Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = interstellar matter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 3821 KiB  
Communication
Ultraviolet Background Radiation from Not-So-Dark Matter in the Galactic Halo
by Richard Conn Henry, Jayant Murthy and James Overduin
Universe 2025, 11(5), 148; https://doi.org/10.3390/universe11050148 - 3 May 2025
Viewed by 369
Abstract
Murthy et al. (2025) (hereafter Paper I) have recently reported the discovery of unexpectedly bright diffuse extreme-ultraviolet radiation at high latitudes in both the Northern and Southern Galactic Hemispheres. After correction for extinction by the total interstellar dust in the direction of each [...] Read more.
Murthy et al. (2025) (hereafter Paper I) have recently reported the discovery of unexpectedly bright diffuse extreme-ultraviolet radiation at high latitudes in both the Northern and Southern Galactic Hemispheres. After correction for extinction by the total interstellar dust in the direction of each observation, the spectra are nearly identical, suggesting that the radiation has a unique source and likely originates in the halo of our galaxy. The observed spectrum extends down to 912 Å, the interstellar hydrogen absorption edge. Radiation even slightly short of that edge would, if ubiquitous, be sufficient to explain the high degree of ionization in our galaxy and throughout the universe. We hypothesize that this newly discovered radiation originates in the slow decay of dark matter. The intensity of the radiation implies that the decay cannot be via the weak interaction, suggesting the existence of a new, even weaker fundamental interaction, consistent with the exceedingly long decay lifetime required. Full article
Show Figures

Figure 1

12 pages, 574 KiB  
Article
Probing Dark Photons Through Gravitational Decoupling of Mass-State Oscillations in Interstellar Media
by Bo Zhang and Cui-Bai Luo
Universe 2025, 11(4), 115; https://doi.org/10.3390/universe11040115 - 1 Apr 2025
Viewed by 474
Abstract
We propose a novel mechanism for photon–dark photon mass-state oscillations mediated by gravitational separation during propagation through the interstellar medium. This phenomenon establishes a new avenue for the detection of dark matter. By analyzing gravitational lensing data from quasars, we investigate the sensitivity [...] Read more.
We propose a novel mechanism for photon–dark photon mass-state oscillations mediated by gravitational separation during propagation through the interstellar medium. This phenomenon establishes a new avenue for the detection of dark matter. By analyzing gravitational lensing data from quasars, we investigate the sensitivity of this approach to dark photons. Our analysis demonstrates constraints of ε<102 in the dark photon mass range of 1.7×1014 eV to 5.4×1014 eV. Furthermore, we propose potential applications of this mechanism to astrophysical systems with strong gravitational fields, such as neutron stars and black hole accretion disks. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024—"Galaxies and Clusters")
Show Figures

