Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = ion mobility spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1153 KiB  
Review
Unlocking Plant Resilience: Metabolomic Insights into Abiotic Stress Tolerance in Crops
by Agata Głuchowska, Bartłomiej Zieniuk and Magdalena Pawełkowicz
Metabolites 2025, 15(6), 384; https://doi.org/10.3390/metabo15060384 - 9 Jun 2025
Viewed by 722
Abstract
Background/Objectives: In the context of accelerating climate change and growing food insecurity, improving crop resilience to abiotic stresses such as drought, salinity, heat, and cold is a critical agricultural and scientific challenge. Understanding the biochemical mechanisms that underlie plant stress responses is essential [...] Read more.
Background/Objectives: In the context of accelerating climate change and growing food insecurity, improving crop resilience to abiotic stresses such as drought, salinity, heat, and cold is a critical agricultural and scientific challenge. Understanding the biochemical mechanisms that underlie plant stress responses is essential for developing resilient crop varieties This review aims to provide an integrative overview of how metabolomics can elucidate biochemical mechanisms underlying stress tolerance and guide the development of stress-resilient crops. Methods: We reviewed the recent literature on metabolomic studies addressing abiotic stress responses in various crop species, focusing on both targeted and untargeted approaches using platforms such as nuclear magnetic resonance (NMR), liquid chromatography–mass spectrometry (LC-MS), and gas chromatography–mass spectrometry (GC-MS). We also included emerging techniques such as capillary electrophoresis–mass spectrometry (CE-MS), ion mobility spectrometry (IMS-MS), Fourier transform infrared spectroscopy (FT-IR), and data-independent acquisition (DIA). Additionally, we discuss the integration of metabolomics with transcriptomics and physiological data to support system-level insights. Results: The reviewed studies identify common stress-responsive metabolites, including osmoprotectants, antioxidants, and signaling compounds, which are consistently linked to enhanced tolerance. Novel metabolic biomarkers and putative regulatory hubs are highlighted as potential targets for molecular breeding and bioengineering. We also address ongoing challenges related to data standardization and reproducibility across analytical platforms. Conclusions: Metabolomics is a valuable tool for advancing our understanding of plant abiotic stress responses. Its integration with other omics approaches and phenotypic analyses offers promising avenues for improving crop resilience and developing climate-adaptive agricultural strategies. Full article
(This article belongs to the Special Issue Climate Change-Related Stresses and Plant Metabolism)
Show Figures

Figure 1

20 pages, 3643 KiB  
Article
Study on Nutritional Characteristics, Antioxidant Activity, and Volatile Compounds in Non-Saccharomyces cerevisiaeLactiplantibacillus plantarum Co-Fermented Prune Juice
by Yu Zhao, Rui Yang, Wei Wang, Tongle Sun, Xinyao Han, Mingxun Ai and Shihao Huang
Foods 2025, 14(11), 1966; https://doi.org/10.3390/foods14111966 - 31 May 2025
Cited by 1 | Viewed by 647
Abstract
The fermentation of prune juice significantly enhances its nutritional profile, antioxidant capacity, and flavor characteristics. In this study, Non-Saccharomyces cerevisiae and Lactiplantibacillus plantarum were used to co-ferment prune juice to systematically investigate the dynamic changes in physicochemical properties and antioxidant activity during fermentation. [...] Read more.
The fermentation of prune juice significantly enhances its nutritional profile, antioxidant capacity, and flavor characteristics. In this study, Non-Saccharomyces cerevisiae and Lactiplantibacillus plantarum were used to co-ferment prune juice to systematically investigate the dynamic changes in physicochemical properties and antioxidant activity during fermentation. The evolution of volatile compounds across fermentation stages was analyzed using gas chromatography–ion mobility spectroscopy (GC-IMS) combined with chemometric methods, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The results showed that after fermentation, the total acidity (TA), total phenolic content (TPC), and total flavonoid content (TFC) increased by 37.35%, 20.28%, and 28.95%, respectively. Meanwhile, the pH, total soluble solids (TSS), and reducing sugars (RS) decreased by 16.87%, 23.36%, and 39.94%, respectively. Additionally, the DPPH radical scavenging capacity and ABTS radical scavenging capacity improved by 76.16% and 57.25% during fermentation process. A total of 37 volatile compounds were identified across the four fermentation stages of prune juice (PJ). These compounds included 14 esters, 8 alcohols, 7 aldehydes, 4 terpenoids, 3 ketones, and 1 amine. Considerable quantities of organic acids and free amino acids were detected in samples from all fermentation phases. Among these, lactic acid, citric acid, and D-glucuronic acid exhibited significant increases in their concentration (p < 0.05). In the free amino acid profile of fermented prune juice (FPJ), asparagine was the most abundant component, followed by glutamine and proline. Full article
Show Figures

