Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (726)

Search Parameters:
Keywords = ion fluxes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1511 KB  
Review
Ionic Mechanisms of Two-Pore Channel Regulation of Vesicle Trafficking
by Heng Zhang and Michael X. Zhu
Cells 2026, 15(2), 194; https://doi.org/10.3390/cells15020194 - 20 Jan 2026
Viewed by 159
Abstract
The endolysosomal system plays a pivotal role in cellular function. Before reaching lysosomes for degradation, the endocytosed cargoes are sorted at various stages of endosomal trafficking for recycling and/or rerouting. The proper execution of these processes depends on tightly regulated ion fluxes across [...] Read more.
The endolysosomal system plays a pivotal role in cellular function. Before reaching lysosomes for degradation, the endocytosed cargoes are sorted at various stages of endosomal trafficking for recycling and/or rerouting. The proper execution of these processes depends on tightly regulated ion fluxes across endolysosomal membranes. Recent studies have demonstrated the importance of two-pore channels (TPCs), including TPC1 and TPC2, in endolysosomal trafficking. These channels are expressed in the membranes of distinct populations of endosomes and lysosomes, where they respond to nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] to conduct Ca2+ and Na+ release from these acidic organelles. Here, we discuss the potential implications of Ca2+ and Na+ fluxes mediated by TPCs across endolysosomal membranes in the physiological and pathophysiological functions of these organellar channels. Full article
Show Figures

Figure 1

32 pages, 34035 KB  
Review
Irradiation-Induced Defect Engineering in REBCO Coated Conductors: Mechanisms, Effects, and Perspectives
by Yuxiang Li, Ningning Liu, Ziheng Guo, Liangkang Chen, Dongliang Gong, Dongliang Wang and Yanwei Ma
Materials 2026, 19(2), 300; https://doi.org/10.3390/ma19020300 - 12 Jan 2026
Viewed by 225
Abstract
REBa2Cu3O7−δ (REBCO) coated conductors are considered a critical material for next-generation high-field superconducting applications owing to their superior superconducting performance at elevated temperatures and under strong magnetic fields. However, rapid degradation of the critical current density ( [...] Read more.
REBa2Cu3O7−δ (REBCO) coated conductors are considered a critical material for next-generation high-field superconducting applications owing to their superior superconducting performance at elevated temperatures and under strong magnetic fields. However, rapid degradation of the critical current density (Jc) under high-field and high-temperature conditions remains a major limitation for their practical applications. To address this, controlling flux pinning centers has emerged as a crucial strategy to enhance performance. Irradiation techniques, as one of the most commonly employed methods, have attracted considerable attention due to their capability to provide precise control, high reproducibility, and flexibility in tailoring the microstructure. In this review, we focus on the effects of proton, heavy-ion, and neutron irradiation on the microstructure and superconducting properties of REBCO coated conductors. We discuss the underlying mechanisms in terms of defect types and distributions, energy loss processes, flux pinning enhancement, and the evolution of Jc and transition temperature (Tc). Furthermore, we compare different irradiation methods, highlighting their advantages and suitability across diverse temperature and magnetic field conditions. The potential of hybrid irradiation strategies for creating multiscale composite pinning landscapes is also examined. Future efforts should aim to synergistically combine different irradiation mechanisms and optimize defect structures to develop REBCO tapes with highly isotropic and stable flux pinning, which is essential for large-scale applications in fusion energy, high-field magnets, and aerospace electric motors. Full article
Show Figures

