Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (772)

Search Parameters:
Keywords = island forest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2682 KiB  
Article
A Semi-Automated, Hybrid GIS-AI Approach to Seabed Boulder Detection Using High Resolution Multibeam Echosounder
by Eoin Downing, Luke O’Reilly, Jan Majcher, Evan O’Mahony and Jared Peters
Remote Sens. 2025, 17(15), 2711; https://doi.org/10.3390/rs17152711 - 5 Aug 2025
Abstract
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, [...] Read more.
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, but the growing availability of high-resolution multibeam echosounder (MBES) data offers a cost-effective alternative. This study presents a semi-automated, hybrid GIS-AI approach that combines bathymetric position index filtering and a Random Forest classifier to detect boulders and delineate boulder fields from MBES data. The method was tested on a 0.24 km2 site in Long Island Sound using 0.5 m resolution data, achieving 83% recall, 73% precision, and an F1-score of 77—slightly outperforming the average of expert manual picks while offering a substantial improvement in time-efficiency. The workflow was validated against a consensus-based master dataset and applied across a 79 km2 study area, identifying over 75,000 contacts and delineating 89 contact clusters. The method enables objective, reproducible, and scalable boulder detection using only MBES data. Its ability to reduce reliance on SSS surveys while maintaining high accuracy and offering workflow customization makes it valuable for geohazard assessment, benthic habitat mapping, and offshore infrastructure planning. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 71
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

16 pages, 1526 KiB  
Article
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 - 2 Aug 2025
Viewed by 125
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive [...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs. Full article
Show Figures

Figure 1

32 pages, 5440 KiB  
Article
Spatially Explicit Tactical Planning for Redwood Harvest Optimization Under Continuous Cover Forestry in New Zealand’s North Island
by Horacio E. Bown, Francesco Latterini, Rodolfo Picchio and Michael S. Watt
Forests 2025, 16(8), 1253; https://doi.org/10.3390/f16081253 - 1 Aug 2025
Viewed by 139
Abstract
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry [...] Read more.
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry (CCF) represents a highly profitable option, particularly for small-scale forest growers in the North Island of New Zealand. We evaluated the profitability of conceptual CCF regimes using two case study forests: Blue Mountain (109 ha, Taranaki Region, New Zealand) and Spring Creek (467 ha, Manawatu-Whanganui Region, New Zealand). We ran a strategic harvest scheduling model for both properties and used its results to guide a tactical-spatially explicit model harvesting small 0.7 ha units over a period that spanned 35 to 95 years after planting. The internal rates of return (IRRs) were 9.16 and 10.40% for Blue Mountain and Spring Creek, respectively, exceeding those considered robust for other forest species in New Zealand. The study showed that small owners could benefit from carbon revenue during the first 35 years after planting and then switch to a steady annual income from timber, maintaining a relatively constant carbon stock under a continuous cover forestry regime. Implementing adjacency constraints with a minimum green-up period of five years proved feasible. Although small coupes posed operational problems, which were linked to roading and harvesting, these issues were not insurmountable and could be managed with appropriate operational planning. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

29 pages, 4469 KiB  
Article
Assessment of Large Forest Fires in the Canary Islands and Their Relationship with Subsidence Thermal Inversion and Atmospheric Conditions
by Jordan Correa and Pedro Dorta
Geographies 2025, 5(3), 37; https://doi.org/10.3390/geographies5030037 - 1 Aug 2025
Viewed by 143
Abstract
The prevailing environmental conditions before and during the 28 Large Forest Fires (LFFs) that have occurred in the Canary Islands since 1983 are analyzed. These conditions are often associated with episodes characterized by the advection of continental tropical air masses originating from the [...] Read more.
The prevailing environmental conditions before and during the 28 Large Forest Fires (LFFs) that have occurred in the Canary Islands since 1983 are analyzed. These conditions are often associated with episodes characterized by the advection of continental tropical air masses originating from the Sahara, which frequently result in intense heatwaves. During the onset of the LFFs, the base of the subsidence thermal inversion layer—separating a lower layer of cool, moist air from an upper layer of warm, dry air—is typically located at an altitude of around 350 m above sea level, approximately 600 m below the usual average. Understanding these Saharan air advection events is crucial, as they significantly alter the vertical thermal structure of the atmosphere and create highly conducive conditions for wildfire ignition and spread in the forested mid- and high-altitude zones of the archipelago. Analysis of meteorological records from various weather stations reveals that the average maximum temperature on the first day of fire ignition is 30.3 °C, with mean temperatures of 27.4 °C during the preceding week and 28.9 °C throughout the fire activity period. Relative humidity on the ignition days averages 24.3%, remaining at around 30% during the active phase of the fires. No significant correlation has been found between dry or wet years and the occurrence of LFFs, which have been recorded across years with widely varying precipitation levels. Full article
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 327
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

