Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (689)

Search Parameters:
Keywords = ion fluxes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4237 KiB  
Article
Ultra-Stable Anode-Free Na Metal Batteries Enabled by Al2O3-Functionalized Separators
by Han Wang, Yiheng Zhao, Jiaqi Huang, Lu Wang, Canglong Li and Yuejiao Chen
Batteries 2025, 11(8), 297; https://doi.org/10.3390/batteries11080297 - 4 Aug 2025
Viewed by 175
Abstract
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is [...] Read more.
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is a pivotal strategy for stabilizing AFSMBs. Through systematic evaluation of four separators—2500 separator (PP), 2325 separator (PP/PE/PP), glass fiber (GF), and an Al2O3-coated PE membrane, we reveal that the Al2O3-coated separator uniquely enables exceptional interfacial kinetics and morphological control. Na||Na symmetric cells with Al2O3 coated separator exhibit ultralow polarization (4.5 mV) and the highest exchange current density (1.77 × 10−2 mA cm−2), while the anode-free AlC-NFPP full cells retain 91.6% capacity after 150 cycles at 2C. Specifically, the Al2O3 coating homogenizes Na+ flux, promotes dense and planar Na deposition, and facilitates near-complete stripping with minimal “dead Na”. This work establishes ceramic-functionalized separators as essential enablers of practical high-energy AFSMBs. Full article
Show Figures

Figure 1

14 pages, 3520 KiB  
Article
Design and Fabrication of Embedded Microchannel Cooling Solutions for High-Power-Density Semiconductor Devices
by Yu Fu, Guangbao Shan, Xiaofei Zhang, Lizheng Zhao and Yintang Yang
Micromachines 2025, 16(8), 908; https://doi.org/10.3390/mi16080908 (registering DOI) - 4 Aug 2025
Viewed by 232
Abstract
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of [...] Read more.
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of the substrate, efficient forced convection and flow boiling mechanisms are achieved. Finite element analysis was first employed to conduct thermo–fluid–structure simulations of micropillar arrays with different geometries. Subsequently, based on our simulation results, a complete multilayer microstructure fabrication process was developed and integrated, including critical steps such as deep reactive ion etching (DRIE), surface hydrophilic/hydrophobic functionalization, and gold–stannum (Au-Sn) eutectic bonding. Finally, an experimental test platform was established to systematically evaluate the thermal performance of the fabricated devices under heat fluxes of up to 1200 W/cm2. Our experimental results demonstrate that this solution effectively maintains the device operating temperature at 46.7 °C, achieving a mere 27.9 K temperature rise and exhibiting exceptional thermal management capabilities. This manuscript provides a feasible, efficient technical pathway for addressing extreme heat dissipation challenges in next-generation electronic devices, while offering notable references in structural design, micro/nanofabrication, and experimental validation for related fields. Full article
Show Figures

Figure 1

18 pages, 2328 KiB  
Article
Modeling and Optimization of MXene/PVC Membranes for Enhanced Water Treatment Performance
by Zainab E. Alhadithy, Ali A. Abbas Aljanabi, Adnan A. AbdulRazak, Qusay F. Alsalhy, Raluca Isopescu, Daniel Dinculescu and Cristiana Luminița Gîjiu
Materials 2025, 18(15), 3494; https://doi.org/10.3390/ma18153494 - 25 Jul 2025
Viewed by 304
Abstract
In this paper, MXene nanosheets were used as nano additives for the preparation of MXene-modified polyvinyl chloride (PVC) mixed max membranes (MMMs) for the rejection of lead (Pb2+) ions from wastewater. MXene nanosheets were introduced into the PVC matrix to enhance [...] Read more.
In this paper, MXene nanosheets were used as nano additives for the preparation of MXene-modified polyvinyl chloride (PVC) mixed max membranes (MMMs) for the rejection of lead (Pb2+) ions from wastewater. MXene nanosheets were introduced into the PVC matrix to enhance membrane performance, hydrophilicity, contact angle, porosity, and resistance to fouling. Modeling and optimization techniques were used to examine the effects of important operational and fabrication parameters, such as pH, contaminant concentration, nanoadditive (MXene) content, and operating pressure. Predictive models were developed using experimental data to assess the membranes’ performance in terms of flux and Pb2+ rejection. The ideal circumstances that struck a balance between long-term operating stability and high removal efficiency were found through multi-variable optimization. The optimized conditions for the best rejection of Pb2+ ions and the most stable permeability over time among the membranes that were manufactured were the initial metal ions concentration (2 mg/L), pH (7.89), pressure (2.99 bar), and MXene mass (0.3 g). The possibility of combining MXene nanoparticles with methodical optimization techniques to create efficient membranes for the removal of heavy metals in wastewater treatment applications is highlighted by this work. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