Figure 1

33 pages, 549 KiB  
Review
Astrochemistry of the Molecular Gas in Dusty Star-Forming Galaxies at the Cosmic Noon
by Francesca Perrotta, Martina Torsello, Marika Giulietti and Andrea Lapi
Galaxies 2024, 12(2), 18; https://doi.org/10.3390/galaxies12020018 - 22 Apr 2024
Viewed by 2466
Abstract
Far-infrared and submillimeter observations have established the fundamental role of dust-obscured star formation in the assembly of stellar mass over the past ∼12 billion years. At z = 2–4, the so-called “cosmic noon”, the bulk of star formation is enshrouded in dust, and [...] Read more.
Far-infrared and submillimeter observations have established the fundamental role of dust-obscured star formation in the assembly of stellar mass over the past ∼12 billion years. At z = 2–4, the so-called “cosmic noon”, the bulk of star formation is enshrouded in dust, and dusty star-forming galaxies (DSFGs) contain ∼50% of the total stellar mass density. Star formation occurs in dense molecular clouds, and is regulated by a complex interplay between all the ISM components that contribute to the energy budget of a galaxy: gas, dust, cosmic rays, interstellar electromagnetic fields, gravitational field, and dark matter. Molecular gas is the actual link between star-forming gas and its complex environment: much of what we know about star formation comes from observations of molecular line emissions. They provide by far the richest information about the star formation process. However, their interpretation requires complex modeling of the astrochemical networks which regulate molecular formation and establish molecular abundances in a cloud, and a modeling of the physical conditions of the gas in which molecular energy levels become populated. This paper critically reviews the main astrochemical parameters needed to obtain predictions about molecular signals in DSFGs. Molecular lines can be very bright compared to the continuum emission, but radiative transfer models are required to properly interpret the observed brightness. We review the current knowledge and the open questions about the interstellar medium of DSFGs, outlining the key role of molecular gas as a tracer and shaper of the star formation process. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
22 pages, 309 KiB  
Article
Eschatological Technophobia: Cinematic Anticipations of the Singularity
by Daniel Conway
Religions 2024, 15(2), 172; https://doi.org/10.3390/rel15020172 - 30 Jan 2024
Viewed by 1869
Abstract
My aim in this essay is to isolate and describe the eschatological technophobia that is expressed by many popular films in the genre of science fiction. What I have in mind by this designation is the (irrational) fear of advanced technologies with respect [...] Read more.
My aim in this essay is to isolate and describe the eschatological technophobia that is expressed by many popular films in the genre of science fiction. What I have in mind by this designation is the (irrational) fear of advanced technologies with respect to the conjectured likelihood that autonomous systems and programs will inevitably deliver a negative judgment of humankind. In expressing and/or cultivating this fear, I offer, directors in the genre tend to help themselves to the language and imagery of the Biblical Day of Judgment, especially as it is prophesied and characterized in the Abrahamic religions of the global West. This fear, I maintain, is itself an expression of a deeper anxiety pertaining to the possibility (or likelihood) that the achievements of humankind matter very little, if at all, especially when evaluated on a cosmic scale. Following my critique of several films that rely, uncreatively, on the trope of eschatological technophobia, I turn to a consideration of two relatively recent films in the genre: Christopher Nolan’s Interstellar (2014) and Denis Villeneuve’s Arrival (2016). From these directors, I suggest, we receive subtler and more thoughtful treatments of the judgments of humankind that superior intelligences are likely to pronounce. What emerges in these two films is the exploratory expression of a religiosity or spirituality that I associate with an updated, epoch-appropriate version of humanism. Full article
20 pages, 2221 KiB  
Review
Opacities and Atomic Diffusion
by Georges Alecian and Morgan Deal
Galaxies 2023, 11(3), 62; https://doi.org/10.3390/galaxies11030062 - 25 Apr 2023
Cited by 2 | Viewed by 2299
Abstract
Opacity is a fundamental quantity for stellar modeling, and it plays an essential role throughout the life of stars. After gravity drives the collapse of interstellar matter into a protostar, the opacity determines how this matter is structured around the stellar core. The [...] Read more.
Opacity is a fundamental quantity for stellar modeling, and it plays an essential role throughout the life of stars. After gravity drives the collapse of interstellar matter into a protostar, the opacity determines how this matter is structured around the stellar core. The opacity explains how the radiation field interacts with the matter and how a major part of the energy flows through the star. It results from all the microscopic interactions of photons with atoms. Part of the momentum exchange between photons and atoms gives rise to radiative accelerations (specific to each type of atom), which are strongly involved in a second-order process: atomic diffusion. Although this process is a slow one, it can have a significant impact on stellar structure and chemical composition measurements. In this review, we discuss the way opacities are presently computed and used in numerical codes. Atomic diffusion is described, and the current status of the consideration of this process is presented. Full article
(This article belongs to the Special Issue The Structure and Evolution of Stars)
Show Figures