Figure 1

23 pages, 4620 KiB  
Article
Analysis of Comprehensive Edible Quality and Volatile Components in Different Varieties of Cooked Highland Barley
by Caijiao Li, Jun Li, Wengang Zhang, Bin Dang and Xijuan Yang
Foods 2025, 14(10), 1690; https://doi.org/10.3390/foods14101690 - 10 May 2025
Viewed by 408
Abstract
Twenty-two types of highland barley (HB) raw materials (including 10 common varieties and 5 main planting regions in the Qinghai province) were selected as the experimental materials to investigate their differences in the cooking characteristics, sensory quality, and characteristic flavor of cooked HB. [...] Read more.
Twenty-two types of highland barley (HB) raw materials (including 10 common varieties and 5 main planting regions in the Qinghai province) were selected as the experimental materials to investigate their differences in the cooking characteristics, sensory quality, and characteristic flavor of cooked HB. The key volatile flavor components were identified using Gas Chromatography–Ion Mobility Spectroscopy (GC-IMS) combined with relative odor activity value (ROAV) analysis. The results indicated that the highland barley raw materials of Kunlun 15 (M5), Kunlun 14 (M9), Chaiqing 1 (M13) and Kunlun 14 (M14), and Chaiqing 1 (M20) and Kunlun 15 (M21) showed superior cooking quality, texture, and sensory scores. A total of 44 volatile flavor compounds were identified, including 16 aldehydes, 10 alcohols, 9 ketones, 7 esters, 1 acid, and 1 furan. Among these, 13 aldehydes, 4 alcohols, 4 ketones, 7 esters, and 1 furan were found across different cooked HB samples. Notably, ethyl, ethyl 2-methylbutanoate dimer, 2-methylbutanoic acid methyl ester, 2-butanone, 1-octen-3-ol, 1-pentanol dimer, and 2-pentyl furan contributed more significantly to the overall volatile profile. Cluster analysis combining principal component analysis revealed that Kunlun 16 (M16), Kunlun 17 (M17), Kunlun 14 (M18), Kunlun 15 (M19), as well as Chaiqing 1 (M20) and Kunlun 15 (M21), were the most suitable raw materials for cooking due to their better cooking quality, sensory attributes, and flavors, followed by Kunlun 15 (M10) and Kunlun 18 (M12), and Chaiqing 1 (M13) and Kunlun 14 (M14). These findings could help us identify specific HB varieties in corresponding regions with advantages, thus providing a theoretical basis for cooking HB. Full article
Show Figures