15 pages, 7562 KiB  
Article
Unnatural Amino Acid Photo-Crosslinking Sheds Light on Gating of the Mechanosensitive Ion Channel OSCA1.2
by Scarleth Duran-Morales, Rachel Reyes-Lizana, German Fernández, Macarena Loncon-Pavez, Yorley Duarte, Valeria Marquez-Miranda and Ignacio Diaz-Franulic
Int. J. Mol. Sci. 2025, 26(15), 7121; https://doi.org/10.3390/ijms26157121 - 23 Jul 2025
Viewed by 347
Abstract
Mechanosensitive ion channels such as OSCA1.2 enable cells to sense and respond to mechanical forces by translating membrane tension into ionic flux. While lipid rearrangement in the inter-subunit cleft has been proposed as a key activation mechanism, the contributions of other domains to [...] Read more.
Mechanosensitive ion channels such as OSCA1.2 enable cells to sense and respond to mechanical forces by translating membrane tension into ionic flux. While lipid rearrangement in the inter-subunit cleft has been proposed as a key activation mechanism, the contributions of other domains to OSCA gating remain unresolved. Here, we combined the genetic encoding of the photoactivatable crosslinker p-benzoyl-L-phenylalanine (BzF) with functional Ca2+ imaging and molecular dynamics simulations to dissect the roles of specific residues in OSCA1.2 gating. Targeted UV-induced crosslinking at positions F22, H236, and R343 locked the channel in a non-conducting state, indicating their functional relevance. Structural analysis revealed that these residues are strategically positioned: F22 interacts with lipids near the activation gate, H236 lines the lipid-filled cavity, and R343 forms cross-subunit contacts. Together, these results support a model in which mechanical gating involves a distributed network of residues across multiple channel regions, allosterically converging on the activation gate. This study expands our understanding of mechanotransduction by revealing how distant structural elements contribute to force sensing in OSCA channels. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

31 pages, 16466 KiB  
Article
Study on the Influencing Factors of UHPC Durability and Its Microscopic Performance Characterization
by Risheng Wang, Yongzhuang Zhang, Hongrui Wu and Xueni Jiang
Materials 2025, 18(14), 3268; https://doi.org/10.3390/ma18143268 - 10 Jul 2025
Viewed by 296
Abstract
Considering the harsh marine environment characterized by dry–wet cycles, freeze–thaw action, chloride penetration, and sulfate attack, four optimized ultra-high-performance concrete (UHPC) mix designs were developed. Durability was assessed via electric flux, dry–wet cycles, and rapid freeze–thaw tests to evaluate the effects of curing [...] Read more.
Considering the harsh marine environment characterized by dry–wet cycles, freeze–thaw action, chloride penetration, and sulfate attack, four optimized ultra-high-performance concrete (UHPC) mix designs were developed. Durability was assessed via electric flux, dry–wet cycles, and rapid freeze–thaw tests to evaluate the effects of curing methods, aggregate types, and mineral admixtures on key durability indicators, including chloride ion permeability, compressive strength loss, and mass loss. Scanning electron microscopy (SEM) examined microstructural changes under various conditions. Results showed that curing method significantly affected chloride ion permeability and sulfate resistance. High-temperature curing (70 ± 2 °C) reduced 28-day chloride ion electric flux by about 50%, and the compressive strength loss rate of specimens subjected to sulfate attack decreased by 2.7% to 45.7% compared to standard curing. Aggregate type had minimal impact on corrosion resistance, while mineral admixtures improved durability more effectively. Frost resistance was excellent, with mass loss below 0.87% after 500 freeze–thaw cycles. SEM analysis revealed that high-temperature curing decreased free cement particles, and mineral admixtures refined pore structure, enhancing matrix compactness. Among all mixtures, Mix Proportion 4 demonstrated the best overall durability. This study offers valuable insights for UHPC design in aggressive marine conditions. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

