Climatology, Diversity, and Variability of Quasi-Biweekly to Intraseasonal Extreme Temperature Events in Hong Kong from 1885 to 2022
Abstract
:1. Introduction
2. Data
3. Identification of QBIE Temperature Events
3.1. Removing Seasonal Cycle of Observation
3.2. Extracting QBWO and ISO Signals
3.3. Defining QBIE Temperature Events
3.4. Metrics of QBIE Temperature Events
4. Climatology and Diversity of Hong Kong QBIE Temperature Events
4.1. Average Event Counts, Intensity, Duration, Extreme Days, and Event Days
4.2. Diversity of QBIE Events
4.3. Seasonality of QBIE Heat Waves and Cold Surges
5. Variability of QBIE Temperature Events
5.1. Long-Term Variability
5.2. Interannual Variability and Predictability
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franzke, C.L.E.; Torelló i Sentelles, H. Risk of Extreme High Fatalities Due to Weather and Climate Hazards and Its Connection to Large-Scale Climate Variability. Clim. Change 2020, 162, 507–525. [Google Scholar] [CrossRef]
- Jeong, J.H.; Ho, C.H.; Kim, B.M.; Kwon, W.T. Influence of the Madden-Julian Oscillation on Wintertime Surface Air Temperature and Cold Surges in East Asia. J. Geophys. Res. D Atmos. 2005, 110, D11104. [Google Scholar] [CrossRef]
- Pendergrass, A.G. What Precipitation Is Extreme? Science 2018, 360, 1072–1073. [Google Scholar] [CrossRef]
- Marx, W.; Haunschild, R.; Bornmann, L. Heat Waves: A Hot Topic in Climate Change Research. Theor. Appl. Climatol. 2021, 146, 781–800. [Google Scholar] [CrossRef]
- Miller, S.; Chua, K.; Coggins, J.; Mohtadi, H. Heat Waves, Climate Change, and Economic Output. J. Eur. Econ. Assoc. 2021, 19, 2658–2694. [Google Scholar] [CrossRef]
- Newman, R.; Noy, I. The Global Costs of Extreme Weather That Are Attributable to Climate Change. Nat. Commun. 2023, 14, 6103. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, X.-X.; Chang, C.-P. The Impact of Extreme Events on Energy Price Risk. Energy Econ. 2021, 99, 105308. [Google Scholar] [CrossRef]
- Furtak, K.; Wolińska, A. The Impact of Extreme Weather Events as a Consequence of Climate Change on the Soil Moisture and on the Quality of the Soil Environment and Agriculture—A Review. Catena 2023, 231, 107378. [Google Scholar] [CrossRef]
- Chen, F.; Liu, M.; Yang, C.; Hao, X.; Chen, Z. Effect on the Health of Newborns Caused by Extreme Temperature in Guangzhou. J. Environ. Manag. 2022, 311, 114842. [Google Scholar] [CrossRef]
- Brown, S.J. Future Changes in Heatwave Severity, Duration and Frequency Due to Climate Change for the Most Populous Cities. Weather. Clim. Extrem. 2020, 30, 100278. [Google Scholar] [CrossRef]
- Huang, H.; Leung, J.C.-H.; Chan, J.C.L.; Liu, J.; Qian, W.; Zhang, B. Recent Unusual Consecutive Spring Tropical Cyclones in North Atlantic and Winter Oceanic Precursor Signals. J. Meteorol. Res. 2023, 37, 208–217. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. (Eds.) Global Warming of 1.5°C—An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018. [Google Scholar]
- Qian, W.; Wu, K.; Leung, J.C.-H. Three-Dimensional Structure and Long-Term Trend of Heat Wave Events in Western Eurasia Revealed with an Anomaly-Based Approach. Int. J. Climatol. 2016, 36, 4315–4326. [Google Scholar] [CrossRef]
- Utsumi, N.; Kim, H. Observed Influence of Anthropogenic Climate Change on Tropical Cyclone Heavy Rainfall. Nat. Clim. Change 2022, 12, 436–440. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, G.; Zhang, G.; Iyakaremye, V.; Xu, Y. Future Projections of Winter Cold Surge Paths over East Asia from CMIP6 Models. Int. J. Climatol. 2021, 41, 1230–1245. [Google Scholar] [CrossRef]