Figure 1

18 pages, 1773 KiB  
Article
Tuning Solvation Dynamics of Electrolytes at Their Eutectic Point Through Halide Identity
by Rathiesh Pandian, Benworth B. Hansen, Giselle de Araujo Lima e Souza, Joshua R. Sangoro, Steven Greenbaum and Clemens Burda
Molecules 2025, 30(10), 2113; https://doi.org/10.3390/molecules30102113 - 9 May 2025
Viewed by 547
Abstract
Deep eutectic solvents (DESs) are regarded as highly promising solvent systems for redox flow batteries. DESs, composed of choline halides (ChX, X = F, Cl, Br, I) and ethylene glycol (EG), exhibit distinct physicochemical properties [...] Read more.
Deep eutectic solvents (DESs) are regarded as highly promising solvent systems for redox flow batteries. DESs, composed of choline halides (ChX, X = F, Cl, Br, I) and ethylene glycol (EG), exhibit distinct physicochemical properties at their eutectic points, including halide-dependent phase behavior, viscosity, polarity, conductivity, and solvation dynamics. In this study, we investigate the effects of the halide identity on the solvation properties of ChX:EG mixtures at varying mol % of ChX salt content. The solvatochromic polarity based on ET(30) measurements indicates higher polarity for larger halides (I > Br) than for smaller halides (Cl > F), which exhibit larger compensating solvation shells. The ionic conductivity follows the trend of the solvent fluidity (the inverse of the viscosity), namely ChCl > ChBr > ChI > ChF, influenced by the ion mobility and solvodynamic radii. Measurements of the liquidus temperatures (TL) reveal that the system with ChCl exhibits the deepest eutectic point (at ~20 mol % ChCl), while ChBr and ChI have shallower minima at ~10 mol % ChBr and ~3 mol % ChI, respectively. ChF does not display a eutectic transition but instead appears to readily supercool at salt concentrations above 30 mol % ChF. Consistent with the phase transition measurements, femtosecond transient absorption spectroscopy shows that in the ChCl system, the solvation dynamics become faster with an increasing salt concentration up to ~16.67 mol %, after which the dynamics slow down with further increases in the salt content. The ChF-based system exhibits similar behavior, though with slower dynamics. In contrast, the solvation dynamics of the systems containing ChBr and ChI monotonously slow down with an increasing salt concentration, in agreement with the phase transition measurements, which show that the eutectic points occur at low salt concentrations. These measurements suggest that the solvent composition and, in particular, the identity of the halide anion play a significant role in the solvation behavior of these ethylene-glycol-based DESs, offering a foundation for tuning the DES properties for specific applications. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Figure 1

11 pages, 1070 KiB  
Article
The Application of Zeolites for Fixation of Cr(VI) Ions in Sediments
by Marjana Simonič
Physchem 2025, 5(2), 19; https://doi.org/10.3390/physchem5020019 - 8 May 2025
Viewed by 757
Abstract
The aim of the study was to investigate the fixation of Cr(VI) ions from contaminated sediments using synthetic zeolite 4A and natural zeolite clinoptilolite. Parameters such as pH, contact time, adsorption mass and temperature were investigated. If the ions of the heavy metals [...] Read more.
The aim of the study was to investigate the fixation of Cr(VI) ions from contaminated sediments using synthetic zeolite 4A and natural zeolite clinoptilolite. Parameters such as pH, contact time, adsorption mass and temperature were investigated. If the ions of the heavy metals were mobile, they would become toxic to the environment. After sediment digestion, the initial and final concentrations of Cr(VI) were measured in sediment samples with or without zeolite. Inductively coupled plasma with optical emission spectroscopy (ICP-OES) and X-ray diffraction (XRD) were used to characterize the material. The adsorption kinetics were investigated using a pseudo-first order model, a pseudo-second order model, and an intra-particle diffusion model. The results showed that the zeolites enhanced the fixation of Cr(VI). Chemisorption was the main mechanism when using acid-modified zeolite. Full article
(This article belongs to the Section Kinetics and Thermodynamics)
Show Figures