15 pages, 887 KiB  
Article
Mapping Ammonium Flux Across Bacterial Porins: A Novel Electrophysiological Assay with Antimicrobial Relevance
by Ishan Ghai
Appl. Sci. 2025, 15(14), 7677; https://doi.org/10.3390/app15147677 - 9 Jul 2025
Viewed by 232
Abstract
This study presents a quantitative electrophysiological method to directly measure the passive transport of ammonium ions through bacterial outer membrane porins. Using a zero-current reversal potential assay in planar lipid bilayers under defined bi-ionic gradients, this study evaluates the permeability of ammonium salts [...] Read more.
This study presents a quantitative electrophysiological method to directly measure the passive transport of ammonium ions through bacterial outer membrane porins. Using a zero-current reversal potential assay in planar lipid bilayers under defined bi-ionic gradients, this study evaluates the permeability of ammonium salts through two general diffusion porins: Omp-Pst2 from Providencia stuartii and OmpF from Escherichia coli. Under matched ionic conditions, Omp-Pst2 exhibited significantly higher ammonium flux—approximately 6000 ions per second per monomer at a 1 µM gradient—compared to ~4000 ions per second for OmpF. Importantly, the identity of the accompanying anion (chloride vs. sulfate) modulated both the ion selectivity and flux rate, highlighting the influence of counterion interactions on porin-mediated transport. These findings underscore how structural differences between porins—such as pore geometry and charge distribution—govern ion permeability. The method applied here provides a robust framework for quantifying nutrient flux at the single-channel level and offers novel insights into how Gram-negative bacteria may adapt their membrane transport mechanisms under nitrogen-limited conditions. This work not only enhances our understanding of outer membrane permeability to small ions like ammonium, but also has implications for antimicrobial strategy development and biotechnological applications in nitrogen assimilation. Full article
(This article belongs to the Special Issue Innovative Digital Health Technologies and Their Applications)
Show Figures

Figure 1

18 pages, 939 KiB  
Article
Estimates of Isotope Ratios in the Magnetosphere and Implications for Implantation of Atmosphere in Lunar Regolith
by James R. Lyons and Sarah Uddin
Atmosphere 2025, 16(7), 823; https://doi.org/10.3390/atmos16070823 - 7 Jul 2025
Viewed by 290
Abstract
The plasma in Earth’s magnetosphere is comprised of ions from the solar wind and from Earth’s polar wind, with the orientation of the interplanetary magnetic field (IMF) acting to modulate the relative contributions from these two sources. Although ion composition and charge state [...] Read more.
The plasma in Earth’s magnetosphere is comprised of ions from the solar wind and from Earth’s polar wind, with the orientation of the interplanetary magnetic field (IMF) acting to modulate the relative contributions from these two sources. Although ion composition and charge state are strong indicators of ion provenance, here we consider isotope ratios as a possible additional method for tracing plasma provenance. Solar wind isotope ratios have been well characterized, but isotope ratios have not been measured for magnetospheric plasma, and only a few measurements have been made for Earth’s ionosphere. Accounting for diffusive separation in the ionosphere, and using a magnetospheric source flux model, we estimate isotope ratios for several light ions (H+, He+, N+ and O+) in the magnetosphere. The primary source of N and O magnetospheric ions is the polar wind, and He ions come primarily from the solar wind. H ions come from both polar and solar winds. The extreme diffusive separation of O+ isotopes argues against the polar wind as a significant source of O to the lunar regolith during the passage of the Moon through the magnetotail. Full article
(This article belongs to the Special Issue Research and Space-Based Exploration on Space Plasma)
Show Figures

