Temperature Prediction at Street Scale During a Heat Wave Using Random Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Measurement Campaign (DB)
- (1)
- The effects of the sea and related ventilated areas versus poorly ventilated, densely built-up inner-city areas;
- (2)
- The effects of locations with nearly full solar radiation input versus locations with shading of different degrees:
- a.
- Building shade: streets with different orientations, street widths and the heights of adjacent buildings;
- b.
- Tree shade: varying street or park trees;
- (3)
- Warming effects caused by traffic: streets cover a wide range of traffic volumes, classified from major arterial road with heavy traffic volumes (Tsimiski) to local roads with primarily residential traffic and areas without traffic, such as pedestrian streets, parks, squares, and a courtyard.
2.3. NWP and MEMO Model
2.4. Random Forest Regression
2.4.1. Feature Analysis
- Time-dependent (“temporal”) features that are related to temporal characteristics, such as observed and modelled temperature data.
- Spatial-dependent (“spatial”) features that represent the geometric, topographic and thermal attributes of each location of interest.
- Air conditioning +: Indicates the impact of warm air from AC exhausts. A value of 1 signifies an AC exhaust in close proximity (up to 2 m) (Esc5), a value of 0.5 signifies AC exhausts in wider proximity (Esc1, Esc4). Esc 19 is a special case, influenced by the strong heating of a nearby sunlit wall.
- Air conditioning −: Represents the cooling effect of nearby AC systems. A value of 1 indicates a strong cooling effect on the sensors, which are located directly in front of the entrances to well-frequented, air-conditioned shops (H03, Esc6). A value of 0.5 indicates moderate effects of AC located approximately 3 to 5 m away or shops in less-frequented areas (H05, Esc2, Esc11, Esc17).
2.4.2. Application
- Spatial cross-validation (“Spatial CV”): a twelve-fold cross-validation where, in each fold, 3 out of the 18 sensor stations are left out for testing.
- Temporal cross-validation (“Temporal CV”): a twelve-fold cross-validation where, in each fold, 5 days of data are excluded from training and used for testing.
2.5. Evaluation Metrics
3. Results
3.1. Comparing Mesoscale and Microscale Temperature on a Monthly Basis
3.2. Random Forest Regression Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Blackett, M.; Best, M.J.; Barlow, J.; Baik, J.J.; Belcher, S.E.; Bohnenstengel, S.I.; Calmet, I.; Chen, F.; Dandou, A.; et al. The International Urban Energy Balance Models Comparison Project: First Results from Phase 1. J. Appl. Meteorol. Climatol. 2010, 49, 1268–1292. [Google Scholar] [CrossRef]
- Masson, V. A Physically-Based Scheme for the Urban Energy Budget in Atmospheric Models. Bound. Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F. Coupling a Single-Layer Urban Canopy Model with a Simple Atmospheric Model: Impact on Urban Heat Island Simulation for an Idealized Case. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 67–80. [Google Scholar] [CrossRef]
- Salamanca, F.; Krpo, A.; Martilli, A.; Clappier, A. A New Building Energy Model Coupled with an Urban Canopy Parameterization for Urban Climate Simulations—Part I. Formulation, Verification, and Sensitivity Analysis of the Model. Theor. Appl. Climatol. 2010, 99, 331–344. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An Urban Surface Exchange Parameterisation for Mesoscale Models. Bound. Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Krayenhoff, E.S.; Voogt, J.A. A Microscale Three-Dimensional Urban Energy Balance Model for Studying Surface Temperatures. Bound. Layer Meteorol. 2007, 123, 433–461. [Google Scholar] [CrossRef]