Figure 1

15 pages, 4834 KiB  
Article
Hybrid Method for Detecting Anomalies in Cosmic ray Variations Using Neural Networks Autoencoder
by Oksana Mandrikova and Bogdana Mandrikova
Symmetry 2022, 14(4), 744; https://doi.org/10.3390/sym14040744 - 4 Apr 2022
Cited by 11 | Viewed by 2338
Abstract
Cosmic rays were discovered by the Austrian physicist Victor Hess in 1912 in a series of balloon experiments performed between 1911 and 1912. Cosmic rays are an integral part of fundamental and applied research in the field of solar–terrestrial physics and space weather. [...] Read more.
Cosmic rays were discovered by the Austrian physicist Victor Hess in 1912 in a series of balloon experiments performed between 1911 and 1912. Cosmic rays are an integral part of fundamental and applied research in the field of solar–terrestrial physics and space weather. Cosmic ray data are applied in different fields from the discovery of high-energy particles coming to Earth from space, and new fundamental symmetries in the laws of nature, to the knowledge of residual matter and magnetic fields in interstellar space. The properties of interplanetary space are determined from intensity variations, angular distribution, and other characteristics of galactic cosmic rays. The measure of cosmic ray flux intensity variability is used as one of the significant space weather factors. The negative impact of cosmic rays is also known. The negative impact can significantly increase the level of radiation hazard and pose a threat to astronauts, crews, and passengers of high-altitude aircraft on polar routes and to modern space equipment. Therefore, methods aimed at timely detection and identification of anomalous manifestations in cosmic rays are of particular practical relevance. The article proposes a method for analyzing cosmic ray variations and detecting anomalous changes in the rate of galactic cosmic ray arrival to the Earth. The method is based on a combination of the Autoencoder neural network with wavelet transform. The use of non-linear activation functions and the ability to flexibly change the structure of the network provide the ability of the Autoencoder to approximate complex dependencies in the recorded variations of cosmic rays. The article describes the numerical operations of the method implementation. Verification of the adequacy of the neural network model is based on the use of Box–Ljung Q-statistics. On the basis of the wavelet transform constructions, data-adaptive operations for detecting complex singular structures are constructed. The parameters of the applied threshold functions are estimated with a given confidence probability based on the α-quantiles of Student’s distribution. Using data from high-latitude neutron monitor stations, it is shown that the proposed method provides efficient detection of anomalies in cosmic rays during increased solar activity and magnetic storms. Using the example of a moderate magnetic storm on 10–11 May 2019, the necessity of applying different methods and approaches to the study of cosmic ray variations is confirmed, and the importance of taking them into account when making space weather forecast is shown. Full article
(This article belongs to the Special Issue Cosmic Rays: From Fundamental Symmetry Tests to Civil Applications)
Show Figures

Figure 1

17 pages, 315 KiB  
Article
Simplification of Galactic Dynamic Equations
by Ying-Qiu Gu
Symmetry 2022, 14(2), 407; https://doi.org/10.3390/sym14020407 - 18 Feb 2022
Viewed by 2192
Abstract
Galactic dynamics is the foundation for simulating galactic structure and for solving other problems. However, the traditional dynamic equations include some unreasonable assumptions and are therefore scientifically invalid. In this paper, by introducing the following three working assumptions, we established the galactic dynamics [...] Read more.
Galactic dynamics is the foundation for simulating galactic structure and for solving other problems. However, the traditional dynamic equations include some unreasonable assumptions and are therefore scientifically invalid. In this paper, by introducing the following three working assumptions, we established the galactic dynamics of high precision and convenient formalism. 1. In the research of large-scale structure, the retarded potential of the gravitational field should be taken into account, and the weak field and low velocity approximation of Einstein’s field equation should be adopted. 2. The stars in a fully developed galaxy should be zero-pressure and inviscid fluid, and the equation of motion is different from that of ordinary continuum mechanics. Stars move along geodesics. 3. The structure of the galaxy is only related to the total mass density distribution. The equation of state of dark halo is different from that of ordinary luminous interstellar matter, so their trajectories are also very different. In a galaxy, the dark halo and the ordinary matter are automatically separated. The total mass density distribution can be presupposed according to the observation data, and then it can be determined by comparing the solution of the equations with the observed data. These assumptions and treatments are supported by theory and observation. The variables of the equations of simplified galactic dynamics are separated from each other, and the equations are well-posed and can be solved according to a definite procedure. The solution explains the Tully–Fisher relation. Therefore, this simplified dynamic equation system provides a more reasonable and practical framework for the further study of galactic structure, and can solve many practical problems. In addition, it is closely related to the study of dark matter halo in galaxy. Full article
(This article belongs to the Section Physics)
49 pages, 2930 KiB  
Review
Natural Iron Silicides: A Systematic Review
by Michael A. Rappenglück
Minerals 2022, 12(2), 188; https://doi.org/10.3390/min12020188 - 31 Jan 2022
Cited by 12 | Viewed by 8091
Abstract
This review systematically presents all finds of geogenic, impact-induced, and extraterrestrial iron silicide minerals known at the end of 2021. The respective morphological characteristics, composition, proven or reasonably suspected genesis, and possible correlations of different geneses are listed and supported by the available [...] Read more.
This review systematically presents all finds of geogenic, impact-induced, and extraterrestrial iron silicide minerals known at the end of 2021. The respective morphological characteristics, composition, proven or reasonably suspected genesis, and possible correlations of different geneses are listed and supported by the available literature (2021). Artificially produced iron silicides are only dealt with insofar as the question of differentiation from natural minerals is concerned, especially regarding dating to pre-industrial and pretechnogenic times. Full article
(This article belongs to the Special Issue Iron Silicide Minerals)
Show Figures