Figure 1

28 pages, 3292 KiB  
Article
Optimization of the Quality of Reclaimed Water from Urban Wastewater Treatment in Arid Region: A Zero Liquid Discharge Pilot Study Using Membrane and Thermal Technologies
by Maria Avramidi, Constantinos Loizou, Maria Kyriazi, Dimitris Malamis, Katerina Kalli, Angelos Hadjicharalambous and Constantina Kollia
Membranes 2025, 15(7), 199; https://doi.org/10.3390/membranes15070199 - 1 Jul 2025
Viewed by 780
Abstract
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs [...] Read more.
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs membrane (nanofiltration and reverse osmosis) and thermal technologies (multi-effect distillation evaporator and vacuum crystallizer), has been installed and operated in Cyprus at Larnaca’s WWTP, for the desalination of the tertiary treated water, producing high-quality reclaimed water. The nanofiltration (NF) unit at the plant operated with an inflow concentration ranging from 2500 to 3000 ppm. The performance of the installed NF90-4040 membranes was evaluated based on permeability and flux. Among two NF operation series, the second—operating at 75–85% recovery and 2500 mg/L TDS—showed improved membrane performance, with stable permeability (7.32 × 10−10 to 7.77 × 10−10 m·s−1·Pa−1) and flux (6.34 × 10−4 to 6.67 × 10−4 m/s). The optimal NF operating rate was 75% recovery, which achieved high divalent ion rejection (more than 99.5%). The reverse osmosis (RO) unit operated in a two-pass configuration, achieving water recoveries of 90–94% in the first pass and 76–84% in the second. This setup resulted in high rejection rates of approximately 99.99% for all major ions (Cl, Na+, Ca2+, and Mg2+), reducing the permeate total dissolved solids (TDS) to below 35 mg/L. The installed multi-effect distillation (MED) unit operated under vacuum and under various inflow and steady-state conditions, achieving over 60% water recovery and producing high-quality distillate water (TDS < 12 mg/L). The vacuum crystallizer (VC) further concentrated the MED concentrate stream (MEDC) and the NF concentrate stream (NFC) flows, resulting in distilled water and recovered salts. The MEDC process produced salts with a purity of up to 81% NaCl., while the NFC stream produced mixed salts containing approximately 46% calcium salts (mainly as sulfates and chlorides), 13% magnesium salts (mainly as sulfates and chlorides), and 38% sodium salts. Overall, the ZLD system consumed 12 kWh/m3, with thermal units accounting for around 86% of this usage. The RO unit proved to be the most energy-efficient component, contributing 71% of the total water recovery. Full article
(This article belongs to the Special Issue Applications of Membrane Distillation in Water Treatment and Reuse)
Show Figures

Figure 1

22 pages, 3825 KiB  
Article
Impedance-Driven Decoupling Water–Nitrogen Stress in Wheat: A Parallel Machine Learning Framework Leveraging Leaf Electrophysiology
by Shuang Zhang, Xintong Du, Bo Zhang, Yanyou Wu, Xinyi Yang, Xinkang Hu and Chundu Wu
Agronomy 2025, 15(7), 1612; https://doi.org/10.3390/agronomy15071612 - 1 Jul 2025
Viewed by 404
Abstract
Accurately monitoring coupled water–nitrogen stress is critical for wheat (Triticum aestivum L.) productivity under climate change. This study developed a machine learning framework utilizing multimodal leaf electrophysiological signals––intrinsic resistance, impedance, capacitive reactance, inductive reactance, and capacitance––to decouple water and nitrogen stress signatures [...] Read more.
Accurately monitoring coupled water–nitrogen stress is critical for wheat (Triticum aestivum L.) productivity under climate change. This study developed a machine learning framework utilizing multimodal leaf electrophysiological signals––intrinsic resistance, impedance, capacitive reactance, inductive reactance, and capacitance––to decouple water and nitrogen stress signatures in wheat. A parallel modelling strategy was implemented employing Gradient Boosting, Random Forest, and Ridge Regression, selecting the optimal algorithm per feature based on predictive performance. Controlled pot experiments revealed IZ as the paramount biomarker across leaf positions, indicating its sensitivity to ion flux perturbations under abiotic stress. Crucially, algorithm-feature specificity was identified: Ridge Regression excelled in modeling linear responses due to its superior noise suppression, while GB effectively captured nonlinear dynamics. Flag leaves during reproductive stages provided significantly more stable predictions compared to vegetative third leaves, aligning with their physiological primacy as source organs. This framework offers a robust, non-invasive approach for real-time water and nitrogen stress diagnostics in precision agriculture. Full article
(This article belongs to the Special Issue Crop Nutrition Diagnosis and Efficient Production)
Show Figures

