Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = intraseasonal oscillations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 15974 KiB  
Article
Impacts of Intraseasonal Oscillations on Tropical Cyclone Rapid Intensification in the Northwestern Pacific During Winter
by Chaodong Chen, Zheng Ling, Hailun He and Tianyu Zhang
Remote Sens. 2025, 17(7), 1259; https://doi.org/10.3390/rs17071259 - 2 Apr 2025
Viewed by 455
Abstract
In winter, the northwestern Pacific (NWP) is affected by two atmospheric intraseasonal oscillations (ISOs), the Madden–Julian oscillation (MJO) and the quasi-biweekly oscillation (QBWO). Using observational data and global reanalysis products, the present study investigates the impact of ISOs on the rapid intensification (RI) [...] Read more.
In winter, the northwestern Pacific (NWP) is affected by two atmospheric intraseasonal oscillations (ISOs), the Madden–Julian oscillation (MJO) and the quasi-biweekly oscillation (QBWO). Using observational data and global reanalysis products, the present study investigates the impact of ISOs on the rapid intensification (RI) of tropical cyclones (TCs) in the NWP. The results indicate that both the MJO and QBWO can affect the frequency, occurrence location, intensification rate, and duration of TCRI. More (fewer) RI events occur in the convective (non-convective) phases of the MJO and the QBWO, when the main RI region is dominated by the convective (non-convective) signals of the ISOs. Additionally, the modulation of RI frequency by the MJO is much stronger than that by the QBWO. With the eastward (westward) propagation of the convective signals of the MJO (QBWO), the RI occurrence location shows a clear eastward (westward) shift. Further analysis shows that the low-level relative vorticity and mid-level relative humidity play a major role in the modulation of ISOs on RI frequency and location. To RI intensify rate and RI duration, the effects of the MJO and QBWO are relatively weak. The combined effects of the MJO and QBWO on TCRI are also discussed in this study. These findings underscore the important role of both the MJO and QBWO in modulating the TCRI. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

19 pages, 7816 KiB  
Article
Climatology, Diversity, and Variability of Quasi-Biweekly to Intraseasonal Extreme Temperature Events in Hong Kong from 1885 to 2022
by Hoiio Kong, Kechen Wu, Pak Wai Chan, Jinping Liu, Banglin Zhang and Jeremy Cheuk-Hin Leung
Appl. Sci. 2025, 15(4), 1764; https://doi.org/10.3390/app15041764 - 9 Feb 2025
Viewed by 1023
Abstract
In July 2023, 19 continuous days of very hot days in Hong Kong brought inconvenience to citizens and disasters to society. This long-lasting heat wave event is closely linked to the atmospheric variability on the quasi-biweekly to intraseasonal timescales. While extreme weather has [...] Read more.
In July 2023, 19 continuous days of very hot days in Hong Kong brought inconvenience to citizens and disasters to society. This long-lasting heat wave event is closely linked to the atmospheric variability on the quasi-biweekly to intraseasonal timescales. While extreme weather has aroused the attention of scientists and society, limited studies focus on quasi-biweekly to intraseasonal extreme (QBIE) weather. Thus, to address this issue, this study aims at examining the climatology and long-term variability of these QBIE events in Hong Kong. This study serves as one of the very few fundamental works that construct a century-long record of QBIE temperature events, based on in situ observation in Hong Kong, and further examines the climatology, diversity, and variability of these QBIE temperature events. A total of 382 QBIE heat waves and 510 QBIE cold surges are identified from 1885 to 2022, exhibiting various characteristics in their occurring time and seasonality. Based on ARIMA model and time series analyses, we find that while apparent interannual variability exists in QBIE heat wave and cold surge activity, short-term climate prediction of QBIE temperature events based on past patterns or common climate indices is largely unfeasible. This research provides a valuable historical reference for understanding QBIE weather in the Guangdong–Hong Kong–Macau Greater Bay Area and highlights the need for further studies on the predictability of QBIE weather in the future. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