Figure 1

36 pages, 12985 KiB  
Article
A Perspective on the Solar Modulation of Cosmic Anti-Matter
by Marius S. Potgieter, O. P. M. Aslam, Driaan Bisschoff and Donald Ngobeni
Physics 2021, 3(4), 1190-1225; https://doi.org/10.3390/physics3040076 - 7 Dec 2021
Cited by 12 | Viewed by 3775
Abstract
Global modulation studies with comprehensive numerical models contribute meaningfully to the refinement of very local interstellar spectra (VLISs) for cosmic rays. Modulation of positrons and anti-protons are investigated to establish how the ratio of their intensity, and with respect to electrons and protons, [...] Read more.
Global modulation studies with comprehensive numerical models contribute meaningfully to the refinement of very local interstellar spectra (VLISs) for cosmic rays. Modulation of positrons and anti-protons are investigated to establish how the ratio of their intensity, and with respect to electrons and protons, are changing with solar activity. This includes the polarity reversal of the solar magnetic field which creates a 22-year modulation cycle. Modeling illustrates how they are modulated over time and the particle drift they experience which is significant at lower kinetic energy. The VLIS for anti-protons has a peculiar spectral shape in contrast to protons so that the total modulation of anti-protons is awkwardly different to that for protons. We find that the proton-to-anti-proton ratio between 1–2 GeV may change by a factor of 1.5 over a solar cycle and that the intensity for anti-protons may decrease by a factor of ~2 at 100 MeV during this cycle. A composition is presented of VLIS for protons, deuteron, helium isotopes, electrons, and particularly for positrons and anti-protons. Gaining knowledge of their respective 11 and 22 year modulation is useful to interpret observations of low-energy anti-nuclei at the Earth as tests of dark matter annihilation. Full article
Show Figures

Figure 1

14 pages, 29801 KiB  
Article
Method of Wavelet-Decomposition to Research Cosmic Ray Variations: Application in Space Weather
by Oksana Mandrikova and Bogdana Mandrikova
Symmetry 2021, 13(12), 2313; https://doi.org/10.3390/sym13122313 - 3 Dec 2021
Cited by 6 | Viewed by 2147
Abstract
Since their discovery, cosmic rays have been an integral part of the development of fundamental physics, from the discovery of radiation coming to the Earth from outer space and the identification of high-energy particles in it, as well as new fundamental symmetries in [...] Read more.
Since their discovery, cosmic rays have been an integral part of the development of fundamental physics, from the discovery of radiation coming to the Earth from outer space and the identification of high-energy particles in it, as well as new fundamental symmetries in the laws of nature, to the knowledge of residual matter and magnetic fields in interstellar space. Cosmic rays are used in a number of fundamental and applied research in solar-terrestrial physics and are important in the research of the near-Earth space processes. Cosmic ray variations observed on the Earth’s surface are an integral result of various solar, heliospheric, magnetospheric and atmospheric phenomena. The most significant changes in cosmic ray parameters are caused by coronal mass ejections and subsequent changes in the parameters of the interplanetary magnetic field and solar wind. Therefore, the study of cosmic rays makes it possible to obtain valuable information about the processes in the near-Earth space and in the Earth’s magnetosphere during disturbed periods. This article proposes a method for analyzing cosmic ray variations. It is based on the use of wavelet data decomposition operations and their combination with threshold functions. By using adaptive thresholds, the operations for detecting anomalous changes in data and for suppressing the noise were developed. Anomalies in cosmic rays can cause radiation hazard for astronauts, radio communication failures, as well as malfunctions in satellites, leading to the loss of orientation and destruction. Therefore, the task of timely diagnostics of anomalies is urgent. The paper describes the algorithms for the implementation of the method and shows their application in the space weather problem. We used data from the network of ground stations of neutron monitors. The efficiency of the method for detecting abnormal changes of different amplitudes and durations is shown. Application of the method made it possible to detect clearly and to evaluate Forbush effects in cosmic rays, which precede the onset of magnetic storms of various nature and strength. Full article
(This article belongs to the Special Issue Cosmic Rays: From Fundamental Symmetry Tests to Civil Applications)
Show Figures