Figure 1

21 pages, 1024 KiB  
Review
Non-Invasive Micro-Test Technology in Plant Physiology Under Abiotic Stress: From Mechanism to Application
by Tianpeng Zhang, Peipei Yin, Xinghong Yang, Yunqi Liu and Ruirui Xu
Plants 2025, 14(13), 1932; https://doi.org/10.3390/plants14131932 - 23 Jun 2025
Viewed by 579
Abstract
Non-invasive Micro-test Technology (NMT) represents a pioneering approach in the study of physiological functions within living organisms. This technology possesses the remarkable capability to monitor the flow rates and three-dimensional movement directions of ions or molecules as they traverse the boundaries of living [...] Read more.
Non-invasive Micro-test Technology (NMT) represents a pioneering approach in the study of physiological functions within living organisms. This technology possesses the remarkable capability to monitor the flow rates and three-dimensional movement directions of ions or molecules as they traverse the boundaries of living organisms without sample destruction. The advantages of NMT are multifaceted, encompassing real-time, non-invasive assessment, a wide array of detection indicators, and compatibility with diverse sample types. Consequently, it stands as one of the foremost tools in contemporary plant physiological research. This comprehensive review delves into the applications and research advancements of NMT within the field of plant abiotic stress physiology, including drought, salinity, extreme temperature, nutrient deficiency, ammonium toxicity, acid stress, and heavy metal toxicity. Furthermore, it offers a forward-looking perspective on the potential applications of NMT in plant physiology research, underscoring its unique capacity to monitor the flux dynamics of ions/molecules (e.g., Ca2+, H+, K+, and IAA) in real time, reveal early stress response signatures through micrometer-scale spatial resolution measurements, and elucidate stress adaptation mechanisms by quantifying bidirectional nutrient transport across root–soil interfaces. NMT enhances our understanding of the spatiotemporal patterns governing plant–environment interactions, providing deeper insights into the molecular mechanism of abiotic stress resilience. Full article
(This article belongs to the Special Issue Advances in Plant Auxin Biology)
Show Figures

Figure 1

13 pages, 11396 KiB  
Article
Morphometric and Enzymatic Changes in Gills of Rainbow Trout After Exposure to Suboptimal Low Temperature
by Elias Lahnsteiner, Nooshin Zamannejad, Anna Dünser and Franz Lahnsteiner
Curr. Issues Mol. Biol. 2025, 47(6), 457; https://doi.org/10.3390/cimb47060457 - 13 Jun 2025
Viewed by 867
Abstract
The present study investigated the influence of a 30 day exposure of rainbow trout (Oncorhynchus mykiss) to a suboptimal low temperature of 1.8 ± 1.0 °C on their different gill characteristics (morphometry, enzyme activities, and expression of genes) in comparison to [...] Read more.
The present study investigated the influence of a 30 day exposure of rainbow trout (Oncorhynchus mykiss) to a suboptimal low temperature of 1.8 ± 1.0 °C on their different gill characteristics (morphometry, enzyme activities, and expression of genes) in comparison to fish acclimated to 9.4 ± 0.1 °C. Morphometric analysis revealed a significant decrease in the distance between the secondary lamellae at the low temperature, which can be interpreted as a decrease in the effective gill surface. The epithelial thickness increased at the lower temperatures, which is considered a mechanism to reduce ion fluxes and save the energy costs for osmoregulation. The length of the primary lamellae, distance between the primary lamellae, length of the secondary lamellae, as well as the number of mucus cells, chloride cells, and capillaries per mm of the secondary lamella were similar between the temperature regimes. The enzymatic activities of pyruvate kinase and malate dehydrogenase were significantly increased in cold-exposed fish, whereas lactate dehydrogenase activity was higher in controls, indicating increased energy expenditure and adjustments in energy metabolism. The activities of carbonic anhydrase, caspase, Na+/K+ ATPase, and H+ ATPase, and the gene expressions of hif1a, ca2, rhCG, slc26a6, and slc9a1 showed no statistically significant differences between the two temperature regimes. Therefore, it can be concluded that ammonia transport, acid–base regulation, and osmoregulation were not affected by the tested low temperature regime. These findings highlight that exposure to suboptimal temperatures induces structural and metabolic modifications in rainbow trout gills, potentially as an adaptive response to thermal stress. This study contributes to the understanding of fish acclimation to cold environments, with implications for aquaculture and ecological resilience in changing climates. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