- Tsegas, G.; Moussiopoulos, N.; Barmpas, F.; Akylas, V.; Douros, I. An Integrated Numerical Methodology for Describing Multiscale Interactions on Atmospheric Flow and Pollutant Dispersion in the Urban Atmospheric Boundary Layer. J. Wind. Eng. Ind. Aerodyn. 2015, 144, 191–201. [Google Scholar] [CrossRef]
- de Burgh-Day, C.O.; Leeuwenburg, T. Machine Learning for Numerical Weather and Climate Modelling: A Review. Geosci. Model Dev. 2023, 16, 6433–6477. [Google Scholar] [CrossRef]
- Bochenek, B.; Ustrnul, Z. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere 2022, 13, 180. [Google Scholar] [CrossRef]
- Meenal, R.; Michael, P.A.; Pamela, D.; Rajasekaran, E. Weather Prediction Using Random Forest Machine Learning Model. Indones. J. Electr. Eng. Comput. Sci. 2021, 22, 1208–1215. [Google Scholar] [CrossRef]
- Goutham, N.; Alonzo, B.; Dupré, A.; Plougonven, R.; Doctors, R.; Liao, L.; Mougeot, M.; Fischer, A.; Drobinski, P. Using Machine-Learning Methods to Improve Surface Wind Speed from the Outputs of a Numerical Weather Prediction Model. Bound. Layer Meteorol. 2021, 179, 133–161. [Google Scholar] [CrossRef]
- Shin, J.-Y.; Min, B.; Kim, K.R. High-Resolution Wind Speed Forecast System Coupling Numerical Weather Prediction and Machine Learning for Agricultural Studies—A Case Study from South Korea. Int. J. Biometeorol. 2022, 66, 1429–1443. [Google Scholar] [CrossRef]
- Das, S.; Chakraborty, R.; Maitra, A. A Random Forest Algorithm for Nowcasting of Intense Precipitation Events. Adv. Space Res. 2017, 60, 1271–1282. [Google Scholar] [CrossRef]
- Yao, H.; Li, X.; Pang, H.; Sheng, L.; Wang, W. Application of Random Forest Algorithm in Hail Forecasting over Shandong Peninsula. Atmos. Res. 2020, 244, 105093. [Google Scholar] [CrossRef]
- Vlachokostas, C.; Banias, G.; Athanasiadis, A.; Achillas, C.; Akylas, V.; Moussiopoulos, N. Cense: A Tool to Assess Combined Exposure to Environmental Health Stressors in Urban Areas. Environ. Int. 2014, 63, 1–10. [Google Scholar] [CrossRef]
- Powell, J.P.; Reinhard, S. Measuring the Effects of Extreme Weather Events on Yields. Weather. Clim. Extrems 2016, 12, 69–79. [Google Scholar] [CrossRef]
- Chajaei, F.; Bagheri, H. Machine Learning Framework for High-Resolution Air Temperature Downscaling Using LiDAR-Derived Urban Morphological Features. Urban Clim. 2024, 57, 102102. [Google Scholar] [CrossRef]
- Bhakare, S.; Dal Gesso, S.; Venturini, M.; Zardi, D.; Trentini, L.; Matiu, M.; Petitta, M. Intercomparison of Machine Learning Models for Spatial Downscaling of Daily Mean Temperature in Complex Terrain. Atmosphere 2024, 15, 1085. [Google Scholar] [CrossRef]
- Blunn, L.P.; Ames, F.; Croad, H.L.; Gainford, A.; Higgs, I.; Lipson, M.; Lo, C.H.B. Machine Learning Bias Correction and Downscaling of Urban Heatwave Temperature Predictions from Kilometre to Hectometre Scale. Meteorol. Appl. 2024, 31, e2200. [Google Scholar] [CrossRef]
- Shin, Y.; Yi, C. Statistical Downscaling of Urban-Scale Air Temperatures Using an Analog Model Output Statistics Technique. Atmosphere 2019, 10, 427. [Google Scholar] [CrossRef]
- Yang, S.; Wang, L.L.; Stathopoulos, T. A Review of Recent Progress on Urban Microclimate Research. In Proceedings of the 5th International Conference on Building Energy and Environment, Montréal, QC, Canada, 25–29 July 2022; Wang, L.L., Ge, H., Zhai, Z.J., Qi, D., Ouf, M., Sun, C., Wang, D., Eds.; Environmental Science and Engineering. Springer: Singapore, 2023; pp. 3029–3038, ISBN 978-981-19-9821-8. [Google Scholar]
- Venter, Z.S.; Brousse, O.; Esau, I.; Meier, F. Hyperlocal Mapping of Urban Air Temperature Using Remote Sensing and Crowdsourced Weather Data. Remote Sens. Environ. 2020, 242, 111791. [Google Scholar] [CrossRef]
- Gallacher, C.; Boehnke, D. Pedestrian Thermal Comfort Mapping for Evidence-Based Urban Planning; an Interdisciplinary and User-Friendly Mobile Approach for the Case Study of Dresden, Germany. Int. J. Biometeorol. 2025. [Google Scholar] [CrossRef]