Figure 1

15 pages, 1963 KB  
Article
Advanced Micellar-Enhanced Ultrafiltration for the Removal of Cadmium (Cd2+) from Wastewater
by Prakriti Sapkota, Sunith B. Madduri and Raghava R. Kommalapati
Water 2026, 18(2), 191; https://doi.org/10.3390/w18020191 - 12 Jan 2026
Viewed by 194
Abstract
Heavy metals released from industrial effluents accumulate in the human body through the ecosystem, causing several health disorders. This study investigated the removal of cadmium (Cd2+) using Micellar-Enhanced Ultrafiltration (MEUF). This study employed sodium dodecyl sulfate (SDS) and flat-sheet polyethersulfone (PES) [...] Read more.
Heavy metals released from industrial effluents accumulate in the human body through the ecosystem, causing several health disorders. This study investigated the removal of cadmium (Cd2+) using Micellar-Enhanced Ultrafiltration (MEUF). This study employed sodium dodecyl sulfate (SDS) and flat-sheet polyethersulfone (PES) ultrafiltration membranes to separate Cd2+ ions from lab-simulated water. The experiments involved examining the removal efficiency of membranes without SDS usage, optimizing SDS concentration for Cd2+ removal, and evaluating the long-term membrane performance. Other parameters include analyzing the removal percentage of varying Cd2+ at constant SDS dosage, examining the effect of pH, and electrolyte concentrations on the removal of Cd2+. Several analytical characterizations were performed, such as FT-IR, and SEM. The FTIR confirms the aromatic C-H group at 620–867 cm−1, the sulfone group at 1100–1200 cm−1, and the ether group at 1230–1270 cm−1 and the SEM analysis indicates no significant fouling, which aligns with the stable flux observed over time. The result showed that the optimum SDS concentration for Cd2+ removal was 1 Critical Micellar Concentration (CMC), achieving over 99% removal. The presence of an electrolyte decreased Cd2+ removal efficiency, while the pH (3 to 9) had no effect on removal. Our findings suggest that the SDS-aided ultrafiltration process is suitable for eliminating Cd2+ from wastewater. Full article
Show Figures

Graphical abstract

20 pages, 5995 KB  
Article
Co-Metabolic Network Reveals the Metabolic Mechanism of Host–Microbiota Interplay in Colorectal Cancer
by Han-Wen Wang, Wang Li, Qi-Jun Ma, Hong-Yu Zhang, Yuan Quan and Qiang Zhu
Metabolites 2026, 16(1), 64; https://doi.org/10.3390/metabo16010064 - 11 Jan 2026
Viewed by 390
Abstract
Background: Colorectal cancer (CRC) is a malignancy that ranks among the top three in terms of both global mortality and incidence. Although numerous studies have demonstrated that gut microbes are implicated in CRC pathogenesis, the precise mechanisms underlying host–microbiota metabolic crosstalk remain poorly [...] Read more.
Background: Colorectal cancer (CRC) is a malignancy that ranks among the top three in terms of both global mortality and incidence. Although numerous studies have demonstrated that gut microbes are implicated in CRC pathogenesis, the precise mechanisms underlying host–microbiota metabolic crosstalk remain poorly understood. Objective: This study aims to identify and delineate key co-metabolites and their associated metabolic pathways that modulate the biomass of CRC-related gut bacteria within healthy individuals, through the construction of host–gut microbiota co-metabolic network models. We seek to elucidate the underlying mechanisms of metabolic interplay between the host and CRC-related gut microbiota, thereby offering novel perspectives on the microbial involvement in the initiation and progression of CRC. Methods: We coupled a colon tissue-specific host Genome-Scale Metabolic Model (GEM), which utilized transcriptomic data from healthy human colon tissues, with 12 CRC-associated pro-/anti-carcinogenic gut bacterial GEMs to construct a co-metabolic network. Through a comparative analysis of the network structure and systemic methods (including Flux Sampling and metabolic difference analysis), we simulated scenarios of constrained host co-metabolite supply. Finally, metabolic subsystem enrichment analysis was employed to elucidate the specific molecular mechanisms by which key co-metabolites affect microbial function. Results: The 17 key co-metabolites identified include chloride ions, zinc ions, and acetate. Among these, thirteen metabolites (e.g., ferric iron, succinate, and acetate) were confirmed by literature to be associated with CRC. All 17 key co-metabolites were found to significantly modulate the biomass of CRC-associated gut bacteria. These regulatory effects primarily influence microbial function through core pathways such as glycerophospholipid metabolism and folate metabolism. Conclusion: This research provides a systemic perspective for elucidating the mechanisms of host–gut microbiota metabolic interplay in CRC, thereby complementing the existing theoretical framework concerning microbial regulation by the host genetic background. Full article
(This article belongs to the Section Bioinformatics and Data Analysis)
Show Figures