Figure 1

15 pages, 4751 KiB  
Article
SnO Nanosheet Transistor with Remarkably High Hole Effective Mobility and More than Six Orders of Magnitude On-Current/Off-Current
by Kuan-Chieh Chen, Jiancheng Wu, Pheiroijam Pooja and Albert Chin
Nanomaterials 2025, 15(9), 640; https://doi.org/10.3390/nano15090640 - 23 Apr 2025
Viewed by 805
Abstract
Using novel SiO2 surface passivation and ultraviolet (UV) light anneal, a 12 nm thick SnO p-type FET (pFET) shows hole effective mobilities (µeff) of more than 100 cm2/V·s and 31.1 cm2/V·s at hole densities (Qh [...] Read more.
Using novel SiO2 surface passivation and ultraviolet (UV) light anneal, a 12 nm thick SnO p-type FET (pFET) shows hole effective mobilities (µeff) of more than 100 cm2/V·s and 31.1 cm2/V·s at hole densities (Qh) of 1 × 1011 and 5 × 1012 cm−2, respectively. To further improve the on-current/off-current (ION/IOFF), an ultra-thin 7 nm thick SnO nanosheet pFET shows a record-breaking ION/IOFF of 6.9 × 106 and remarkable µeff values of ~70 cm2/V·s and 20.7 cm2/V·s at Qh of 1 × 1011 cm−2 and 5 × 1012 cm−2, respectively. This is the first report of an oxide semiconductor transistor achieving a hole effective mobility µeff that reaches 20% of that in single-crystal Si pFETs at an ultra-thin body thickness of 7 nm. In sharp contrast, the control SnO nanosheet pFET without surface passivation or UV anneal exhibits a small ION/IOFF of 1.8 × 104 and a µeff of only 6.1 cm2/V·s at 5 × 1012 cm−2 Qh. The enhanced SnO pFET performance is attributed to reduced defects and improved quality in the SnO channel, as confirmed by decreased charges related to sub-threshold swing (SS) and threshold voltage (Vth) shift. Such a large improvement is further supported by the increased Sn2+ after passivation and UV anneal, as evidenced by X-ray photoelectron spectroscopy (XPS) analysis. The ION/IOFF ratio exceeding six orders of magnitude, remarkably high hole µeff, and excellent two-month stability demonstrate that this pFET is a strong candidate for integration with SnON nFETs in next-generation ultra-high-definition displays and monolithic three-dimensional integrated circuits (3D ICs). Full article
(This article belongs to the Special Issue Integrated Circuit Research for Nanoscale Field-Effect Transistors)
Show Figures

Figure 1

20 pages, 7370 KiB  
Article
Explainable Deep Learning to Predict Kelp Geographical Origin from Volatile Organic Compound Analysis
by Xuming Kang, Zhijun Tan, Yanfang Zhao, Lin Yao, Xiaofeng Sheng and Yingying Guo
Foods 2025, 14(7), 1269; https://doi.org/10.3390/foods14071269 - 4 Apr 2025
Viewed by 517
Abstract
In addition to its flavor and nutritional value, the origin of kelp has become a crucial factor influencing consumer choices. Nevertheless, research on kelp’s origin traceability by volatile organic compound (VOC) analysis is lacking, and the application of deep learning in this field [...] Read more.
In addition to its flavor and nutritional value, the origin of kelp has become a crucial factor influencing consumer choices. Nevertheless, research on kelp’s origin traceability by volatile organic compound (VOC) analysis is lacking, and the application of deep learning in this field remains scarce due to its black-box nature. To address this gap, we attempted to identify the origin of kelp by analyzing its VOCs in conjunction with explainable deep learning. In this work, we identified 115 distinct VOCs in kelp samples using gas chromatography coupled with ion mobility spectroscopy (GC-IMS), of which 68 categories were discernible. Consequently, we developed a comprehensible one-dimensional convolutional neural network (1D-CNN) model that incorporated 107 VOCs exhibiting significant regional disparities (p < 0.05). The model successfully discerns the origin of kelp, achieving perfect metrics across accuracy (100%), precision (100%), recall (100%), F1 score (100%), and AUC (1.0). SHapley Additive exPlanations (SHAP) analysis highlighted the impact of features such as 1-Octen-3-ol-M, (+)-limonene, allyl sulfide-D, 1-hydroxy-2-propanone-D, and (E)-2-hexen-1-al-M on the model output. This research provides deeper insights into how critical product features correlate with specific geographic information, which in turn boosts consumer trust and promotes practical utilization in actual settings. Full article
Show Figures