- Varnakovida, P.; Ko, H.Y.K. Urban Expansion and Urban Heat Island Effects on Bangkok Metropolitan Area in the Context of Eastern Economic Corridor. Urban Clim. 2023, 52, 101712. [Google Scholar] [CrossRef]
- ZhanZhang, M.; Yiğit, İ.; Adigüzel, F.; Hu, C.; Chen, E.; Siyavuş, A.E.; Elmastaş, N.; Ustuner, M.; Kaya, A.Y. Impact of Urban Surfaces on Microclimatic Conditions and Thermal Comfort in Burdur, Türkiye. Atmosphere 2024, 15, 1375. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, X.; Liu, Y. Impact of Urban Renewal on Urban Heat Island: Study of Renewal Processes and Thermal Effects. Sustain. Cities Soc. 2023, 99, 104995. [Google Scholar] [CrossRef]
- Boehnke, D.; Jehling, M.; Vogt, J. What Hinders Climate Adaptation? Approaching Barriers in Municipal Land Use Planning through Participant Observation. Land Use Policy 2023, 132, 106786. [Google Scholar] [CrossRef]
- Grimmond, S.; Ward, H.C. Urban Measurements and Their Interpretation. In Springer Handbook of Atmospheric Measurements; Foken, T., Ed.; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2021; pp. 1391–1423. ISBN 978-3-030-52170-7. [Google Scholar]
- Hellenic Statistical Authority Population and Housing Census. Available online: https://www.ktimanet.gr/geoportal/catalog/search/resource/details.page?uuid=%7BDF5B1140-D957-4678-8C50-2B66066D227B%7D (accessed on 10 July 2025).
- Sylliris, N.; Papagiannakis, A.; Vartholomaios, A. Improving the Climate Resilience of Urban Road Networks: A Simulation of Microclimate and Air Quality Interventions in a Typology of Streets in Thessaloniki Historic Centre. Land 2023, 12, 414. [Google Scholar] [CrossRef]
- World Health Organization. Urban Green Spaces: A Brief for Action; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Moussiopoulos, N.; Vlachokostas, C.; Tsilingiridis, G.; Douros, I.; Hourdakis, E.; Naneris, C.; Sidiropoulos, C. Air Quality Status in Greater Thessaloniki Area and the Emission Reductions Needed for Attaining the EU Air Quality Legislation. Sci. Total Environ. 2009, 407, 1268–1285. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Keppas, S.C.; Parliari, D.; Kontos, S.; Papadogiannaki, S.; Melas, D. Future Projections of Heat Waves and Associated Mortality Risk in a Coastal Mediterranean City. Sustainability 2024, 16, 1072. [Google Scholar] [CrossRef]
- Slini, T.; Papakostas, K.T. 30 Years Air Temperature Data Analysis in Athens and Thessaloniki, Greece. In Energy, Transportation and Global Warming; Springer: Cham, Switzerland, 2016; pp. 21–33. [Google Scholar]
- Moussiopoulos, N. The EUMAC Zooming Model, a Tool for Local-to-Regional Air Quality Studies. Meteorol. Atmos. Phys. 1995, 57, 115–133. [Google Scholar] [CrossRef]
- Nitis, T.; Tsegas, G.; Moussiopoulos, N.; Gounaridis, D. Assimilating Anthropogenic Heat Flux Estimated from Satellite Data in a Mesoscale Flow Model. In Proceedings of the Air Pollution Modeling and Its Application XXV 35, Chania, Greece, 3–7 October 2016; 2018; pp. 219–224. [Google Scholar]
- Moussiopoulos, N.; Douros, I.; Louka, P.; Simonidis, C.; Arvanitis, A. Evaluation of MEMO Using the ESCOMPTE Pre-Campaign Dataset. In Proceedings of the 8th International Conference on Harmonisation Within Atmospheric Dispersion Modelling for Regulatory Purposes Proceedings, Sofia, Bulgaria, 14–17 October 2002; p. 87. [Google Scholar]
- Moussiopoulos, N.; Douros, I.; Tsegas, G.; Kleanthous, S.; Chourdakis, E. An Air Quality Management System for Policy Support in Cyprus. Adv. Meteorol. 2012, 2012, 959280. [Google Scholar] [CrossRef]
- WMO 16622 “Macedonia” Airport Meteorological Station. Available online: https://rp5.ru/Weather_in_Thessaloniki_(airport) (accessed on 10 July 2025).