Graphical abstract

32 pages, 4171 KB  
Review
Flavonoids in Plant Salt Stress Responses: Biosynthesis, Regulation, Functions, and Signaling Networks
by Muhammad Tanveer Akhtar, Maryam Noor, Xinyi Lin, Zhaogeng Lu and Biao Jin
Plants 2026, 15(1), 171; https://doi.org/10.3390/plants15010171 - 5 Jan 2026
Viewed by 605
Abstract
Soil salinity is a major constraint on global crop production, disrupting photosynthesis, ion homeostasis, and growth. Beyond the roles of classic osmoprotectants and antioxidant enzymes, flavonoids have emerged as versatile mediators of salt stress tolerance at the interface of redox control, hormone signaling, [...] Read more.
Soil salinity is a major constraint on global crop production, disrupting photosynthesis, ion homeostasis, and growth. Beyond the roles of classic osmoprotectants and antioxidant enzymes, flavonoids have emerged as versatile mediators of salt stress tolerance at the interface of redox control, hormone signaling, and developmental plasticity. This review summarizes current evidence on how salinity remodels flavonoid biosynthesis, regulation, and function from cellular to whole-plant scales. We first outline the phenylpropanoid–flavonoid pathway, with emphasis on transcriptional control by MYB, bHLH, and NAC factors and their integration with ABA, JA, and auxin signaling. We then discussed how post-synthetic modifications such as glycosylation and methylation adjust flavonoid stability, compartmentation, and activity under salt stress. Functional sections highlight roles of flavonoids in ROS scavenging, Na+/K+ homeostasis, membrane integrity, and the modulation of ABA/MAPK/Ca2+ cascades and noncoding RNA networks. Spatial aspects, including root–shoot communication and rhizosphere microbiota recruitment, are also considered. Based on this synthesis, we propose a flavonoid-centered stress network (FCSN), in which specific flavonoids function as key nodes that connect metabolic flux with hormonal crosstalk and stress signaling pathways. We argue that reconceptualizing flavonoids as central stress network regulators, rather than generic antioxidants, provides a basis for metabolic engineering, bio-stimulant design, and breeding strategies aimed at improving crop performance on saline soils. Full article
Show Figures

Figure 1

19 pages, 4926 KB  
Article
A Bipolar Membrane Containing Core–Shell Structured Fe3O4-Chitosan Nanoparticles for Direct Seawater Electrolysis
by Hyeon-Bee Song, Eun-Hye Jang and Moon-Sung Kang
Membranes 2026, 16(1), 23; https://doi.org/10.3390/membranes16010023 - 2 Jan 2026
Viewed by 573
Abstract
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation [...] Read more.
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation by regulating local pH, thereby enhancing DSWE efficiency. Accordingly, this study focuses on the fabrication of a high-performance BPM for DSWE applications. The water-splitting performance of BPMs is strongly dependent on the properties of the catalyst at the bipolar junction. Herein, iron oxide (Fe3O4) nanoparticles were coated with cross-linked chitosan to improve solvent dispersibility and catalytic activity. The resulting core–shell catalyst exhibited excellent dispersibility, facilitating uniform incorporation into the BPM. Water-splitting flux measurements identified an optimal catalyst loading of approximately 3 μg cm−2. The BPM containing Fe3O4–chitosan nanoparticles achieved a water-splitting flux of 26.2 μmol cm−2 min−1, which is 18.6% higher than that of a commercial BPM (BP-1E, Astom Corp., Tokyo, Japan). DSWE tests using artificial seawater as the catholyte and NaOH as the anolyte demonstrated lower cell voltage and stable catholyte acidification over 100 h compared to the commercial membrane. Full article
(This article belongs to the Special Issue Advanced Membrane Design for Hydrogen Technologies)
Show Figures

