies and ultimately obtain cross-domain invariant features. The experimental results from the PHM2012 dataset show that the proposed method has higher prediction accuracy and better generalization ability than typical and advanced transfer RUL prediction methods under cross-working conditions, with improvements of 0.047, 0.053, and 0.058 in the MSE, RMSE, and Score. Full article
(This article belongs to the Special Issue Advanced Technologies for Industry 4.0 and Industry 5.0)
Show Figures

Figure 1

24 pages, 8207 KiB  
Article
Research on Energy-Saving Optimization Control Strategy for Distributed Hub Motor-Driven Vehicles
by Bin Huang, Jinyu Wei, Minrui Ma and Xu Yang
Energies 2025, 18(12), 3025; https://doi.org/10.3390/en18123025 - 6 Jun 2025
Viewed by 412
Abstract
Aiming at the problems of energy utilization efficiency and braking stability in electric vehicles, a high-efficiency and energy-saving control strategy that takes both driving and braking into account is proposed with the distributed hub motor-driven vehicle as the research object. Under regular driving [...] Read more.
Aiming at the problems of energy utilization efficiency and braking stability in electric vehicles, a high-efficiency and energy-saving control strategy that takes both driving and braking into account is proposed with the distributed hub motor-driven vehicle as the research object. Under regular driving and braking conditions, the front and rear axle torque distribution coefficients are optimized by an adaptive particle swarm algorithm based on simulated annealing and a multi-objective co-optimization strategy based on variable weight coefficients, respectively. During emergency braking, the anti-lock braking strategy (ABS) based on sliding mode control realizes the independent distribution of torque among four wheels. The joint simulation verification based on MATLAB R2023a/Simulink-Carsim 2020.0 shows that under World Light Vehicle Test Cycle (WLTC) conditions, the optimization strategy reduces the driving energy consumption by 3.20% and 2.00%, respectively, compared with the average allocation and the traditional strategy. The braking recovery energy increases by 4.07% compared with the fixed proportion allocation, improving the energy utilization rate of the entire vehicle. The wheel slip rate can be quickly stabilized near the optimal value during emergency braking under different adhesion coefficients, which ensures the braking stability of the vehicle. The effectiveness of the strategy is verified. Full article
Show Figures

Figure 1

22 pages, 3223 KiB  
Article
An EMG-Based GRU Model for Estimating Foot Pressure to Support Active Ankle Orthosis Development
by Praveen Nuwantha Gunaratne and Hiroki Tamura
Sensors 2025, 25(11), 3558; https://doi.org/10.3390/s25113558 - 5 Jun 2025
Viewed by 731
Abstract
As populations age, particularly in countries like Japan, mobility impairments related to ankle joint dysfunction, such as foot drop, instability, and reduced gait adaptability, have become a significant concern. Active ankle–foot orthoses (AAFO) offer targeted support during walking; however, most existing systems rely [...] Read more.
As populations age, particularly in countries like Japan, mobility impairments related to ankle joint dysfunction, such as foot drop, instability, and reduced gait adaptability, have become a significant concern. Active ankle–foot orthoses (AAFO) offer targeted support during walking; however, most existing systems rely on rule-based or threshold-based control, which are often limited to sagittal plane movements and lacking adaptability to subject-specific gait variations. This study proposes an approach driven by neuromuscular activation using surface electromyography (EMG) and a Gated Recurrent Unit (GRU)-based deep learning model to predict plantar pressure distributions at the heel, midfoot, and toe regions during gait. EMG signals were collected from four key ankle muscles, and plantar pressures were recorded using a customized sandal-integrated force-sensitive resistor (FSR) system. The data underwent comprehensive preprocessing and segmentation using a sliding window method. Root mean square (RMS) values were extracted as the primary input feature due to their consistent performance in capturing muscle activation intensity. The GRU model successfully generalized across subjects, enabling the accurate real-time inference of critical gait events such as heel strike, mid-stance, and toe off. This biomechanical evaluation demonstrated strong signal compatibility, while also identifying individual variations in electromechanical delay (EMD). The proposed predictive framework offers a scalable and interpretable approach to improving real-time AAFO control by synchronizing assistance with user-specific gait dynamics. Full article
(This article belongs to the Special Issue Sensor-Based Human Activity Recognition)
Show Figures