- Büttner, G. CORINE Land Cover and Land Cover Change Products. In Land Use and Land Cover Mapping in Europe: Practices & Trends; Springer: Berlin/Heidelberg, Germany, 2014; pp. 55–74. [Google Scholar]
- Buccolieri, R.; Santiago, J.L.; Martilli, A. CFD Modelling: The Most Useful Tool for Developing Mesoscale Urban Canopy Parameterizations. Build. Simul. 2021, 14, 407–419. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 2017. [Google Scholar]
- Sekulić, A.; Kilibarda, M.; Heuvelink, G.; Nikolić, M.; Bajat, B. Random Forest Spatial Interpolation. Remote Sens. 2020, 12, 1687. [Google Scholar] [CrossRef]
- Xia, L.-G. Understanding the Boosted Decision Tree Methods with the Weak-Learner Approximation. arXiv 2018. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments: Basics of the RayMan Model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef]
- Buccolieri, R.; Hang, J. Recent Advances in Urban Ventilation Assessment and Flow Modelling. Atmosphere 2019, 10, 144. [Google Scholar] [CrossRef]
- Krpo, A.; Salamanca, F.; Martilli, A.; Clappier, A. On the Impact of Anthropogenic Heat Fluxes on the Urban Boundary Layer: A Two-Dimensional Numerical Study. Bound. Layer Meteorol. 2010, 136, 105–127. [Google Scholar] [CrossRef]
- Grajeda-Rosado, R.M.; Alonso-Guzmán, E.M.; Pozo, C.E.-D.; Esparza-López, C.J.; Sotelo-Salas, C.; Martínez-Molina, W.; Mondragon-Olan, M.; Cabrera-Macedo, A. Anthropogenic Vehicular Heat and Its Influence on Urban Planning. Atmosphere 2022, 13, 1259. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for Cooler Cities: A Framework to Prioritise Green Infrastructure to Mitigate High Temperatures in Urban Landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Relationships among Local-Scale Urban Morphology, Urban Ventilation, Urban Heat Island and Outdoor Thermal Comfort under Sea Breeze Influence. Sustain. Cities Soc. 2020, 60, 102289. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a Mitigation and Adaptation Strategy to Urban Heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
Training Dataset Features | |||
---|---|---|---|
Feature | Value | Type | Derived |
Time of day | 1–24 h | ||
MEMO temperature | °C | temporal | Model |
Relative humidity | 0–100% | temporal | Model |
velocity component | m/s | temporal | Model |
velocity component | m/s | temporal | Model |
Cloud cover | 0–1 | temporal | Measurement |
Distance from the sea | m | spatial | Calculated |
Distance from walls | m | spatial | Calculated |
Street width | m | spatial | Calculated |
Presence of trees | 0–1 | spatial | Estimated |