16 pages, 3991 KiB  
Article
Application of Industrial NF and RO Membranes in Separation of Post-Fermentation Solutions: Preliminary Study
by Wirginia Tomczak, Marek Gryta, Sławomir Żak and Monika Daniluk
Materials 2025, 18(12), 2779; https://doi.org/10.3390/ma18122779 - 12 Jun 2025
Viewed by 357
Abstract
The focus of this work was to perform a preliminary study on the suitability of commercially available nanofiltration (NF) and reverse osmosis (RO) membranes for the separation of 1,3-propanediol (1,3-PD) post-fermentation solutions. The experiments were conducted with the use of AFC30 and AFC99 [...] Read more.
The focus of this work was to perform a preliminary study on the suitability of commercially available nanofiltration (NF) and reverse osmosis (RO) membranes for the separation of 1,3-propanediol (1,3-PD) post-fermentation solutions. The experiments were conducted with the use of AFC30 and AFC99 (PCI Membrane System Inc., Milford, OH, USA) as well as BW30 membranes (Dow FilmTec Co., Midland, MI, USA) and various feed solutions: selected compounds of fermentation broths, and synthetic and real fermentation broths. Firstly, it was found that for pure water, the AFC30 membrane was characterized by the highest performance. It clearly indicated that the membrane is the most open membrane and is characterized by a more porous structure. In turn, the lowest flux was noted for the AFC99 membrane. Studies performed with the use of synthetic broth found that for the BW30 membrane, the order in which the rejection coefficient (R) was obtained was glycerol~lactic acid > 1,3-propanediol > acetic acid. It clearly confirmed that the R increased with the molecular weight (MW) of the solution compounds. With regard to ions, it was found that SO42− and PO43− is characterized by higher R than Cl and NO3 ions. Multivalent ions are characterized by higher charge density, hydrated radius, hydration energy and MW. Finally, experiments performed with the use of the AFC30 membrane and real broths showed that the membrane ensured almost complete separation of 1,3-PD. With regard to organic acid, the separation performance was as follows: succinic acid > lactic acid > butyric acid > acetic acid > formic acid. It has been documented that the AFC30 membrane can be successfully used to concentrate the following ions: SO42−, PO43−, NO3 and Na+. Hence, most of the medium used for the fermentation process was retained by the membrane and may be reused, which is crucial for the scaling up of the process and reducing the total technology cost. With regard to the obtained permeate, it can be subsequently purified by other methods, such as distillation or ion exchange. For further development of the tested process, determining the retention degree for 1,3-PD and other solutes during long-term separation of real broth is necessary. Full article
Show Figures

Figure 1

21 pages, 3425 KiB  
Article
Prosser-Type Sintered “Glassy” Beads Excavated from Dohouan (Côte d’Ivoire)
by Kouakou Modeste Koffi, Philippe Colomban, Christophe Petit and Kouakou Siméon Kouassi
Ceramics 2025, 8(2), 71; https://doi.org/10.3390/ceramics8020071 - 11 Jun 2025
Viewed by 1320
Abstract
Recent archaeological sites dating to the late 19th and early 20th centuries have rarely been studied to date. Among the 500 “glassy” beads excavated from Dohouan (Côte d’Ivoire), elemental analyses reveal that fewer than half contain abnormally high alumina contents, associated with a [...] Read more.
Recent archaeological sites dating to the late 19th and early 20th centuries have rarely been studied to date. Among the 500 “glassy” beads excavated from Dohouan (Côte d’Ivoire), elemental analyses reveal that fewer than half contain abnormally high alumina contents, associated with a soda–potash–lime flux (three compositional groups). The remaining beads are typical lead-based glass. The Raman spectra of the alumina-rich beads are quite complex due to their glass–ceramic nature, combining features similar to the vitreous phase of porcelain glaze with the presence of various crystalline phases (quartz, wollastonite, calcium phosphate, calcite). Organic residues are also observed. Colors are primarily produced by transition metal ions, although some specific pigments have also been identified. These characteristics suggest that the alumina-rich beads were manufactured by pressing followed by sintering, as described in patents by Richard Prosser (1840, UK) and Jean Félix Bapterosse (1844, France). A comparison is made with beads from scrap piles at the site of the former Bapterosse factory in Briare, France. This process represents one of the earliest examples of replacing traditional glassmaking with a ceramic process to enhance productivity and reduce costs. Full article
(This article belongs to the Special Issue Ceramic and Glass Material Coatings)
Show Figures