14 pages, 4781 KiB  
Article
A 1D Convolutional Neural Network (1D-CNN) Temporal Filter for Atmospheric Variability: Reducing the Sensitivity of Filtering Accuracy to Missing Data Points
by Dan Yu, Hoiio Kong, Jeremy Cheuk-Hin Leung, Pak Wai Chan, Clarence Fong, Yuchen Wang and Banglin Zhang
Appl. Sci. 2024, 14(14), 6289; https://doi.org/10.3390/app14146289 - 19 Jul 2024
Cited by 6 | Viewed by 1896
Abstract
The atmosphere exhibits variability across different time scales. Currently, in the field of atmospheric science, statistical filtering is one of the most widely used methods for extracting signals on certain time scales. However, signal extraction based on traditional statistical filters may be sensitive [...] Read more.
The atmosphere exhibits variability across different time scales. Currently, in the field of atmospheric science, statistical filtering is one of the most widely used methods for extracting signals on certain time scales. However, signal extraction based on traditional statistical filters may be sensitive to missing data points, which are particularly common in meteorological data. To address this issue, this study applies a new type of temporal filters based on a one-dimensional convolution neural network (1D-CNN) and examines its performance on reducing such uncertainties. As an example, we investigate the advantages of a 1D-CNN bandpass filter in extracting quasi-biweekly-to-intraseasonal signals (10–60 days) from temperature data provided by the Hong Kong Observatory. The results show that the 1D-CNN achieves accuracies similar to a 121-point Lanczos filter. In addition, the 1D-CNN filter allows a maximum of 10 missing data points within the 60-point window length, while keeping its accuracy higher than 80% (R2 > 0.8). This indicates that the 1D-CNN model works well even when missing data points exist in the time series. This study highlights another potential for applying machine learning algorithms in atmospheric and climate research, which will be useful for future research involving incomplete time series and real-time filtering. Full article
(This article belongs to the Special Issue Machine Learning Approaches for Geophysical Data Analysis)
Show Figures

Figure 1

24 pages, 9445 KiB  
Article
Multiscale Interactions between Local Short- and Long-Term Spatio-Temporal Mechanisms and Their Impact on California Wildfire Dynamics
by Stella Afolayan, Ademe Mekonnen, Brandi Gamelin and Yuh-Lang Lin
Fire 2024, 7(7), 247; https://doi.org/10.3390/fire7070247 - 12 Jul 2024
Cited by 1 | Viewed by 2031
Abstract
California has experienced a surge in wildfires, prompting research into contributing factors, including weather and climate conditions. This study investigates the complex, multiscale interactions between large-scale climate patterns, such as the Boreal Summer Intraseasonal Oscillation (BSISO), El Niño Southern Oscillation (ENSO), and the [...] Read more.
California has experienced a surge in wildfires, prompting research into contributing factors, including weather and climate conditions. This study investigates the complex, multiscale interactions between large-scale climate patterns, such as the Boreal Summer Intraseasonal Oscillation (BSISO), El Niño Southern Oscillation (ENSO), and the Pacific Decadal Oscillation (PDO) and their influence on moisture and temperature fluctuations, and wildfire dynamics in California. The combined impacts of PDO and BSISO on intraseasonal fire weather changes; the interplay between fire weather index (FWI), relative humidity, vapor pressure deficit (VPD), and temperature in assessing wildfire risks; and geographical variations in the relationship between the FWI and climatic factors within California are examined. The study employs a multi-pronged approach, analyzing wildfire frequency and burned areas alongside climate patterns and atmospheric conditions. The findings reveal significant variability in wildfire activity across different climate conditions, with heightened risks during specific BSISO phases, La-Niña, and cool PDO. The influence of BSISO varies depending on its interaction with PDO. Temperature, relative humidity, and VPD show strong predictive significance for wildfire risks, with significant relationships between FWI and temperature in elevated regions (correlation, r > 0.7, p ≤ 0.05) and FWI and relative humidity along the Sierra Nevada Mountains (r ≤ −0.7, p ≤ 0.05). Full article
(This article belongs to the Special Issue Fire Safety Management and Risk Assessment)
Show Figures