Sky view factor | 0–1 | spatial | Calculated |
Sea effect | 0–1 | spatial | Estimated |
Building height | m | spatial | Calculated |
Road traffic | 0–1 | spatial | Estimated |
Air conditioning + | 0–1 | spatial | Estimated |
Air conditioning − | 0–1 | spatial | Estimated |
Station | ID | Distance from the Sea (m) | Distance from Walls (m) | Street Width (m) | Presence of Trees | Sky View Factor | Sea Effect | Building Height | Road Traffic | Air Conditioning+ | Air Conditioning− |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Esc10 | 233 | 0.2 | 27 | 0 | 0.39 | 0.5 | 27 | 1 | 0 | 0 |
2 | Esc17 | 275 | 8 | 19 | 1 | 0.4 | 0.5 | 13 | 0 | 0 | 0.5 |
3 | Esc6 | 314 | 5 | 17 | 0.6 | 0.32 | 1 | 13 | 0 | 0 | 1 |
4 | Esc9 | 414 | 15 | 223 | 0 | 0.83 | 0.5 | 13 | 0.6 | 0 | 0 |
5 | Esc19 | 438 | 2 | 217 | 1 | 0.8 | 0 | 20 | 0 | 1 | 0 |
6 | Esc1 | 649 | 3 | 74 | 0.3 | 0.47 | 0 | 5 | 0.6 | 0.5 | 0 |
7 | Esc11 | 1073 | 2 | 14 | 0 | 0.28 | 0 | 17.5 | 1 | 0 | 0.5 |
8 | Esc5 | 1042 | 1 | 12 | 0 | 0.12 | 0 | 16 | 0.6 | 1 | 0 |
9 | Esc7 | 1001 | 0.2 | 6 | 0 | 0.57 | 0 | 14 | 0 | 0 | 0 |
10 | Esc4 | 1152 | 1 | 6 | 0 | 0.4 | 0 | 14 | 0 | 0.5 | 0 |
11 | Esc2 | 1310 | 1 | 9 | 0 | 0.16 | 0 | 15 | 0.3 | 0 | 0 |
12 | Esc8 | 1337 | 5 | 59 | 0.6 | 0.39 | 0 | 14 | 0 | 0 | 0 |
13 | H04 | 5 | 10 | 28 | 0 | 0.8 | 1 | 14 | 0.6 | 0 | 0 |
14 | H08 | 157 | 3 | 31 | 0 | 0.49 | 1 | 18 | 0 | 0 | 0 |
15 | H03 | 225 | 5 | 24 | 0.3 | 0.39 | 0 | 20 | 1 | 0 | 1 |
16 | H02 | 397 | 10 | 112 | 0 | 0.77 | 0.5 | 20 | 0 | 0 | 0 |
17 | H06 | 903 | 15 | 57 | 1 | 0.42 | 0.5 | 20 | 0 | 0 | 0 |
18 | H05 | 1310 | 1 | 9 | 0 | 0.16 | 0 | 15 | 0.3 | 0 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkirmpas, P.; Tsegas, G.; Boehnke, D.; Vlachokostas, C.; Moussiopoulos, N. Temperature Prediction at Street Scale During a Heat Wave Using Random Forest. Atmosphere 2025, 16, 877. https://doi.org/10.3390/atmos16070877
Gkirmpas P, Tsegas G, Boehnke D, Vlachokostas C, Moussiopoulos N. Temperature Prediction at Street Scale During a Heat Wave Using Random Forest. Atmosphere. 2025; 16(7):877. https://doi.org/10.3390/atmos16070877
Chicago/Turabian StyleGkirmpas, Panagiotis, George Tsegas, Denise Boehnke, Christos Vlachokostas, and Nicolas Moussiopoulos. 2025. "Temperature Prediction at Street Scale During a Heat Wave Using Random Forest" Atmosphere 16, no. 7: 877. https://doi.org/10.3390/atmos16070877
APA StyleGkirmpas, P., Tsegas, G., Boehnke, D., Vlachokostas, C., & Moussiopoulos, N. (2025). Temperature Prediction at Street Scale During a Heat Wave Using Random Forest. Atmosphere, 16(7), 877. https://doi.org/10.3390/atmos16070877