27 pages, 18522 KiB  
Article
Summer Cooling Effect of Rivers in the Yangtze Basin, China: Magnitude, Threshold and Mechanisms
by Pan Xiong, Dongjie Guan, Yanli Su and Shuying Zeng
Land 2025, 14(8), 1511; https://doi.org/10.3390/land14081511 - 22 Jul 2025
Viewed by 246
Abstract
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale [...] Read more.
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale driving mechanisms have remained to be systematically elucidated. This study retrieved land surface temperature (LST) using the split window algorithm and quantitatively analyzed the changes in the river cold island effect and its driving mechanisms in the Yangtze River Basin by combining multi-ring buffer analysis and the optimal parameter-based geographical detector model. The results showed that (1) forest land is the main land use type in the Yangtze River Basin, with built-up land having the largest area increase. Affected by natural, socioeconomic, and meteorological factors, the summer temperatures displayed a spatial pattern of “higher in the east than the west, warmer in the south than the north”. (2) There are significant differences in the cooling magnitude among different land types. Forest land has the maximum daytime cooling distance (589 m), while construction land has the strongest cooling magnitude (1.72 °C). The cooling effect magnitude is most pronounced in upstream areas of the basin, reaching 0.96 °C. At the urban agglomeration scale, the Chengdu–Chongqing urban agglomeration shows the greatest temperature reduction of 0.90 °C. (3) Elevation consistently demonstrates the highest explanatory power for LST spatial variability. Interaction analysis shows that the interaction between socioeconomic factors and elevation is generally the strongest. This study provides important spatial decision support for formulating basin-scale ecological thermal regulation strategies based on refined spatial layout optimization, hierarchical management and control, and a “natural–societal” dual-dimensional synergistic regulation system. Full article
Show Figures

Graphical abstract

20 pages, 3982 KiB  
Article
Enhanced Rapid Mangrove Habitat Mapping Approach to Setting Protected Areas Using Satellite Indices and Deep Learning: A Case Study of the Solomon Islands
by Hyeon Kwon Ahn, Soohyun Kwon, Cholho Song and Chul-Hee Lim
Remote Sens. 2025, 17(14), 2512; https://doi.org/10.3390/rs17142512 - 18 Jul 2025
Viewed by 287
Abstract
Mangroves, as a key component of the blue-carbon ecosystem, have exceptional carbon sequestration capacity and are mainly distributed in tropical coastal regions. In the Solomon Islands, ongoing degradation of mangrove forests, primarily due to land conversion and timber exploitation, highlights an urgent need [...] Read more.
Mangroves, as a key component of the blue-carbon ecosystem, have exceptional carbon sequestration capacity and are mainly distributed in tropical coastal regions. In the Solomon Islands, ongoing degradation of mangrove forests, primarily due to land conversion and timber exploitation, highlights an urgent need for high-resolution spatial data to inform effective conservation strategies. The present study introduces an efficient and accurate methodology for mapping mangrove habitats and prioritizing protection areas utilizing open-source satellite imagery and datasets available through the Google Earth Engine platform in conjunction with a U-Net deep learning algorithm. The model demonstrates high performance, achieving an F1-score of 0.834 and an overall accuracy of 0.96, in identifying mangrove distributions. The total mangrove area in the Solomon Islands is estimated to be approximately 71,348.27 hectares, accounting for about 2.47% of the national territory. Furthermore, based on the mapped mangrove habitats, an optimized hotspot analysis is performed to identify regions characterized by high-density mangrove distribution. By incorporating spatial variables such as distance from roads and urban centers, along with mangrove area, this study proposes priority mangrove protection areas. These results underscore the potential for using openly accessible satellite data to enhance the precision of mangrove conservation strategies in data-limited settings. This approach can effectively support coastal resource management and contribute to broader climate change mitigation strategies. Full article
Show Figures