Figure 1

20 pages, 13421 KiB  
Article
Modulations of the South China Sea Ocean Circulation by the Summer Monsoon Intraseasonal Oscillation Inferred from Satellite Observations
by Zhiyuan Hu, Keiwei Lyu and Jianyu Hu
Remote Sens. 2024, 16(7), 1195; https://doi.org/10.3390/rs16071195 - 29 Mar 2024
Viewed by 1586
Abstract
The South China Sea (SCS) displays remarkable responses and feedback to the summer monsoon intraseasonal oscillation (ISO). This study investigates how the SCS summer ocean circulation responds to the monsoon ISO based on weekly satellite data. In summer, the largest amplitudes for intraseasonal [...] Read more.
The South China Sea (SCS) displays remarkable responses and feedback to the summer monsoon intraseasonal oscillation (ISO). This study investigates how the SCS summer ocean circulation responds to the monsoon ISO based on weekly satellite data. In summer, the largest amplitudes for intraseasonal (30–90 days) sea surface height variations in the SCS occur around the northeastward offshore current off southeast Vietnam between a north–south eddy dipole. Our results show that such strong intraseasonal sea surface height variations are mainly caused by the alternate enhancement of the two eddies of the eddy dipole. Specifically, in response to the intraseasonal intensification of southwesterly winds, the northern cyclonic eddy of the eddy dipole strengthens within 1–2 weeks, and its southern boundary tends to be more southerly. Afterwards, as the wind-driven southern anticyclonic gyre spins up, the southern anticyclonic eddy gradually intensifies and expands its northern boundary northward, while the northern cyclonic eddy weakens and retreats northward. Besides the local wind forcing, westward propagations of the eastern boundary-originated sea surface height anomalies, which exhibit latitude-dependent features that are consistent with the linear Rossby wave theory, play an important role in ocean dynamical adjustments to the monsoon ISO, especially in the southern SCS. Case studies further confirm our findings and indicate that understanding this wind-driven process makes the ocean more predictable on short-term timescales. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Second Edition))
Show Figures

Figure 1

20 pages, 16787 KiB  
Article
Tropical and Subtropical South American Intraseasonal Variability: A Normal-Mode Approach
by André S. W. Teruya, Víctor C. Mayta, Breno Raphaldini, Pedro L. Silva Dias and Camila R. Sapucci
Meteorology 2024, 3(2), 141-160; https://doi.org/10.3390/meteorology3020007 - 25 Mar 2024
Cited by 4 | Viewed by 1610
Abstract
Instead of using the traditional space-time Fourier analysis of filtered specific atmospheric fields, a normal-mode decomposition method was used to analyze South American intraseasonal variability (ISV). Intraseasonal variability was examined separately in the 30–90-day band, 20–30-day band, and 10–20-day band. The most characteristic [...] Read more.
Instead of using the traditional space-time Fourier analysis of filtered specific atmospheric fields, a normal-mode decomposition method was used to analyze South American intraseasonal variability (ISV). Intraseasonal variability was examined separately in the 30–90-day band, 20–30-day band, and 10–20-day band. The most characteristic structure in the intraseasonal time-scale, in the three bands, was the dipole-like convection between the South Atlantic Convergence Zone (SACZ) and the central-east South America (CESA) region. In the 30–90-day band, the convective and circulation patterns were modulated by the large-scale Madden–Julian oscillation (MJO). In the 20–30-day and 10–20-day bands, the convection structures were primarily controlled by extratropical Rossby wave trains. The normal-mode decomposition of reanalysis data based on 30–90-day, 20–30-day, and 10–20-day ISV showed that the tropospheric circulation and CESA–SACZ convective structure observed over South America were dominated by rotational modes (i.e., Rossby waves, mixed Rossby-gravity waves). A considerable portion of the 30–90-day ISV was also associated with the inertio-gravity (IGW) modes (e.g., Kelvin waves), mainly prevailing during the austral rainy season. The proposed decomposition methodology demonstrated that a realistic circulation can be reproduced, giving a powerful tool for diagnosing and studying the dynamics of waves and the interactions between them in terms of their ability to provide causal accounts of the features seen in observations. Full article
Show Figures