Figure 1

30 pages, 3781 KiB  
Article
Adaptive Multi-Objective Firefly Optimization for Energy-Efficient and QoS-Aware Scheduling in Distributed Green Data Centers
by Ahmed Chiheb Ammari, Wael Labidi and Rami Al-Hmouz
Energies 2025, 18(11), 2940; https://doi.org/10.3390/en18112940 - 3 Jun 2025
Viewed by 450
Abstract
Green data centers (GDCs) are increasingly deployed worldwide to power digital infrastructure sustainably. These centers integrate renewable energy sources, such as solar and wind, to reduce dependence on grid electricity and lower operational costs. When distributed geographically, GDCs face considerable challenges due to [...] Read more.
Green data centers (GDCs) are increasingly deployed worldwide to power digital infrastructure sustainably. These centers integrate renewable energy sources, such as solar and wind, to reduce dependence on grid electricity and lower operational costs. When distributed geographically, GDCs face considerable challenges due to spatial variations in renewable energy availability, electricity pricing, and bandwidth costs. This paper addresses the joint optimization of operational cost and service quality for delay-sensitive applications scheduled across distributed green data centers (GDDCs). We formulate a multi-objective optimization problem that minimizes total operational costs while reducing the Average Task Loss Probability (ATLP), a key Quality of Service (QoS) metric. To solve this, we propose an Adaptive Firefly-Based Bi-Objective Optimization (AFBO) algorithm that introduces multiple adaptive mechanisms to improve convergence and diversity. The minimum Manhattan distance method is adopted to select a representative knee solution from each algorithm’s Pareto front, determining optimal task service rates and ISP task splits into each time slot. AFBO is evaluated using real-world trace-driven simulations and compared against benchmark multi-objective algorithms, including multi-objective particle swarm optimization (MOPSO), simulated annealing-based bi-objective differential evolution (SBDE), and the baseline Multi-Objective Firefly Algorithm (MOFA). The results show that AFBO achieves up to 64-fold reductions in operational cost and produces an extremely low ATLP value (1.875×107) that is nearly two orders of magnitude lower than SBDE and MOFA and several orders better than MOPSO. These findings confirm AFBO’s superior capability to balance energy cost savings and Quality of Service (QoS), outperforming existing methods in both solution quality and convergence speed. Full article
(This article belongs to the Special Issue Studies in Renewable Energy Production and Distribution)
Show Figures

Figure 1

20 pages, 678 KiB  
Article
Steganalysis of Adaptive Multi-Rate Speech with Unknown Embedding Rates Using Multi-Scale Transformer and Multi-Task Learning Mechanism
by Congcong Sun, Azizol Abdullah, Normalia Samian and Nuur Alifah Roslan
J. Cybersecur. Priv. 2025, 5(2), 29; https://doi.org/10.3390/jcp5020029 - 3 Jun 2025
Viewed by 452
Abstract
As adaptive multi-rate (AMR) speech applications become increasingly widespread, AMR-based steganography presents growing security risks. Conventional steganalysis methods often assume known embedding rates, limiting their practicality in real-world scenarios where embedding rates are unknown. To overcome this limitation, we introduce a novel framework [...] Read more.
As adaptive multi-rate (AMR) speech applications become increasingly widespread, AMR-based steganography presents growing security risks. Conventional steganalysis methods often assume known embedding rates, limiting their practicality in real-world scenarios where embedding rates are unknown. To overcome this limitation, we introduce a novel framework that integrates a multi-scale transformer architecture with multi-task learning for joint classification and regression. The classification task effectively distinguishes between cover and stego samples, while the regression task enhances feature representation by predicting continuous embedding values, providing deeper insights into embedding behaviors. This joint optimization strategy improves model adaptability to diverse embedding conditions and captures the underlying relationships between discrete embedding classes and their continuous distributions. The experimental results demonstrate that our approach achieves higher accuracy and robustness than existing steganalysis methods across varying embedding rates. Full article
(This article belongs to the Special Issue Cyber Security and Digital Forensics—2nd Edition)
Show Figures

Figure 1

Back to TopTop