Figure 1

30 pages, 4206 KiB  
Review
Orbital Dynamics in the Restricted Three Body Problem: Overview of Recent Analytical Advances Obtained by Separating Rapid and Slow Subsystems in Non-Planar Configurations
by Eugene Oks
Dynamics 2021, 1(1), 95-124; https://doi.org/10.3390/dynamics1010006 - 10 Aug 2021
Cited by 1 | Viewed by 3975
Abstract
Analytical solutions to a variety of simplified versions of the restricted three-body problem in celestial mechanics possess long running history that encompasses several centuries. Most of the successes were limited either to the planar configuration of the three bodies, to the motion around [...] Read more.
Analytical solutions to a variety of simplified versions of the restricted three-body problem in celestial mechanics possess long running history that encompasses several centuries. Most of the successes were limited either to the planar configuration of the three bodies, to the motion around the Lagrange points, or to the Kozai–Lidov effect. We review some analytical advances obtained by separating rapid and slow subsystems as presented in recently published papers concerning the non-planar motion of the three bodies unrelated to the Lagrange points and to the Kozai–Lidov effect. Most (but not all) of the discussed advances correspond to the bound motion in the considered celestial systems. Full article
Show Figures

Figure 1

21 pages, 442 KiB  
Article
Heating in Magnetar Crusts from Electron Captures
by Nicolas Chamel, Anthea Francesca Fantina, Lami Suleiman, Julian-Leszek Zdunik and Pawel Haensel
Universe 2021, 7(6), 193; https://doi.org/10.3390/universe7060193 - 8 Jun 2021
Cited by 8 | Viewed by 2742
Abstract
The persistent thermal luminosity of magnetars and their outbursts suggest the existence of some internal heat sources located in their outer crust. The compression of matter accompanying the decay of the magnetic field may trigger exothermic electron captures and, possibly, pycnonuclear fusions of [...] Read more.
The persistent thermal luminosity of magnetars and their outbursts suggest the existence of some internal heat sources located in their outer crust. The compression of matter accompanying the decay of the magnetic field may trigger exothermic electron captures and, possibly, pycnonuclear fusions of light elements that may have been accreted onto the surface from the fallback of supernova debris, from a disk or from the interstellar medium. This scenario bears some resemblance to deep crustal heating in accreting neutron stars, although the matter composition and the thermodynamic conditions are very different. The maximum possible amount of heat that can be released by each reaction and their locations are determined analytically taking into account the Landau–Rabi quantization of electron motion. Numerical results are also presented using experimental, as well as theoretical nuclear data. Whereas the heat deposited is mainly determined by atomic masses, the locations of the sources are found to be very sensitive to the magnetic field strength, thus providing a new way of probing the internal magnetic field of magnetars. Most sources are found to be concentrated at densities 10101011 g cm−3 with heat power W10351036 erg/s, as found empirically by comparing cooling simulations with observed thermal luminosity. The change of magnetic field required to trigger the reactions is shown to be consistent with the age of known magnetars. This suggests that electron captures and pycnonuclear fusion reactions may be a viable heating mechanism in magnetars. The present results provide consistent microscopic inputs for neutron star cooling simulations, based on the same model as that underlying the Brussels-Montreal unified equations of state. Full article
(This article belongs to the Special Issue Fundamental Processes in Neutron Stars and Supernovae)
Show Figures