Figure 1

14 pages, 16820 KiB  
Article
Extended-Range Forecast of Winter Rainfall in the Yangtze River Delta Based on Intra-Seasonal Oscillation of Atmospheric Circulations
by Fei Xin and Wei Wang
Atmosphere 2024, 15(2), 206; https://doi.org/10.3390/atmos15020206 - 6 Feb 2024
Cited by 1 | Viewed by 1437
Abstract
The Yangtze River Delta (YRD) is an important economic region in China. Heavy winter rainfall may pose serious threats to city operations. To ensure the safe operation of the city, meteorological departments need to provide forecast results for the Spring Festival travel rush [...] Read more.
The Yangtze River Delta (YRD) is an important economic region in China. Heavy winter rainfall may pose serious threats to city operations. To ensure the safe operation of the city, meteorological departments need to provide forecast results for the Spring Festival travel rush weather service. Therefore, the extended-range forecast of winter rainfall is of considerable importance. To solve this problem, based on the analysis of low-frequency rainfall and the intra-seasonal oscillation of atmospheric circulation, an extended-range forecast model for winter rainfall is developed using spatiotemporal projection methods and is applied to a case study from 2020. The results show that: (1) The precipitation in the YRD during the winter has a significant intra-seasonal oscillation (ISO) with a periodicity of 10–30 d. (2) The atmospheric circulations associated with winter rainfall in the YRD have a significant characteristic of low-frequency oscillation. From a 30-day to a 0-day lead, large modifications appear in the low-frequency atmospheric circulations at low, mid, and high latitudes. At low latitudes, strong wet convective activity characterized by a negative OLR combined with a positive RH700 correlation coefficient moves northwestward and covers the entire YRD. Meanwhile, the Western Pacific subtropical high (WPSH) characterized by a positive Z500 anomaly enhances and lifts northward. At mid and high latitudes, the signal of negatively correlated Z500 northwest of Lake Balkhash propagates southeastward, indicating the cold is air moving southward. Multiple circulation factors combine together and lead to the precipitation process in the YRD. (3) Taking the intra-seasonal dynamical evolution process of the atmospheric circulation as the prediction factor, the spatiotemporal method is used to build the model for winter mean extended-range precipitation anomaly tendency in the YRD. The hindcast for the recent 10 years shows that the ensemble model has a higher skill that can reach up to 20 days. In particular, the skill of the eastern part of the YRD can reach 25 days. (4) The rainfall in the 2019/2020 winter has a significant ISO. The ensemble model could forecast the most extreme precipitation for 20 days ahead. Full article
Show Figures

Figure 1

14 pages, 937 KiB  
Article
Minimal Mechanisms Responsible for the Dispersive Behavior of the Madden–Julian Oscillation
by Kartheek Mamidi and Vincent Mathew
Climate 2023, 11(12), 236; https://doi.org/10.3390/cli11120236 - 29 Nov 2023
Cited by 1 | Viewed by 2547
Abstract
An attempt has been made to explore the relative contributions of moisture feedback processes on tropical intraseasonal oscillation or Madden–Julian Oscillation (MJO). We focused on moisture feedback processes, including evaporation wind feedback (EWF) and moisture convergence feedback (MCF), which integrate the mechanisms of [...] Read more.
An attempt has been made to explore the relative contributions of moisture feedback processes on tropical intraseasonal oscillation or Madden–Julian Oscillation (MJO). We focused on moisture feedback processes, including evaporation wind feedback (EWF) and moisture convergence feedback (MCF), which integrate the mechanisms of convective interactions into the tropical atmosphere. The dynamical framework considered here is a moisture-coupled, single-layer linear shallow-water model on an equatorial beta-plane with zonal momentum damping. With this approach, we aimed to recognize the minimal physical mechanisms responsible for the existence of the essential dispersive characteristics of the MJO, including its eastward propagation (k>0), the planetary-scale (small zonal wavenumbers) instability, and the slow phase speed of about ≈5 m/s. Furthermore, we extended our study to determine each feedback mechanism’s influence on the simulated eastward dispersive mode. Our model emphasized that the MJO-like eastward mode is a possible outcome of the combined effect of moisture feedback processes without requiring additional complex mechanisms such as cloud radiative feedback and boundary layer dynamics. The results substantiate the importance of EWF as a primary energy source for developing an eastward moisture mode with a planter-scale instability. The eastward moisture mode exhibits the highest growth rate at the largest wavelengths and is also sensitive to the strength of the EWF, showing a significant increase in the growth rate with the increasing strength of the EWF; however, the eastward moisture mode remains unstable at planetary-scale wavelengths. Moreover, our model endorses that the MCF alone could not produce instability without surface fluxes, although it has a significant role in developing deep convection. It was found that the MCF exhibits a damping mechanism by regulating the frequency and growth rate of the eastward moisture mode at shorter wavelengths. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