Graphical abstract

19 pages, 4836 KB  
Article
Experimental Study of Pouch-Type Battery Cell Thermal Characteristics Operated at High C-Rates
by Marius Vasylius, Deivydas Šapalas, Benas Dumbrauskas, Valentinas Kartašovas, Audrius Senulis, Artūras Tadžijevas, Pranas Mažeika, Rimantas Didžiokas, Ernestas Šimkutis and Lukas Januta
Batteries 2026, 12(1), 14; https://doi.org/10.3390/batteries12010014 - 28 Dec 2025
Viewed by 473
Abstract
This paper investigates pouch-type lithium-ion battery cells with a nominal voltage of 3.7 V and a nominal capacity of 57 Ah. A numerical model of the cell was developed and implemented using the NTGK method, which accurately predicts electrochemical and thermal processes. The [...] Read more.
This paper investigates pouch-type lithium-ion battery cells with a nominal voltage of 3.7 V and a nominal capacity of 57 Ah. A numerical model of the cell was developed and implemented using the NTGK method, which accurately predicts electrochemical and thermal processes. The results of numerical modeling matched with the experimental results of battery cell temperature measurements—the average deviation was about 4.5%; therefore, it can be considered reliable for further engineering research and construction of battery modules. In the experimental part of the paper, the battery cell was loaded in various C-rates (from 0.5 to 2 C), using heat flux sensors, thermocouples, and a thermal imaging camera. The studies revealed that the highest temperature is in the tabs area of cells. The temperature on the face of the cell surface exceeds 35 °C already from a load of 1.35 C, which accelerates cell degradation and reduces the number of cycles. Thermal imaging revealed uneven temperature distribution, whereby the top of the cell heats up more than the bottom of the cell and the temperature gradient can reach 2–4 °C. It was observed that during faster charge/discharge modes, the temperature rises from the tabs of the cell, and during slower ones, more in the middle face surface of the cell. The studies highlight the need to apply additional cooling solutions, especially cooling of the upper cell face, to ensure durability and uniform heat distribution. Full article
Show Figures

Figure 1

17 pages, 4244 KB  
Article
ToF-SIMS Reveals Metformin-Driven Restoration of Hepatic Lipid and Amino Acid Profiles in a Type 2 Diabetes Rat Model
by Magdalena E. Skalska, Michalina Kaźmierczak, Marcela Capcarova, Anna Kalafova, Klaudia Jaszcza and Dorota Wojtysiak
Int. J. Mol. Sci. 2026, 27(1), 105; https://doi.org/10.3390/ijms27010105 - 22 Dec 2025
Viewed by 369
Abstract
Diabetes mellitus profoundly disturbs hepatic metabolism by impairing lipid and amino acid homeostasis, yet spatially resolved molecular evidence of these alterations remains limited. This study employed Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to visualise and quantify metabolic remodelling in rat liver under diabetic [...] Read more.
Diabetes mellitus profoundly disturbs hepatic metabolism by impairing lipid and amino acid homeostasis, yet spatially resolved molecular evidence of these alterations remains limited. This study employed Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to visualise and quantify metabolic remodelling in rat liver under diabetic conditions and following metformin treatment. Liver cryosections from lean controls (LEAN), diabetic rats (P1), and metformin-treated diabetic rats (P2) were analysed in the negative ion mode, and all spectra were normalised to total ion counts. One-way ANOVA with false discovery rate (FDR) correction identified 43 lipid-related and 20 amino acid-related ions with significant group differences. Diabetic livers exhibited a marked depletion of phospholipid- and fatty acid-related ions (e.g., m/z 241.04, 281.25, 536.38) accompanied by increased ceramide fragments (m/z 805–806), indicating lipotoxic remodelling and mitochondrial stress. Simultaneously, aromatic and neutral amino acids such as phenylalanine, tyrosine, and glutamine were reduced, while small acidic fragments were elevated, consistent with enhanced proteolysis and gluconeogenic flux. Metformin administration partially restored both lipid and amino acid profiles toward the control phenotype. Hierarchical clustering and spatial ion maps revealed distinct group separation and partial normalisation of hepatic molecular patterns. These results demonstrate that ToF-SIMS provides label-free, spatially resolved insights into diabetes-induced metabolic disturbances and metformin-driven hepatoprotection. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