Figure 1

23 pages, 3620 KiB  
Article
Temperature Prediction at Street Scale During a Heat Wave Using Random Forest
by Panagiotis Gkirmpas, George Tsegas, Denise Boehnke, Christos Vlachokostas and Nicolas Moussiopoulos
Atmosphere 2025, 16(7), 877; https://doi.org/10.3390/atmos16070877 - 17 Jul 2025
Viewed by 347
Abstract
The rising frequency of heatwaves, combined with the urban heat island effect, increases the population’s exposure to high temperatures, significantly impacting the health of vulnerable groups and the overall well-being of residents. While mesoscale meteorological models can reliably forecast temperatures across urban neighbourhoods, [...] Read more.
The rising frequency of heatwaves, combined with the urban heat island effect, increases the population’s exposure to high temperatures, significantly impacting the health of vulnerable groups and the overall well-being of residents. While mesoscale meteorological models can reliably forecast temperatures across urban neighbourhoods, dense networks of in situ measurements offer more precise data at the street scale. In this work, the Random Forest technique was used to predict street-scale temperatures in the downtown area of Thessaloniki, Greece, during a prolonged heatwave in July 2021. The model was trained using data from a low-cost sensor network, meteorological fields calculated by the mesoscale model MEMO, and micro-environmental spatial features. The results show that, although the MEMO temperature predictions achieve high accuracy during nighttime compared to measurements, they exhibit inconsistent trends across sensor locations during daytime, indicating that the model does not fully account for microclimatic phenomena. Additionally, by using only the observed temperature as the target of the Random Forest model, higher accuracy is achieved, but spatial features are not represented in the predictions. In contrast, the most reliable approach to incorporating spatial characteristics is to use the difference between observed and mesoscale temperatures as the target variable. Full article
(This article belongs to the Special Issue Urban Heat Islands, Global Warming and Effects)
Show Figures

Figure 1

22 pages, 3162 KiB  
Article
Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine
by Michael R. Routhier, Gregg E. Moore, Barrett N. Rock, Stanley Glidden, Matthew Duckett and Susan Zaluski
Remote Sens. 2025, 17(14), 2485; https://doi.org/10.3390/rs17142485 - 17 Jul 2025
Viewed by 850
Abstract
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened [...] Read more.
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened coastal ecosystems. Advances in remote sensing techniques and approaches are critical to providing robust quantitative monitoring of post-storm mangrove forest recovery to better prioritize the often-limited resources available for the restoration of these storm-damaged habitats. Here, we build on previously utilized spatial and temporal ranges of European Space Agency (ESA) Sentinel satellite imagery to monitor and map the recovery of the mangrove forests of the British Virgin Islands (BVI) since the occurrence of back-to-back category 5 hurricanes, Irma and Maria, on September 6 and 19 of 2017, respectively. Pre- to post-storm changes in coastal mangrove forest health were assessed annually using the normalized difference vegetation index (NDVI) and moisture stress index (MSI) from 2016 to 2023 using Google Earth Engine. Results reveal a steady trajectory towards forest health recovery on many of the Territory’s islands since the storms’ impacts in 2017. However, some mangrove patches are slower to recover, such as those on the islands of Virgin Gorda and Jost Van Dyke, and, in some cases, have shown a continued decline (e.g., Prickly Pear Island). Our work also uses a linear ANCOVA model to assess a variety of geospatial, environmental, and anthropogenic drivers for mangrove recovery as a function of NDVI pre-storm and post-storm conditions. The model suggests that roughly 58% of the variability in the 7-year difference (2016 to 2023) in NDVI may be related by a positive linear relationship with the variable of population within 0.5 km and a negative linear relationship with the variables of northwest aspect vs. southwest aspect, island size, temperature, and slope. Full article
(This article belongs to the Special Issue Remote Sensing in Mangroves IV)
Show Figures

Figure 1

33 pages, 12632 KiB  
Article
Analysis of LULC and Urban Thermal Variations in Industrial Cities Using Earth Observation Indices and Machine Learning: A Case Study of Gujranwala, Pakistan
by Zabih Ullah, Muhammad Sajid Mehmood, Shiyan Zhai and Yaochen Qin
Remote Sens. 2025, 17(14), 2474; https://doi.org/10.3390/rs17142474 - 16 Jul 2025
Viewed by 404
Abstract
Rapid urbanization and industrial development have significantly altered land use and cover across the globe, intensifying urban thermal environments and exacerbating the urban heat island (UHI) effect. Gujranwala, Pakistan, represents an industrial growth that has driven substantial land use/land cover (LULC) changes and [...] Read more.
Rapid urbanization and industrial development have significantly altered land use and cover across the globe, intensifying urban thermal environments and exacerbating the urban heat island (UHI) effect. Gujranwala, Pakistan, represents an industrial growth that has driven substantial land use/land cover (LULC) changes and temperature increases; however, the directional and distance-based patterns of these changes remain unquantified. Therefore, this study is conducted to examine spatiotemporal changes in LULC and variations in the Urban Thermal Field Variation Index (UTFVI) between 2001 and 2021 and to project future scenarios for 2031 and 2041 using (1) Earth Observation Indices (EOIs) with machine learning (ML) classifiers (Random Forest) for precise LULC mapping through the Google Earth Engine (GEE) platform, (2) Cellular Automata–Artificial Neural Networks (CA-ANNs) for future scenario projection, and (3) Gradient Directional Analysis (GDA) to quantify directional (16-axis) and distance-based (concentric zones) patterns of urban expansion and thermal variation from 2001–2021. The study revealed significant LULC changes, with built-up areas expanding by 7.5% from 2001 to 2021, especially in the east, northeast, and southeast directions within a 20 km radius. Due to urban encroachment, vegetation and cropland decreased by 1.47% and 1.83%, respectively. The urban thermal environment worsened, with the highest land surface temperature (LST) rising from 41 °C in 2001 to 55 °C in 2021. Additionally, the UTFVI showed expanding areas under the ‘strong’ and ‘strongest’ categories, increasing from 30.58% in 2001 to 33.42% in 2041. Directional analysis highlighted severe thermal stress in the southern and southwestern areas linked to industrial activities and urban sprawl. This integrated approach provides a template for analyzing urban thermal environments in developing cities, supporting targeted mitigation strategies through direction- and distance-specific planning interventions to mitigate UHI impacts. Full article
Show Figures