Graphical abstract

13 pages, 2285 KiB  
Article
Enhancement in Performance and Reliability of Fully Transparent a-IGZO Top-Gate Thin-Film Transistors by a Two-Step Annealing Treatment
by Shuaiying Zheng, Chengyuan Wang, Shaocong Lv, Liwei Dong, Zhijun Li, Qian Xin, Aimin Song, Jiawei Zhang and Yuxiang Li
Nanomaterials 2025, 15(6), 460; https://doi.org/10.3390/nano15060460 - 19 Mar 2025
Cited by 2 | Viewed by 838
Abstract
A two-step annealing treatment was applied on a fully transparent amorphous InGaZnO4 (a-IGZO) top-gate thin-film transistor (TG-TFT) to improve the device performance. The electrical properties and stabilities of a-IGZO TG TFTs were significantly improved as the first-annealing temperature increased from 150 °C to [...] Read more.
A two-step annealing treatment was applied on a fully transparent amorphous InGaZnO4 (a-IGZO) top-gate thin-film transistor (TG-TFT) to improve the device performance. The electrical properties and stabilities of a-IGZO TG TFTs were significantly improved as the first-annealing temperature increased from 150 °C to 350 °C with a 300 °C second-annealing treatment. The a-IGZO TG-TFT with the 300 °C first-annealing treatment demonstrated the overall best performance, which has a mobility of 13.05 cm2/(V·s), a threshold voltage (Vth) of 0.33 V, a subthreshold swing of 130 mV/dec, and a Ion/Ioff of 1.73 × 108. The Vth deviation (ΔVth) was −0.032 V and −0.044 V, respectively, after a 7200 s positive and negative bias stress under the gate bias voltage VG = ±3 V and VD = 0.1 V. The Photoluminescence spectra results revealed that the distribution and the density of defects in a-IGZO films were changed after the first-annealing treatment, whereas the X-ray photoelectron spectroscopy results displayed that contents of the oxygen vacancy and Ga-O bond varied in annealed a-IGZO films. In addition, a-IGZO TG-TFTs had achieved a transmittance of over 90%. Research on the effects of the first-annealing treatment will contribute to the fabrication of highly stable top-gate TFTs in the fields of transparent flexible electronics. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Figure 1

15 pages, 6558 KiB  
Article
The Effect of Hydrogen Annealing on the Electronic Conductivity of Al-Doped Zinc Oxide Thin Films
by Ryoma Kawashige and Hideyuki Okumura
Materials 2025, 18(5), 1032; https://doi.org/10.3390/ma18051032 - 26 Feb 2025
Viewed by 458
Abstract
In this research, Hall effect experiments and optical fittings were mainly conducted to elucidate the effect of hydrogen annealing on the electronic properties of polycrystalline Al-doped Zinc Oxide thin films by distinguishing the scattering by ion impurities and the scattering by grain boundaries. [...] Read more.
In this research, Hall effect experiments and optical fittings were mainly conducted to elucidate the effect of hydrogen annealing on the electronic properties of polycrystalline Al-doped Zinc Oxide thin films by distinguishing the scattering by ion impurities and the scattering by grain boundaries. By comparing the carrier density and those mobilities of H2-annealed samples with Ar-annealed samples, the effect of H2 annealing was highlighted. AZO thin films were prepared on the quartz glass substrate at R.T. by an RF magnetron sputtering method, and the carrier density was controlled by changing the number of Al chips on the Zn target. After fabricating them, they were post-annealed in hydrogen or argon gas. Optical fitting was based on the Drude model using the experimental data of Near-Infrared spectroscopy, and the mobility at grain boundaries was analyzed by Seto’s theory. Other optical and crystalline properties were also checked by SEM, EDX, XRD and profilometer. It is indicated that the H2 annealing would improve both carrier density and mobility. The analysis referring to Seto’s theory implied that the improvement of mobility was caused by the carrier generation from introduced hydrogen atoms both at the grain boundary and its intragrain region. Furthermore, the effect of H2 annealing is relatively pronounced especially in low-doped region, which implies that Al and H have some interaction in AZO thin film. The interaction between Al and H in AZO thin film is still not confirmed, but this result implied that this interaction negatively affects the mobility at grain boundary. Full article
(This article belongs to the Special Issue Advanced Photovoltaic Materials: Properties and Applications)
Show Figures