23 pages, 6236 KB  
Article
The Influence of Nitrogen and Phosphorus on Adsorption, Dissolution and Carbon Flux of Limestone Under Different Soil Layer Depths
by Liang Li, Haiping He, Jiacai Li, Wenhai Wang and Zhiwei Jiang
Sustainability 2025, 17(24), 11326; https://doi.org/10.3390/su172411326 - 17 Dec 2025
Viewed by 265
Abstract
The overuse of chemical fertilizers can result in elevated concentrations of nitrogen (N) and phosphorus (P) in soil, potentially impacting rock weathering processes and carbon flux in karst regions. This study analyzed the impacts of chicken dung fertilizer and compound fertilizer on the [...] Read more.
The overuse of chemical fertilizers can result in elevated concentrations of nitrogen (N) and phosphorus (P) in soil, potentially impacting rock weathering processes and carbon flux in karst regions. This study analyzed the impacts of chicken dung fertilizer and compound fertilizer on the weathering of carbonate rocks within the water-soil-rock system, yielding the following results: (1) The peak concentrations of various ions in the compound fertilizer system (Ca2+: 36.8 mg/L, Mg2+: 4.3 mg/L, N: 284.2 mg/L, P: 920.6 mg/L, HCO3: 16,170.3 mg/L) were generally superior to those in the chicken manure fertilizer system (15.4 mg/L, 1.9 mg/L, 306.9 mg/L, 27.9 mg/L, and 4576.5 mg/L, respectively), with a difference of approximately fourfold between the two systems; (2) Nitric acid generated by nitrification in fertilizers and phosphoric acid in compound fertilizers modify the chemical equilibrium of rock weathering, enhance dissolution, and influence the dynamics of HCO3; (3) Nitrogen and phosphorus in compound fertilizers are predominantly eliminated through ion exchange and adsorption. Calcium-phosphate precipitates are generated on the limestone surface within the 20 cm soil column, exhibiting a greater degree of weathering compared to the chicken manure fertilizer treatment; (4) analyses utilizing XRD, FT-IR, XPS, SEM, and additional approaches verified that substantial weathering and surface precipitation transpired on limestone throughout the 20 cm compound fertilizer column. Full article
Show Figures