Figure 1

17 pages, 4165 KiB  
Article
Assessing the Cooling Effects of Water Bodies Based on Urban Environments: Case Study of Dianchi Lake in Kunming, China
by Zhihao Wang, Ziyang Ma, Yifei Chen, Pengkun Zhu and Lu Wang
Atmosphere 2025, 16(7), 856; https://doi.org/10.3390/atmos16070856 - 14 Jul 2025
Viewed by 244
Abstract
This research addresses urban heat island intensification driven by urbanization using Dianchi Lake in Kunming, China, as a case study, aiming to quantitatively evaluate the spatial extent, intensity, and land cover sensitivity differences in the cooling effects of large urban water bodies across [...] Read more.
This research addresses urban heat island intensification driven by urbanization using Dianchi Lake in Kunming, China, as a case study, aiming to quantitatively evaluate the spatial extent, intensity, and land cover sensitivity differences in the cooling effects of large urban water bodies across dry/wet seasons and complex urban landscapes (forest, cropland, and impervious surfaces) to provide a scientific basis for optimizing thermal environments in low-latitude plateau cities. Based on Landsat 8/9 satellite data from dry (January) and wet (May) seasons in 2020 and 2023 used for land surface temperature (LST) retrieval combined with land use data, buffer zone gradient analysis was adopted to quantify the spatial heterogeneity of key cooling indicators within 0–1500 m lakeshore buffers. The results demonstrated significant seasonal differences. The wet season showed a greater cooling extent (600 m) and higher intensity (6.0–6.6 °C) compared with the dry season (400 m; 2.4–3.9 °C). The land cover responses varied substantially, with cropland having the largest influence (600 m), followed by impervious surfaces (400 m), while forest exhibited a minimal effective cooling range (100 m) but localized warming anomalies at 200–400 m. Sensitivity analysis confirmed that impervious surfaces were the most sensitive to water-cooling, followed by cropland, whereas forest showed the lowest sensitivity. Full article
(This article belongs to the Special Issue Urban Heat Islands, Global Warming and Effects)
Show Figures

Figure 1

18 pages, 16917 KiB  
Article
Unraveling the Spatiotemporal Dynamics of Rubber Phenology in Hainan Island, China: A Multi-Sensor Remote Sensing and Climate Drivers Analysis
by Hongyan Lai, Bangqian Chen, Guizhen Wang, Xiong Yin, Xincheng Wang, Ting Yun, Guoyu Lan, Zhixiang Wu, Kai Jia and Weili Kou
Remote Sens. 2025, 17(14), 2403; https://doi.org/10.3390/rs17142403 - 11 Jul 2025
Viewed by 266
Abstract
Rubber Tree (Hevea brasiliensis) phenology critically influences tropical plantation productivity and carbon cycling, yet topography and climate impacts remain unclear. By integrating multi-sensor remote sensing (2001–2020) and Google Earth Engine, this study analyzed spatiotemporal dynamics in Hainan Island, China. Results reveal [...] Read more.
Rubber Tree (Hevea brasiliensis) phenology critically influences tropical plantation productivity and carbon cycling, yet topography and climate impacts remain unclear. By integrating multi-sensor remote sensing (2001–2020) and Google Earth Engine, this study analyzed spatiotemporal dynamics in Hainan Island, China. Results reveal that both the start (SOS occurred between early and late March: day of year, DOY 60–81) and end (EOS occurred late January to early February: DOY 392–406, counted from the previous year) of the growing season exhibit progressive delays from the southeast to northwest, yielding a 10–11 month growing season length (LOS). Significantly, LOS extended by 4.9 days per decade (p < 0.01), despite no significant trends in SOS advancement (−1.1 days per decade) or EOS delay (+3.7 days per decade). Topographic modulation was evident: the SOS was delayed by 0.27 days per 100 m elevation rise (p < 0.01), while the EOS was delayed by 0.07 days per 1° slope increase (p < 0.01). Climatically, a 100 mm precipitation increase advanced SOS/EOS by approximately 1.0 day (p < 0.05), preseasonally, a 1 °C February temperature rise advanced the SOS and EOS by 0.49 and 0.53 days, respectively, and a 100 mm January precipitation increase accelerated EOS by 2.7 days (p < 0.01). These findings advance our mechanistic understanding of rubber phenological responses to climate and topographic gradients, providing actionable insights for sustainable plantation management and tropical forest ecosystem adaptation under changing climatic conditions. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