Figure 1

28 pages, 2711 KiB  
Article
Soluble β-Amyloid Oligomers Selectively Upregulate TRPC3 in Excitatory Neurons via Calcineurin-Coupled NFAT
by Zhengjun Wang, Dongyi Ding, Jiaxing Wang, Ling Chen, Qingming Dong, Moumita Khamrai, Yuyang Zhou, Akihiro Ishii, Kazuko Sakata, Wei Li, Jianyang Du, Thirumalini Vaithianathan, Fu-Ming Zhou and Francesca-Fang Liao
Cells 2025, 14(11), 843; https://doi.org/10.3390/cells14110843 - 4 Jun 2025
Viewed by 875
Abstract
To investigate how dysregulated transient receptor potential canonical channels (TRPCs) are associated with Alzheimer’s disease (AD), we challenged primary neurons with amyloid-β (Aβ). Both the naturally secreted or synthetic Aβ oligomers (AβOs) induced long-lasting increased TRPC3 and downregulated the TRPC6 expression in mature [...] Read more.
To investigate how dysregulated transient receptor potential canonical channels (TRPCs) are associated with Alzheimer’s disease (AD), we challenged primary neurons with amyloid-β (Aβ). Both the naturally secreted or synthetic Aβ oligomers (AβOs) induced long-lasting increased TRPC3 and downregulated the TRPC6 expression in mature excitatory neurons (CaMKIIα-high) via a Ca2+-dependent calcineurin-coupled NFAT transcriptionally and calpain-mediated protein degradation, respectively. The TRPC3 expression was also found to be upregulated in pyramidal neurons of human AD brains. The selective downregulation of the Trpc6 gene induced synaptotoxicity, while no significant effect was observed from the Trpc3-targeting siRNA, suggesting potentially differential roles of TRPC3 and 6 in modulating the synaptic morphology and functions. Electrophysiological recordings of mouse hippocampal slices overexpressing TRPC3 revealed increased neuronal hyperactivity upon the TRPC3 channel activation by its agonist. Furthermore, the AβO-mediated synaptotoxicity appeared to be positively correlated with the degrees of the induced dendritic Ca2+ flux in neurons, which was completely prevented by the co-treatment with two pyrazole-based TRPC3-selective antagonists Pyr3 or Pyr10. Taken together, our findings suggest that the aberrantly upregulated TRPC3 is another ion channel critically contributing to the process of AβO-induced Ca2+ overload, neuronal hyperexcitation, and synaptotoxicity, thus representing a potential therapeutic target of AD. Full article
Show Figures

Figure 1

13 pages, 1147 KiB  
Article
Exploring Nanofiltration for Transport of Small Molecular Species for Application in Artificial Kidney Devices to Treat End-Stage Kidney Disease
by Haley Duncan, Christopher Newton, Jamie Hestekin, Christa Hestekin and Ira Kurtz
Membranes 2025, 15(6), 168; https://doi.org/10.3390/membranes15060168 - 2 Jun 2025
Viewed by 1671
Abstract
End-stage renal disease occurs when there is permanent loss of the kidney’s ability to filter toxins from the blood. Due to the limited number of transplants, dialysis is currently the most common treatment, but it significantly limits a patient’s lifestyle and has significant [...] Read more.
End-stage renal disease occurs when there is permanent loss of the kidney’s ability to filter toxins from the blood. Due to the limited number of transplants, dialysis is currently the most common treatment, but it significantly limits a patient’s lifestyle and has significant side effects. One solution is an artificial kidney, but significant challenges remain in its development. One challenge is the separation of glucose from urea. Nanofiltration is ideal for this separation; however, there is little understanding of the important parameters for this separation under physiological conditions. In this study, operating parameters (pressure and temperature) as well as feed conditions (increased glucose/salt) were explored for their effects on the separation of glucose from urea in six commercial membranes. The rejection of monovalent and divalent ions was also characterized. While increasing pressure increased flux, it had little effect on metabolite rejection, except for glucose, which increased above 20 psi. Increasing temperature led to a slight increase in flux and a slight decrease in the rejection of divalent ions. Glucose rejection was sensitive to feed conditions, while urea rejection was less affected. Divalent ions were rejected more strongly than monovalent ions and were also more affected by feed conditions. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

Back to TopTop