Figure 1

59 pages, 3140 KiB  
Review
Gamma Rays as Probes of Cosmic-Ray Propagation and Interactions in Galaxies
by Luigi Tibaldo, Daniele Gaggero and Pierrick Martin
Universe 2021, 7(5), 141; https://doi.org/10.3390/universe7050141 - 11 May 2021
Cited by 39 | Viewed by 5264
Abstract
Continuum gamma-ray emission produced by interactions of cosmic rays with interstellar matter and radiation fields is a probe of non-thermal particle populations in galaxies. After decades of continuous improvements in experimental techniques and an ever-increasing sky and energy coverage, gamma-ray observations reveal in [...] Read more.
Continuum gamma-ray emission produced by interactions of cosmic rays with interstellar matter and radiation fields is a probe of non-thermal particle populations in galaxies. After decades of continuous improvements in experimental techniques and an ever-increasing sky and energy coverage, gamma-ray observations reveal in unprecedented detail the properties of galactic cosmic rays. A variety of scales and environments are now accessible to us, from the local interstellar medium near the Sun and the vicinity of cosmic-ray accelerators, out to the Milky Way at large and beyond, with a growing number of gamma-ray emitting star-forming galaxies. Gamma-ray observations have been pushing forward our understanding of the life cycle of cosmic rays in galaxies and, combined with advances in related domains, they have been challenging standard assumptions in the field and have spurred new developments in modelling approaches and data analysis methods. We provide a review of the status of the subject and discuss perspectives on future progress. Full article
Show Figures

Figure 1

14 pages, 2669 KiB  
Review
Interstellar Carbon Dust
by Emmanuel Dartois
C 2019, 5(4), 80; https://doi.org/10.3390/c5040080 - 2 Dec 2019
Cited by 14 | Viewed by 4589
Abstract
In the ranking of cosmic abundance of the elements, carbon is the second element, after oxygen, able to form multiple bonds propagating the formation of a network, thus playing an essential role in the formation of nanometer- to micrometer-sized interstellar dust grains. Astrophysical [...] Read more.
In the ranking of cosmic abundance of the elements, carbon is the second element, after oxygen, able to form multiple bonds propagating the formation of a network, thus playing an essential role in the formation of nanometer- to micrometer-sized interstellar dust grains. Astrophysical spectroscopic observations give us remote access to the composition of carbonaceous and organic interstellar grains. Their presence and abundances from spectroscopic observations and the phases of importance for the Galactic carbon budget are considered in this article. Full article
(This article belongs to the Special Issue Characterization of Disorder in Carbons)
Show Figures

Graphical abstract

19 pages, 1831 KiB  
Article
Estimating Flight Characteristics of Anomalous Unidentified Aerial Vehicles
by Kevin H. Knuth, Robert M. Powell and Peter A. Reali
Entropy 2019, 21(10), 939; https://doi.org/10.3390/e21100939 - 25 Sep 2019
Cited by 14 | Viewed by 131339
Abstract
Several Unidentified Aerial Phenomena (UAP) encountered by military, commercial, and civilian aircraft have been reported to be structured craft that exhibit ‘impossible’ flight characteristics. We consider a handful of well-documented encounters, including the 2004 encounters with the Nimitz Carrier Group off the coast [...] Read more.
Several Unidentified Aerial Phenomena (UAP) encountered by military, commercial, and civilian aircraft have been reported to be structured craft that exhibit ‘impossible’ flight characteristics. We consider a handful of well-documented encounters, including the 2004 encounters with the Nimitz Carrier Group off the coast of California, and estimate lower bounds on the accelerations exhibited by the craft during the observed maneuvers. Estimated accelerations range from almost 100 g to 1000s of gs with no observed air disturbance, no sonic booms, and no evidence of excessive heat commensurate with even the minimal estimated energies. In accordance with observations, the estimated parameters describing the behavior of these craft are both anomalous and surprising. The extreme estimated flight characteristics reveal that these observations are either fabricated or seriously in error, or that these craft exhibit technology far more advanced than any known craft on Earth. In many cases, the number and quality of witnesses, the variety of roles they played in the encounters, and the equipment used to track and record the craft favor the latter hypothesis that these are indeed technologically advanced craft. The observed flight characteristics of these craft are consistent with the flight characteristics required for interstellar travel, i.e., if these observed accelerations were sustainable in space, then these craft could easily reach relativistic speeds within a matter of minutes to hours and cover interstellar distances in a matter of days to weeks, proper time. Full article
Show Figures

Graphical abstract

Back to TopTop