14 pages, 3647 KiB  
Article
The Characteristics of the Aeolian Environment in the Coastal Sandy Land of Boao Jade Belt Beach, Hainan Island
by Shuai Zhong, Jianjun Qu, Zhizhong Zhao and Penghua Qiu
Atmosphere 2025, 16(7), 845; https://doi.org/10.3390/atmos16070845 - 11 Jul 2025
Viewed by 202
Abstract
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations [...] Read more.
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations and omnidirectional sand accumulation instruments from 2020 to 2024 to study the coastal aeolian environment and sediment transport distribution characteristics in the region. The findings provide a theoretical basis for comprehensive analyses of the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results showed the following: (1) The annual average threshold wind velocity for sand movement in the study area was 6.13 m/s, and the wind speed frequency was 20.97%, mainly dominated by easterly winds (NNE, NE) and southerly winds (S). (2) The annual drift potential (DP) and resultant drift potential (RDP) of Boao Jade Belt Beach from 2020 to 2024 were 125.99 VU and 29.59 VU, respectively, indicating a low-energy wind environment. The yearly index of directional wind variability (RDP/DP) was 0.23, which is classified as a small ratio and indicates blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 329.41°, corresponding to the NNW direction, indicating that the sand on Boao Jade Belt Beach is generally transported in the southwest direction. (3) When the measured data from the sand accumulation instrument in the study area from 2020 to 2024 were used for a statistical analysis, the results showed that the total sediment transport rate in the study area was 39.97 kg/m·a, with the maximum sediment transport rate in the S direction being 17.74 kg/m·a. These results suggest that, when sand fixation systems are constructed for relevant infrastructure in the region, the direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 2591 KiB  
Article
The Impact of Compound Drought and Heatwave Events on the Gross Primary Productivity of Rubber Plantations
by Qinggele Bao, Ziqin Wang and Zhongyi Sun
Forests 2025, 16(7), 1146; https://doi.org/10.3390/f16071146 - 11 Jul 2025
Viewed by 319
Abstract
Global climate change has increased the frequency of compound drought–heatwave events (CDHEs), seriously threatening tropical forest ecosystems. However, due to the complex structure of natural tropical forests, related research remains limited. To address this, we focused on rubber plantations on Hainan Island, which [...] Read more.
Global climate change has increased the frequency of compound drought–heatwave events (CDHEs), seriously threatening tropical forest ecosystems. However, due to the complex structure of natural tropical forests, related research remains limited. To address this, we focused on rubber plantations on Hainan Island, which have simpler structures, to explore the impacts of CDHEs on their primary productivity. We used Pearson and Spearman correlation analyses to select the optimal combination of drought and heatwave indices. Then, we constructed a Compound Drought–Heatwave Index (CDHI) using Copula functions to describe the temporal patterns of CDHEs. Finally, we applied a Bayes–Copula conditional probability model to estimate the probability of GPP loss under CDHE conditions. The main findings are as follows: (1) The Standardized Precipitation Evapotranspiration Index (SPEI-3) and Standardized Temperature Index (STI-1) formed the best index combination. (2) The CDHI successfully identified typical CDHEs in 2001, 2003–2005, 2010, 2015–2016, and 2020. (3) Temporally, CDHEs significantly increased the probability of GPP loss in April and May (0.58 and 0.64, respectively), while the rainy season showed a reverse trend due to water buffering (lowest in October, at 0.19). (4) Spatially, the northwest region showed higher GPP loss probabilities, likely due to topographic uplift. This study reveals how tropical plantations respond to compound climate extremes and provides theoretical support for the monitoring and management of tropical ecosystems. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

Back to TopTop