24 pages, 13252 KiB  
Article
Contrasting the Impacts of Intraseasonal Oscillations on Yangtze Precipitation during the Summer of 1998 and 2016
by Mimi Tao, Li Yan, Shaojun Zheng, Jianjun Xu and Yinlan Chen
Atmosphere 2023, 14(11), 1695; https://doi.org/10.3390/atmos14111695 - 17 Nov 2023
Cited by 1 | Viewed by 1478
Abstract
In 1998 and 2016, boreal summer intraseasonal oscillation (BSISO) could reach the middle-lower reaches of the Yangtze River basin (YRB), leading to extreme precipitation. Based on multiple daily data, this study reveals the differences in BSISO events and mechanisms between 1998 and 2016. [...] Read more.
In 1998 and 2016, boreal summer intraseasonal oscillation (BSISO) could reach the middle-lower reaches of the Yangtze River basin (YRB), leading to extreme precipitation. Based on multiple daily data, this study reveals the differences in BSISO events and mechanisms between 1998 and 2016. In June–July of 1998 (2016), YRB precipitation was impacted by 30–60-day oscillation, i.e., BSISO1 (10–30-day oscillation, i.e., BSISO2), with two strong (three) precipitation events occurring. In 1998, when BSISO1 was in phases 1–4 (phases 5–8), the YRB experienced a wet (dry) episode. In 2016, when BSISO2 was in phases 1–2 and 7–8 (phases 3–6), the YRB experienced a wet (dry) episode. In 1998, in event 1, the active convection of the YRB first originated in the South China Sea–western Pacific (SCS–WP) and then in the tropical Indian Ocean (IO). In 1998, in event 2, the active convection of the YRB originated in the SCS–WP. In 2016, in events 1 and 3, the active convection of the YRB originated from the SCS–WP. In 2016, in event 2, the active convection of the YRB originated from the tropical IO and the extratropical WP. Different SST and atmospheric circulations explain different BSISO modes that dominate in the YRB. In 1998 (2016), in summer, (no) strong easterly wind anomalies occurred in the SCS–WP, which are favorable (unfavorable) for the enhancement of BSISO1. Accompanying the suppressed BSISO1, BSISO2 was enhanced in 2016. Full article
(This article belongs to the Special Issue Precipitation Observations and Prediction)
Show Figures

Figure 1

21 pages, 11653 KiB  
Article
Data-Driven Global Subseasonal Forecast for Intraseasonal Oscillation Components
by Yichen Shen, Chuhan Lu, Yihan Wang, Dingan Huang and Fei Xin
Atmosphere 2023, 14(11), 1682; https://doi.org/10.3390/atmos14111682 - 13 Nov 2023
Viewed by 1804
Abstract
As a challenge in the construction of a “seamless forecast” system, improving the prediction skills of subseasonal forecasts is a key issue for meteorologists. In view of the evolution characteristics of numerical models and deep-learning models for subseasonal forecasts, as forecast times increase, [...] Read more.
As a challenge in the construction of a “seamless forecast” system, improving the prediction skills of subseasonal forecasts is a key issue for meteorologists. In view of the evolution characteristics of numerical models and deep-learning models for subseasonal forecasts, as forecast times increase, the prediction skill for high-frequency components will decrease, as the lead time is already far beyond the predictability. Meanwhile, intraseasonal low-frequency components are essential to the change in general circulation on subseasonal timescales. In this paper, the Global Subseasonal Forecast Model (GSFM v1.0) first extracted the intraseasonal oscillation (ISO) components of atmospheric signals and used an improved deep-learning model (SE-ResNet) to train and predict the ISO components of geopotential height at 500 hPa (Z500) and temperature at 850 hPa (T850). The results show that the 10–30 day prediction performance of the SE-ResNet model is better than that of the model trained directly with original data. Compared with other models/methods, this model has a good ability to depict the subseasonal evolution of the ISO components of Z500 and T850. In particular, although the prediction results from the Climate Forecast System Version 2 have better performance through 10 days, the SE-ResNet model is substantially superior to CFSv2 through 10–30 days, especially in the middle and high latitudes. The SE-ResNet model also has a better effect in predicting planetary waves with wavenumbers of 3–8. Thus, the application of data-driven subseasonal forecasts of atmospheric ISO components may shed light on improving the skill of seasonal forecasts. Full article
Show Figures