Figure 1

15 pages, 1520 KiB  
Article
Insights from Femtosecond Transient Absorption Spectroscopy into the Structure–Function Relationship of Glyceline Deep Eutectic Solvents
by Rathiesh Pandian and Clemens Burda
Molecules 2025, 30(5), 1059; https://doi.org/10.3390/molecules30051059 - 26 Feb 2025
Viewed by 852
Abstract
This study aimed to determine the structure–function relationship (SFR) for ChCl–glycerol mixtures, a deep eutectic solvent (DES), by investigating their microscopic solvation dynamics and how it relates to their macroscopic properties across varying concentrations of ChCl. Femtosecond transient absorption (fs-TA) spectroscopy revealed two [...] Read more.
This study aimed to determine the structure–function relationship (SFR) for ChCl–glycerol mixtures, a deep eutectic solvent (DES), by investigating their microscopic solvation dynamics and how it relates to their macroscopic properties across varying concentrations of ChCl. Femtosecond transient absorption (fs-TA) spectroscopy revealed two distinct solvation dynamics time constants: τ1, governed by glycerol–glycerol interactions, and τ2, dominated by the choline response. The τ2 minimum at 25–30 mol % ChCl closely aligned with the eutectic composition (~33.33 mol % ChCl), where the glycerol network was the most organized and the choline ions exhibited the fastest relaxation. The viscosity decreased sharply up to ~25 mol % ChCl and then plateaued, while the conductivity increased monotonically with ChCl concentration, reflecting enhanced ionic mobility. The density decreased with both increasing ChCl concentration and temperature, indicating disrupted hydrogen bonding and reduced molecular packing. The polarity, measured using betaine-30 (B30) and the ET(30) polarity scale, increased steeply up to approximately 25 mol % ChCl before reaching a plateau. These findings identified the eutectic composition as the optimal concentration range for balancing stability, fluidity, conductivity, and enhanced dynamics within the glycerol system. Full article
Show Figures

Figure 1

25 pages, 2372 KiB  
Article
Systematic Simulations of Structural Stability, Phonon Dispersions, and Thermal Expansion in Zinc-Blende ZnO
by Devki N. Talwar and Piotr Becla
Nanomaterials 2025, 15(4), 308; https://doi.org/10.3390/nano15040308 - 17 Feb 2025
Cited by 2 | Viewed by 1269
Abstract
Zinc oxide (ZnO) has recently gained considerable attention due to its exceptional properties, including higher electron mobility, good thermal conductivity, high breakdown voltage, and a relatively large exciton-binding energy. These characteristics helped engineers to develop low dimensional heterostructures (LDHs)-based advanced flexible/transparent nanoelectronics, which [...] Read more.
Zinc oxide (ZnO) has recently gained considerable attention due to its exceptional properties, including higher electron mobility, good thermal conductivity, high breakdown voltage, and a relatively large exciton-binding energy. These characteristics helped engineers to develop low dimensional heterostructures (LDHs)-based advanced flexible/transparent nanoelectronics, which were then integrated into thermal management systems. Coefficients of thermal expansion αT, phonon dispersions  ωj(q), and Grüneisen parameters  γjq can play important roles in evaluating the suitability of materials in such devices. By adopting a realistic rigid-ion model in the quasi-harmonic approximation, this work aims to report the results of a methodical study to comprehend the structural, lattice dynamical, and thermodynamic behavior of zinc-blende (zb) ZnO. Systematic calculations of ωj(q), γjq, and αT have indicated negative thermal expansion (NTE) at low T. Soft transverse acoustic shear mode gammas  γTA at critical points offered major contributions to NTE. Our results of ωj(q) at ambient pressure compare reasonably well with Raman scattering spectroscopy measurements and first-principles calculations. By adjusting the layers of materials with positive and negative thermal expansion, it is possible to create LDHs with near-zero αT. Such a nanostructure might experience a minimal dimensional change with T fluctuations, making it ideal for devices where precise dimensional stability is crucial. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