- Li, R.C.Y.; Zhou, W. Multiscale Control of Summertime Persistent Heavy Precipitation Events over South China in Association with Synoptic, Intraseasonal, and Low-Frequency Background. Clim. Dyn. 2015, 45, 1043–1057. [Google Scholar] [CrossRef]
- Kajikawa, Y.; Yasunari, T.; Wang, B. Decadal Change in Intraseasonal Variability over the South China Sea. Geophys. Res. Lett. 2009, 36, L06810. [Google Scholar] [CrossRef]
- Chongyin, L.; Zhenxia, L.; Qingyun, Z. Strong/ Weak Summer Monsoon Activity over the South China Sea and Atmospheric Intraseasonal Oscillation. Adv. Atmos. Sci. 2001, 18, 1146–1160. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Simultaneous Modulations of Precipitation and Temperature Extremes in Southern Parts of China by the Boreal Summer Intraseasonal Oscillation. Clim. Dyn. 2017, 49, 3363–3381. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, J.; Wang, B.; Leung, J.C.-H.; Chen, D.; Lin, Z.; Kang, I.-S.; Chao, Q.; Ke, Z.; Fan, K.; et al. Opportunities and Barriers for Skillful Subseasonal Prediction of East Asian Summer Precipitation. Bull. Am. Meteorol. Soc. 2024, 105, E2216–E2230. [Google Scholar] [CrossRef]
- Chen, R.; Wen, Z.; Lu, R. Large-Scale Circulation Anomalies and Intraseasonal Oscillations Associated with Long-Lived Extreme Heat Events in South China. J. Clim. 2018, 31, 213–232. [Google Scholar] [CrossRef]
- Chong, M.-L.; Yeung, H.-Y.; Hon, K.-K. Study of Extreme Cold Surges in Hong Kong. Meteorology 2023, 2, 52–71. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.-C. Heat Waves in Southern China: Synoptic Behavior, Long-Term Change, and Urbanization Effects. J. Clim. 2017, 30, 703–720. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W.; Li, X.; Wang, X.; Wang, D. Synoptic-Scale Characteristics and Atmospheric Controls of Summer Heat Waves in China. Clim. Dyn. 2016, 46, 2923–2941. [Google Scholar] [CrossRef]
- Qin, Y.; Qin, Y.; Shen, Y.; Li, Y.; Xiang, B. Numerical Study on the Effects of Intraseasonal Oscillations for a Persistent Drought and Hot Event in South China Summer 2022. Remote Sens. 2023, 15, 892. [Google Scholar] [CrossRef]
- Qian, W.; Leung, J.C.-H.; Chen, Y.; Huang, S. Applying Anomaly-Based Weather Analysis to the Prediction of Low Visibility Associated with the Coastal Fog at Ningbo-Zhoushan Port in East China. Adv. Atmos. Sci. 2019, 36, 1060–1077. [Google Scholar] [CrossRef]
- Qian, W.; Du, J.; Ai, Y. A Review: Anomaly Based versus Full-Field Based Weather Analysis and Forecasting. Bull. Am. Meteorol. Soc. 2021, 102, E849–E870. [Google Scholar] [CrossRef]
- Leung, J.C.-H.; Qian, W.; Zhang, P.; Zhang, B. Geopotential-Based Multivariate MJO Index: Extending RMM-like Indices to Pre-Satellite Era. Clim. Dyn. 2022, 59, 609–631. [Google Scholar] [CrossRef]
- Gao, Y.; Hsu, P.-C.; Li, T. Effects of High-Frequency Activity on Latent Heat Flux of MJO. Clim. Dyn. 2019, 52, 1471–1485. [Google Scholar] [CrossRef]
- Duchon, C.E. Lanczos Filtering in One and Two Dimensions. J. Appl. Meteorol. Climatol. 1979, 18, 1016–1022. [Google Scholar] [CrossRef]
- Leung, J.C.-H.; Qian, W. Monitoring the Madden–Julian Oscillation with Geopotential Height. Clim. Dyn. 2017, 49, 1981–2006. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.-C.; Liu, Z. Different Mechanisms for Daytime, Nighttime, and Compound Heatwaves in Southern China. Weather Clim. Extrem. 2022, 36, 100449. [Google Scholar] [CrossRef]