Figure 1

13 pages, 5080 KiB  
Article
Characteristic Analysis of the 10–30-Day Intraseasonal Oscillation over Mid-High-Latitude Eurasia in Boreal Summer
by Yashu Liu and Shuangyan Yang
Atmosphere 2023, 14(9), 1372; https://doi.org/10.3390/atmos14091372 - 30 Aug 2023
Cited by 1 | Viewed by 1474
Abstract
The aim of this study is to investigate the characteristics of the intraseasonal oscillation (ISO) with a 10–30-day cycle over mid-high-latitude Eurasia during boreal summer. The leading mode of this ISO is determined using an extended empirical orthogonal function analysis. Through a phase [...] Read more.
The aim of this study is to investigate the characteristics of the intraseasonal oscillation (ISO) with a 10–30-day cycle over mid-high-latitude Eurasia during boreal summer. The leading mode of this ISO is determined using an extended empirical orthogonal function analysis. Through a phase composite analysis, it is observed that a southeastward-propagating wave train with a quasi-barotropic structure is present in Eurasia. The dynamical mechanism and energy conversion affecting its propagation are also analyzed. The negative (positive) temperature tendency appears in the southeastern part of the temperature anomaly in the lower troposphere (upper troposphere), resulting in further southeastward displacement of the temperature perturbation. A diagnosis of temperature tendency shows that the main cause of the southeastward movement is the advection of anomalous temperature by the mean zonal wind. The energy conversion analysis reveals that by converting kinetic energy and potential energy, the ISO perturbation acquires energy from the summertime mean flow during its southeastward movement. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

31 pages, 16617 KiB  
Article
A Multicloud Model for Coastal Convection
by Abigail Dah, Boualem Khouider and Courtney Schumacher
Geosciences 2023, 13(9), 264; https://doi.org/10.3390/geosciences13090264 - 30 Aug 2023
Viewed by 1792
Abstract
Coastal convection is often organized into multiple mesoscale systems that propagate in either direction across the coastline (i.e., landward and oceanward). These systems interact non-trivially with synoptic and intraseasonal disturbances such as convectively coupled waves and the Madden–Julian oscillation. Despite numerous theoretical and [...] Read more.
Coastal convection is often organized into multiple mesoscale systems that propagate in either direction across the coastline (i.e., landward and oceanward). These systems interact non-trivially with synoptic and intraseasonal disturbances such as convectively coupled waves and the Madden–Julian oscillation. Despite numerous theoretical and observational efforts to understand coastal convection, global climate models still fail to represent it adequately, mainly because of limitations in spatial resolution and shortcomings in the underlying cumulus parameterization schemes. Here, we use a simplified climate model of intermediate complexity to simulate coastal convection under the influence of the diurnal cycle of solar heating. Convection is parameterized via a stochastic multicloud model (SMCM), which mimics the subgrid dynamics of organized convection due to interactions (through the environment) between the cloud types that characterize organized tropical convection. Numerical results demonstrate that the model is able to capture the key modes of coastal convection variability, such as the diurnal cycle of convection and the accompanying sea and land breeze reversals, the slowly propagating mesoscale convective systems that move from land to ocean and vice-versa, and numerous moisture-coupled gravity wave modes. The physical features of the simulated modes, such as their propagation speeds, the timing of rainfall peaks, the penetration of the sea and land breezes, and how they are affected by the latitudinal variation in the Coriolis force, are generally consistent with existing theoretical and observational studies. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

20 pages, 5618 KiB  
Article
Intriguing Aspects of Polar-to-Tropical Mesospheric Teleconnections during the 2018 SSW: A Meteor Radar Network Study
by Sunkara Eswaraiah, Kyong-Hwan Seo, Kondapalli Niranjan Kumar, Andrey V. Koval, Madineni Venkat Ratnam, Chalachew Kindie Mengist, Gasti Venkata Chalapathi, Huixin Liu, Young-Sil Kwak, Eugeny Merzlyakov, Christoph Jacobi, Yong-Ha Kim, Sarangam Vijaya Bhaskara Rao and Nicholas J. Mitchell
Atmosphere 2023, 14(8), 1302; https://doi.org/10.3390/atmos14081302 - 17 Aug 2023
Cited by 1 | Viewed by 1907
Abstract
Using a network of meteor radar observations, observational evidence of polar-to-tropical mesospheric coupling during the 2018 major sudden stratosphere warming (SSW) event in the northern hemisphere is presented. In the tropical lower mesosphere, a maximum zonal wind reversal (−24 m/s) is noted and [...] Read more.
Using a network of meteor radar observations, observational evidence of polar-to-tropical mesospheric coupling during the 2018 major sudden stratosphere warming (SSW) event in the northern hemisphere is presented. In the tropical lower mesosphere, a maximum zonal wind reversal (−24 m/s) is noted and compared with that identified in the extra-tropical regions. Moreover, a time delay in the wind reversal between the tropical/polar stations and the mid-latitudes is detected. A wide spectrum of waves with periods of 2 to 16 days and 30–60 days were observed. The wind reversal in the mesosphere is due to the propagation of dominant intra-seasonal oscillations (ISOs) of 30–60 days and the presence and superposition of 8-day period planetary waves (PWs). The ISO phase propagation is observed from high to low latitudes (60° N to 20° N) in contrast to the 8-day PW phase propagation, indicating the change in the meridional propagation of winds during SSW, hence the change in the meridional circulation. The superposition of dominant ISOs and weak 8-day PWs could be responsible for the delay of the wind reversal in the tropical mesosphere. Therefore, this study has strong implications for understanding the reversed (polar to tropical) mesospheric meridional circulation by considering the ISOs during SSW. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