Figure 1

14 pages, 2193 KB  
Article
Unraveling Electron-Matter Dynamics in Halide Perovskites Through Monte Carlo Insights into Energy Deposition and Radiation Effects in MAPbI3
by Ivan E. Novoselov and Ivan S. Zhidkov
J. Nucl. Eng. 2025, 6(4), 55; https://doi.org/10.3390/jne6040055 - 10 Dec 2025
Viewed by 405
Abstract
Lead halide perovskites, exemplified by methylammonium (MA) lead iodide (MAPbI3), combine strong optical absorption, long carrier diffusion lengths, and defect-tolerant electronic structure with facile processing, making them attractive for photovoltaics and radiation detection. Yet, their behavior under electron irradiation remains insufficiently [...] Read more.
Lead halide perovskites, exemplified by methylammonium (MA) lead iodide (MAPbI3), combine strong optical absorption, long carrier diffusion lengths, and defect-tolerant electronic structure with facile processing, making them attractive for photovoltaics and radiation detection. Yet, their behavior under electron irradiation remains insufficiently understood, limiting deployment in space and dosimetry contexts. Here, we employ Monte Carlo simulations (Geant4) to model electron interactions with MAPbI3 across energies from 0.1 to 100 MeV and absorber thicknesses from 10 μm to 1 cm. We quantify deposited energy, event statistics, energy per interaction, non-ionizing energy loss, and dominant radiation effects. The results reveal strong thickness-dependent regimes: thin photovoltaic-type layers (~hundreds of nanometers) are largely transparent to MeV electrons, minimizing bulk damage but allowing localized ionization, exciton self-trapping, and photoexcitation-driven ion migration. Although localized excitations can temporarily improve carrier collection under short-term exposure, their cumulative effect drives ionic rearrangement and defect growth, ultimately reducing device stability. In contrast, thicker detector-type films (10–100 μm) sustain multiple scattering and ionization cascades, enhancing sensitivity but accelerating defect accumulation. At centimeter scales, energy deposition saturates, enabling bulk-like absorption for high-flux dosimetry. Overall, electron irradiation in MAPbI3 is dominated by electronic excitation rather than ballistic displacements, underscoring the need to optimize thickness and composition to balance efficiency, sensitivity, and durability. Full article
Show Figures

Figure 1

16 pages, 1777 KB  
Article
Research on Enhancing the Performance of Pre-Treatment Systems for Saline–Alkaline Agricultural Drainage in Southern Xinjiang
by Zhuo Shi, Baoqin Jiao, Xingpeng Wang, Pengfei Huang, Xiaoli Wang and Yunxia Li
Environments 2025, 12(12), 471; https://doi.org/10.3390/environments12120471 - 4 Dec 2025
Viewed by 998
Abstract
Freshwater scarcity in southern Xinjiang has intensified the need for effective utilization of saline–alkaline agricultural drainage. This study evaluates pre-treatment technologies for reverse osmosis (RO) systems to improve water quality and mitigate membrane fouling. Three processes were tested: coagulation–sedimentation–media filtration (G1), [...] Read more.
Freshwater scarcity in southern Xinjiang has intensified the need for effective utilization of saline–alkaline agricultural drainage. This study evaluates pre-treatment technologies for reverse osmosis (RO) systems to improve water quality and mitigate membrane fouling. Three processes were tested: coagulation–sedimentation–media filtration (G1), micro-flocculation–media filtration (G2), and micro-flocculation (G3) combined with ultrafiltration and varying polyaluminum chloride (PAC) dosages (0–15 mg·L−1). Results show that G1 and G2 significantly outperform G3 in removing turbidity, organic matter, and inorganic ions, achieving SDI15 < 5 and turbidity < 0.3 NTU, meeting RO feedwater standards. Optimal performance occurred at the 7.5–10 mg·L−1 coagulant dosage range, effectively controlling flux decline and fouling. The integrated pre-treatment–ultrafiltration system provides a robust technical framework for saline–alkaline water desalination, offering practical guidance for sustainable water resource utilization in arid agricultural regions. Full article
Show Figures