- McMichael, A.J.; Lindgren, E. Climate Change: Present and Future Risks to Health, and Necessary Responses. J. Intern. Med. 2011, 270, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Shumway, R.H.; Stoffer, D.S. ARIMA Models. In Time Series Analysis and Its Applications: With R Examples; Shumway, R.H., Stoffer, D.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 75–163. ISBN 978-3-319-52452-8. [Google Scholar]
- Ljung, G.M.; Box, G.E.P. On a Measure of Lack of Fit in Time Series Models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Roundy, P.E. On the Interpretation of EOF Analysis of ENSO, Atmospheric Kelvin Waves, and the MJO. J. Clim. 2015, 28, 1148–1165. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Benedict, J.J.; Maloney, E.D. Impact of the MJO on the Boreal Winter Extratropical Circulation. Geophys. Res. Lett. 2014, 41, 6055–6062. [Google Scholar] [CrossRef]
- Ou, T.; Chen, D.; Jeong, J.-H.; Linderholm, H.W.; Zhou, T. Changes in Winter Cold Surges over Southeast China: 1961 to 2012. Asia Pac. J. Atmos. Sci. 2015, 51, 29–37. [Google Scholar] [CrossRef]
- Park, T.-W.; Ho, C.-H.; Jeong, S.-J.; Choi, Y.-S.; Park, S.K.; Song, C.-K. Different Characteristics of Cold Day and Cold Surge Frequency over East Asia in a Global Warming Situation. J. Geophys. Res. 2011, 116, D12118. [Google Scholar] [CrossRef]
- Zhang, W.; Furtado, K.; Wu, P.; Zhou, T.; Chadwick, R.; Marzin, C.; Rostron, J.; Sexton, D. Increasing Precipitation Variability on Daily-to-Multiyear Time Scales in a Warmer World. Sci. Adv. 2021, 7, eabf8021. [Google Scholar] [CrossRef]
- Dimri, T.; Ahmad, S.; Sharif, M. Time Series Analysis of Climate Variables Using Seasonal ARIMA Approach. J. Earth Syst. Sci. 2020, 129, 149. [Google Scholar] [CrossRef]
- Rosmiati, R.; Liliasari, S.; Tjasyono, B.; Ramalis, T.R. Development of ARIMA Technique in Determining the Ocean Climate Prediction Skills for Pre-Service Teacher. J. Phys. Conf. Ser. 2021, 1731, 012072. [Google Scholar] [CrossRef]
- Chantry, M.; Bouallegue, Z.B.; Magnusson, L.; Maier-Gerber, M.; Dramsch, J. The Rise of Machine Learning in Weather Forecasting. Available online: https://www.ecmwf.int/en/about/media-centre/science-blog/2023/rise-machine-learning-weather-forecasting (accessed on 21 May 2024).
Station Code | Station Name | Latitude (°N) | Longitude (°E) | Elevation Above Mean Sea Level (m) | Date of First Operation |
---|---|---|---|---|---|
HKO | Hong Kong Observatory | 22°18′07″ | 114°10′27″ | 32 | 1 April 1884 |
HKA | Hong Kong International Airport | 22°18′34″ | 113°55′19″ | 6 | 1 June 1997 |
CCH | Cheung Chau | 22°12′04″ | 114°01′36″ | 72 | 30 March 1992 |
KP | King’s Park | 22°18′43″ | 114°10′22″ | 65 | 1 July 1992 |
LFS | Lau Fau Shan | 22°28′08″ | 113°59′01″ | 31 | 16 September 1985 |
PEN | Peng Chau | 22°17′28″ | 114°02′36″ | 34 | 1 June 2004 |
SEK | Shek Kong | 22°26′10″ | 114°05′05″ | 16 | 4 November 1996 |
SHA | Sha Tin | 22°24′09″ | 114°12′36″ | 6 | 1 October 1984 |
SLW | Sha Lo Wan | 22°17′28″ | 113°54′25″ | 61 | 25 February 1993 |
TC | Tate’s Cairn | 22°21′28″ | 114°13′04″ | 572 | 8 December 1987 |
TKL | Ta Kwu Ling | 22°31′43″ | 114°09′24″ | 15 | 14 October 1985 |
TMS | Tai Mo Shan | 22°24′38″ | 114°07′28″ | 955 | 8 December 1987 |
WGL | Waglan Island | 22°10′56″ | 114°18′12″ | 56 | 22 August 1989 |
WLP | Wetland Park | 22°28′00″ | 114°00′32″ | 4 | 10 November 2005 |