23 pages, 14241 KiB  
Article
Interannual Variability in the Coastal Zones of the Gulf of California
by Emilio Palacios-Hernández, Jorge Manuel Montes-Aréchiga, Luis Brito-Castillo, Laura Carrillo, Sergio Julián-Caballero and David Avalos-Cueva
Climate 2023, 11(6), 132; https://doi.org/10.3390/cli11060132 - 17 Jun 2023
Cited by 3 | Viewed by 2392
Abstract
Few studies have explored the details of climatology in the Gulf of California (GoC) coastal zone, a region characterized by robust land–sea breeze circulation that results from land heating on both coasts of the GoC. Using hourly historical observations from automatic weather stations [...] Read more.
Few studies have explored the details of climatology in the Gulf of California (GoC) coastal zone, a region characterized by robust land–sea breeze circulation that results from land heating on both coasts of the GoC. Using hourly historical observations from automatic weather stations (AWSs) from 2008 to 2018, we performed harmonic and empirical orthogonal function analyses to describe the climatology of several characteristics that are regularly monitored in the GoC coastal zone. The characteristics included air temperature (°C), relative humidity (%), atmospheric pressure (hPa), wind intensity (m s−1), and wind direction (°). The National Water Commission (CNA) provided records for stations located along the coast of the GoC. The results revealed an intense annual and, to a lesser extent, interannual signal for all characteristics. The presence of synoptic patterns forces seasonal and intraseasonal variations to occur. In summer, tropical systems increase the seasonal variability, mainly at the eastern mouth of the GoC. Some stations display this increase until the cold season arrives with the passage of winter systems. Finally, we found that interannual variability could be associated with El Niño–Southern Oscillation events. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

14 pages, 4042 KiB  
Article
Intraseasonal Variation in the Mesosphere Observed by the Mengcheng Meteor Radar from 2015 to 2020
by Yihuan Tang, Xiaojing Hao, Shican Qiu, Wenhan Cheng, Chengyun Yang and Jianfei Wu
Atmosphere 2023, 14(6), 1034; https://doi.org/10.3390/atmos14061034 - 15 Jun 2023
Cited by 1 | Viewed by 1517
Abstract
The intraseasonal oscillations (30–100 days, ISO) in the MLT (mesosphere and lower thermosphere) horizontal wind are investigated based on observations from the Mengcheng meteor radar. There is a clear seasonal variation in ISO in the horizontal wind at 80 km, which is strongest [...] Read more.
The intraseasonal oscillations (30–100 days, ISO) in the MLT (mesosphere and lower thermosphere) horizontal wind are investigated based on observations from the Mengcheng meteor radar. There is a clear seasonal variation in ISO in the horizontal wind at 80 km, which is strongest during the winter and weakest during the summer. At 100 km, ISO occurs throughout most of the year except winter, and there are significant differences in periods and amplitudes from year to year. From 2015 to 2016, ISOs with periods of 40–60 days were present in the 100 km horizontal wind, whereas none were simultaneously observed in the 80 km horizontal wind. Cross wavelets were used to study the relationship between ISO in the MLT region and ISO in the lower atmosphere. Some of the ISO activity is linked to tropospheric tropical convective activity, but the ISO connections with that in tropospheric convection are not consistent in the upper mesosphere and in the lower thermosphere. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

Back to TopTop