Figure 1

13 pages, 7084 KB  
Article
Quantitative Analysis of Protein Fouling in Virus Removal Filtration Membranes Through Electron Tomography
by Mohammad A. Afzal, Kaitlyn P. Brickey, Enrique D. Gomez and Andrew L. Zydney
Membranes 2025, 15(12), 369; https://doi.org/10.3390/membranes15120369 - 2 Dec 2025
Viewed by 2142
Abstract
Protein fouling can significantly reduce the filtrate flux, capacity, and virus retention during processing of plasma- or mammalian cell-derived biopharmaceuticals through virus removal filters. We use focused ion beam (FIB) milling and scanning electron microscopy (SEM) to directly evaluate changes in 3D pore [...] Read more.
Protein fouling can significantly reduce the filtrate flux, capacity, and virus retention during processing of plasma- or mammalian cell-derived biopharmaceuticals through virus removal filters. We use focused ion beam (FIB) milling and scanning electron microscopy (SEM) to directly evaluate changes in 3D pore structure in a Viresolve® Pro membrane due to fouling by human serum immunoglobulin G. Protein fouling causes a significant reduction in the membrane porosity, which decreases by approximately 40% in the size-selective region near the exit of the highly asymmetric Viresolve® Pro membrane after the filter is fouled to 90% flux decline. There is a corresponding reduction in the number of small pores by more than a factor of two. Model simulations of flow and particle transport in the protein-fouled membrane are in good agreement with independent experimental measurements of the permeability and location of particle capture. Simulations show an upstream shift in the location of nanoparticle capture (away from the filter exit) by about 0.4 µm for the membrane fouled to 90% flux decline. This is due to pore constriction from protein deposition, highlighting how fouling redistributes flow paths within the membrane. These results demonstrate the capability of using FIB-SEM to directly evaluate the effects of protein fouling on the 3D pore structure in virus removal filters, providing important insights into how protein fouling alters the performance of these highly selective membranes. Full article
Show Figures

Graphical abstract

14 pages, 2498 KB  
Article
Post–Synthetic Modification of MOF–808 for Mixed Matrix Membranes with High and Stable Ion Separation Capacity
by Bahar Karadeniz, Han-Liang Fang, Yi-Ying He, Qi-Lin Ye, Jun-Yu Chen and Jian Lü
Molecules 2025, 30(23), 4554; https://doi.org/10.3390/molecules30234554 - 26 Nov 2025
Viewed by 664
Abstract
The global clean water crisis is a pressing sustainable development challenge that demands urgent solutions. Membrane separation technology has emerged as a leading approach for seawater desalination, offering great potential to address freshwater scarcity. However, achieving both high water flux and high salt [...] Read more.
The global clean water crisis is a pressing sustainable development challenge that demands urgent solutions. Membrane separation technology has emerged as a leading approach for seawater desalination, offering great potential to address freshwater scarcity. However, achieving both high water flux and high salt rejection in desalination membranes remains a major challenge. Mixed matrix membranes (MMMs), which combine polymer substrates with functional fillers, have shown promise, but their performance is often limited by poor compatibility between the embedded materials and the polymer matrix. In this work, a post-synthetic modification of the metal–organic framework MOF–808 was carried out to improve the interfacial compatibility between the modified MOF–808–SP and polyethersulfone substrate. Remarkably, increasing the loading of MOF–808–SP sustained the membrane selectivity while simultaneously enhancing water flux. This performance contrasts with membranes containing unmodified MOF–808, highlighting the crucial role of improved MOF–polymer compatibility in achieving synergistic separation performance. Full article
(This article belongs to the Special Issue 30th Anniversary of the MOF Concept)
Show Figures