Heat Wave by Minimum Temperature | Heat Wave by Mean Temperature | Heat Wave by Maximum Temperature | Cold Surge by Minimum Temperature | Cold Surge by Mean Temperature | Cold Surge by Maximum Temperature | |
---|---|---|---|---|---|---|
Average event counts per year | 2.16 | 1.85 | 1.92 | 2.76 | 2.70 | 2.69 |
Average event intensity (°C) | 2.06 | 1.99 | 2.21 | −2.24 | −2.09 | −2.34 |
Average event duration (days) | 10.96 | 11.16 | 10.49 | 10.67 | 10.49 | 10.08 |
Average event days per year (days) | 23.68 | 20.62 | 20.10 | 29.53 | 28.33 | 27.08 |
Event Type | Abbreviation | Minimum Temperature | Mean Temperature | Maximum Temperature |
---|---|---|---|---|
Combined daytime and nighttime QBIE heat wave/cold surge | CDN | T | T | T |
Weak nighttime heat wave/cold surge | WNT | T | F | F |
Strong nighttime heat wave/cold surge | SNT | T | T | F |
Weak daytime heat wave/cold surge | WDT | F | F | T |
Strong daytime heat wave/cold surge | SDT | F | T | T |
Other | Other | F | T | F |
T | F | T |
ALL | CDN | WNT | SNT | WDT | SDT | |
---|---|---|---|---|---|---|
Event count (heat wave) | 0.05 | 0.05 ** | −0.01 | −0.02 | 0.02 | −0.00 |
Event count (cold surge) | 0.11 *** | 0.04 ** | 0.01 | 0.02 | 0.01 | 0.03 |
Event intensity (heat wave) | 0.01 | 0.01 | 0.01 | −0.02 | −0.02 | 0.01 |
Event intensity (cold surge) | 0.00 | −0.00 | −0.02 | −0.01 | −0.05 * | 0.03 |
Event duration (heat wave) | −0.021 | 0.03 | −0.10 | −0.06 | 0.08 | 0.01 |
Event duration (cold surge) | 0.044 | −0.06 | 0.24 * | −0.02 | 0.06 | 0.17 |
Event days (heat wave) | 0.40 | −0.16 | 0.01 | −0.24 | 0.46 | 0.15 |
Event days (cold surge) | 1.24 *** | 0.44 | 0.46 * | 0.74 ** | −0.04 | 0.38 |
QBIE Events | ARIMA Fitting Model | Description |
---|---|---|
ALL heat waves | White noise series | |
ALL cold surges | ARIMA((14),0,0) | The variance of the residuals is 2.42 |
CDN heat waves | ARIMA(0,0,(11,28)) | The variance of the residuals is 0.47 |
CDN cold surges | White noise series | |
WNT heat waves | White noise series | |
WNT cold surges | White noise series | |
SNT heat waves | White noise series | |
SNT cold surges | ARIMA((4),0,0) | The variance of the residuals is 0.36 |
WDT heat waves | White noise series | |
WDT cold surges | White noise series | |
SDT heat waves | White noise series | |
SDT cold surges | ARIMA((4,6,7),0,0) | The variance of the residuals is 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, H.; Wu, K.; Chan, P.W.; Liu, J.; Zhang, B.; Leung, J.C.-H. Climatology, Diversity, and Variability of Quasi-Biweekly to Intraseasonal Extreme Temperature Events in Hong Kong from 1885 to 2022. Appl. Sci. 2025, 15, 1764. https://doi.org/10.3390/app15041764
Kong H, Wu K, Chan PW, Liu J, Zhang B, Leung JC-H. Climatology, Diversity, and Variability of Quasi-Biweekly to Intraseasonal Extreme Temperature Events in Hong Kong from 1885 to 2022. Applied Sciences. 2025; 15(4):1764. https://doi.org/10.3390/app15041764
Chicago/Turabian StyleKong, Hoiio, Kechen Wu, Pak Wai Chan, Jinping Liu, Banglin Zhang, and Jeremy Cheuk-Hin Leung. 2025. "Climatology, Diversity, and Variability of Quasi-Biweekly to Intraseasonal Extreme Temperature Events in Hong Kong from 1885 to 2022" Applied Sciences 15, no. 4: 1764. https://doi.org/10.3390/app15041764
APA StyleKong, H., Wu, K., Chan, P. W., Liu, J., Zhang, B., & Leung, J. C.-H. (2025). Climatology, Diversity, and Variability of Quasi-Biweekly to Intraseasonal Extreme Temperature Events in Hong Kong from 1885 to 2022. Applied Sciences, 15(4), 1764. https://doi.org/10.3390/app15041764