15 pages, 3338 KiB  
Article
One-Pot Strategies for Lithium Recovery from Beta-Spodumene and LTA-Type Zeolite Synthesis
by Leonardo Leandro dos Santos, Rubens Maribondo do Nascimento and Sibele Berenice Castellã Pergher
Crystals 2025, 15(2), 161; https://doi.org/10.3390/cryst15020161 - 8 Feb 2025
Viewed by 807
Abstract
This study presents a groundbreaking method for extracting lithium from beta-spodumene while simultaneously achieving the sustainable synthesis of LTA-type zeolite, designated as LPM-15, without relying on organic solvents or calcination. Lithium extraction was efficiently performed using sodium salts, accompanied by the recycling of [...] Read more.
This study presents a groundbreaking method for extracting lithium from beta-spodumene while simultaneously achieving the sustainable synthesis of LTA-type zeolite, designated as LPM-15, without relying on organic solvents or calcination. Lithium extraction was efficiently performed using sodium salts, accompanied by the recycling of the mother liquor, with lithium content in the supernatant precisely quantified via atomic absorption spectroscopy (AAS). The optimized synthesis route enables the concurrent production of Li2CO3 and LPM-15, distinguished by a powdered appearance without a well-defined geometric framework and a unique cubic morphology with spherical facets, respectively. To gain deeper insights into the process, density functional theory (DFT) simulations were conducted to analyze how different cation exchanges (Na+ replacing Al3+, NH4+ replacing Al3+, and Ca2+ replacing Al3+) influence the structural stability and diffusion dynamics within the zeolitic pores of LPM-15. Additionally, cation-exchange capacity (CEC) measurements further assessed ion mobility within the LPM-15 framework. This integrative approach not only sheds light on the fundamental mechanisms underpinning LTA-type zeolite synthesis but also demonstrates their versatile applications, with particular emphasis on water purification technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Graphical abstract

14 pages, 2462 KiB  
Article
The Use of Dansyl Chloride to Probe Protein Structure and Dynamics
by James Larson, Monika Tokmina-Lukaszewska, Jadyn Malone, Ethan J. Hasenoehrl, Will Kelly, Xuelan Fang, Aidan White, Angela Patterson and Brian Bothner
Int. J. Mol. Sci. 2025, 26(2), 456; https://doi.org/10.3390/ijms26020456 - 8 Jan 2025
Viewed by 2336
Abstract
Dansyl labeling is a widely used approach for enhancing the detection of small molecules by UV spectroscopy and mass spectrometry. It has been successfully applied to identify and quantify a variety of biological and environmental specimens. Despite clear advantages, the dansylation reaction has [...] Read more.
Dansyl labeling is a widely used approach for enhancing the detection of small molecules by UV spectroscopy and mass spectrometry. It has been successfully applied to identify and quantify a variety of biological and environmental specimens. Despite clear advantages, the dansylation reaction has found very few applications in the study of proteins. We reasoned that the mild labeling conditions, small size, and rapid reaction could be beneficial for studying protein structure and dynamics. To test this, we investigated the impact of dansylation on protein fold, stability, protein–protein, and protein–cofactor interactions. We selected two model proteins, myoglobin and alcohol dehydrogenase, for analysis using native mass spectrometry and ion mobility mass spectrometry. Our work establishes the utility of dansyl chloride as a covalent probe to study protein structure and dynamics under native conditions. Full article
(This article belongs to the Special Issue Conformational Studies of Proteins and Peptides)
Show Figures