Figure 1

17 pages, 5296 KB  
Article
Synergistic Effects of Hybrid Basalt Fibers on the Durability of Recycled Aggregate Concrete Under Freeze–Thaw and Chloride Conditions
by Qiao Sun, Zehui Ye, Renjie Cai and Dongwei Li
Appl. Sci. 2025, 15(23), 12520; https://doi.org/10.3390/app152312520 - 25 Nov 2025
Viewed by 476
Abstract
To address the poor resistance of recycled aggregate concrete (RAC) to chloride ion penetration and freeze–thaw deterioration in cold coastal regions, this study introduces basalt fibers (BFs) as a reinforcement to improve its durability and structural integrity. Rapid freeze–thaw and electric flux tests, [...] Read more.
To address the poor resistance of recycled aggregate concrete (RAC) to chloride ion penetration and freeze–thaw deterioration in cold coastal regions, this study introduces basalt fibers (BFs) as a reinforcement to improve its durability and structural integrity. Rapid freeze–thaw and electric flux tests, combined with scanning electron microscopy (SEM), were employed to systematically evaluate the effects of fiber volume fraction and length configuration on the frost resistance and chloride impermeability of basalt fiber-reinforced RAC (BFRAC). The experimental results demonstrated that the incorporation of basalt fibers markedly enhanced the coupled durability of RAC, with the mixture containing 0.15% fiber volume and a balanced hybrid of short (12 mm) and long (18 mm) fibers achieving the most favorable performance. This mixture effectively reduced mass loss and strength degradation under repeated freeze–thaw cycles while substantially lowering chloride ion penetration compared with plain RAC. Microstructural observations revealed that the hybrid fiber system formed a multi-scale three-dimensional network, in which short fibers restrained microcrack initiation and long fibers bridged macrocracks, jointly refining the pore structure and improving the interfacial bonding between recycled aggregates and the cement matrix. This synergistic mechanism enhanced matrix compactness and obstructed chloride transport, leading to a more stable and durable composite. The findings not only establish an optimal basalt fiber design for improving RAC durability but also elucidate the fundamental mechanism underlying hybrid fiber synergy. These insights provide valuable theoretical guidance and practical strategies for developing sustainable, high-performance concrete suitable for long-term service in cold-region coastal infrastructures. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

40 pages, 2306 KB  
Review
Enamel Maturation as a Systems Physiology: Ion Transport and Pi Flux
by Mehrnaz Zarinfar, Marziyeh Aghazadeh, Rucha Arun Bapat, Yanbin Ji and Michael L. Paine
Cells 2025, 14(22), 1821; https://doi.org/10.3390/cells14221821 - 20 Nov 2025
Cited by 1 | Viewed by 1406
Abstract
Dental enamel, the final product of amelogenesis, is a highly mineralized bioceramic that becomes acellular and non-regenerating after tooth eruption. This paper reviews literature that explores inorganic phosphate (Pi) transport during the process of enamel formation or amelogenesis. Evidence from transcriptomics, immunolocalization, and [...] Read more.
Dental enamel, the final product of amelogenesis, is a highly mineralized bioceramic that becomes acellular and non-regenerating after tooth eruption. This paper reviews literature that explores inorganic phosphate (Pi) transport during the process of enamel formation or amelogenesis. Evidence from transcriptomics, immunolocalization, and physiology implicates ameloblast-specific sodium-dependent Pi uptake by type III sodium–phosphate cotransporters SLC20A1 (PiT1) and SLC20A2 (PiT2), and by type IIb sodium–phosphate cotransporter SLC34A2 (NaPi-IIb) with stage-specific basal (proximal) or apical (distal) enrichment, and pH-dependent expression. Controlled Pi efflux to the enamel space has been partly attributed to xenotropic and polytropic retrovirus receptor (XPR1) mediated Pi export during maturation-stage amelogenesis. These amelogenesis-specific Pi fluxes operate within a polarized cellular framework in which Ca2+ delivery and extrusion, together with bicarbonate-based buffering regulated by cystic fibrosis transmembrane conductance regulator (CFTR), Solute carrier family 26 (SLC26) exchangers, anion exchanger 2 (AE2), and electrogenic sodium bicarbonate cotransporter 1 (NBCe1), at-least partially contribute to cellular Pi activity, and neutralize protons generated as the extracellular hydroxyapatite-based enamel matures. Disruption of phosphate handling reduces crystal growth and final mineral content of enamel, and produces hypomineralized or hypomature enamel with opacities, post-eruptive breakdown, and greater caries susceptibility. This review integrates multi-modal findings to appraise established features of ameloblast Pi handling, define constraints imposed by pH control and Ca2+ transport, and identify gaps in ion transporter topology and trafficking dynamics. Full article
Show Figures

Figure 1

Back to TopTop