Figure 1

18 pages, 13047 KiB  
Article
Utilizing Headspace–Gas Chromatography–Ion Mobility Spectroscopy Technology to Establish the Volatile Chemical Component Fingerprint Profiles of Schisandra chinensis Processed by Different Preparation Methods and to Perform Differential Analysis of Their Components
by Yiping Yan, Bowei Sun, Mengqi Wang, Yanli Wang, Yiming Yang, Baoxiang Zhang, Yining Sun, Pengqiang Yuan, Jinli Wen, Yanli He, Weiyu Cao, Wenpeng Lu and Peilei Xu
Molecules 2024, 29(24), 5883; https://doi.org/10.3390/molecules29245883 - 13 Dec 2024
Viewed by 916
Abstract
In order to characterize the volatile chemical components of Schisandra chinensis processed by different Traditional Chinese Medicine Processing methods and establish fingerprint profiles, headspace–gas chromatography–ion mobility spectrometry (HS-GC-IMS) technology was employed to detect, identify, and analyze Schisandra chinensis processed by five different methods. [...] Read more.
In order to characterize the volatile chemical components of Schisandra chinensis processed by different Traditional Chinese Medicine Processing methods and establish fingerprint profiles, headspace–gas chromatography–ion mobility spectrometry (HS-GC-IMS) technology was employed to detect, identify, and analyze Schisandra chinensis processed by five different methods. Fingerprint profiles of volatile chemical components of Schisandra chinensis processed by different methods were established; a total of 85 different volatile organic compounds (VOCs) were detected in the experiment, including esters, alcohols, ketones, aldehydes, terpenes, olefinic compounds, nitrogen compounds, lactones, pyrazines, sulfur compounds, thiophenes, acid, and thiazoles. Principal component analysis (PCA), Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), and Pearson correlation analysis methods were used to cluster and analyze the detected chemical substances and their contents. The analysis results showed significant differences in the volatile chemical components of Schisandra chinensis processed by different methods; the Variable Importance in Projection (VIP) values of the OPLS-DA model and the P values obtained from one-way ANOVA were used to score and screen the detected volatile chemical substances, resulting in the identification of five significant chemical substances with the highest VIP values: Alpha-Farnesene, Methyl acetate,1-octene, Ethyl butanoate, and citral. These substances will serve as marker compounds for the identification of Schisandra chinensis processed by different methods in the future. Full article
Show Figures

Graphical abstract

22 pages, 4660 KiB  
Article
Uncertainty Quantification and Flagging of Unreliable Predictions in Predicting Mass Spectrometry-Related Properties of Small Molecules Using Machine Learning
by Dmitriy D. Matyushin, Ivan A. Burov and Anastasia Yu. Sholokhova
Int. J. Mol. Sci. 2024, 25(23), 13077; https://doi.org/10.3390/ijms252313077 - 5 Dec 2024
Viewed by 1415
Abstract
Mass spectral identification (in particular, in metabolomics) can be refined by comparing the observed and predicted properties of molecules, such as chromatographic retention. Significant advancements have been made in predicting these values using machine learning and deep learning. Usually, model predictions do not [...] Read more.
Mass spectral identification (in particular, in metabolomics) can be refined by comparing the observed and predicted properties of molecules, such as chromatographic retention. Significant advancements have been made in predicting these values using machine learning and deep learning. Usually, model predictions do not contain any indication of the possible error (uncertainty) or only one criterion is used for this purpose. The spread of predictions of several models included in the ensemble, and the molecular similarity of the considered molecule and the most “similar” molecule from the training set, are values that allow us to estimate the uncertainty. The Euclidean distance between vectors, calculated based on real-valued molecular descriptors, can be used for the assessment of molecular similarity. Another factor indicating uncertainty is the molecule’s belonging to one of the clusters (data set clustering). Together, all three factors can be used as features for the uncertainty assessment model. Classification models that predict whether a prediction belongs to the worst 15% were obtained. The area under the receiver operating curve value is in the range of 0.73–0.82 for the considered tasks: the prediction of retention indices in gas chromatography, retention times in liquid chromatography, and collision cross-sections in ion mobility spectroscopy. Full article
Show Figures

Graphical abstract

Back to TopTop