A Perspective on the Solar Modulation of Cosmic Anti-Matter
Abstract
:1. Introduction
2. Numerical Model and Modeling Approach to Solar Modulation Studies
2.1. Theory and Assumptions
2.2. Modeling Approach
2.3. Rigidity Dependence of the Diffusion Coefficients
2.4. Time Dependence of the Diffusion Coefficients
2.5. Particle Drifts in the Heliosphere
2.5.1. Drift Related Modulation Effects
3. The Question of VLISs at the Heliopause
4. Positron Modulation
4.1. The VLIS and Modulated Spectra
4.2. Drift Effects
5. Anti-Proton Modulation
5.1. The Anti-Proton VLIS and Modulated Spectra
- (1)
- The shape of the VLIS is quite different from GCR nuclei, having between 500 MeV and 1 GeV a spectral slope close to the slope evident in the modulated spectra below 500 MeV at Earth. This slope at Earth is caused by adiabatic energy losses inside the heliosphere and is a characteristic of modulated spectra for protons, anti-protons and all GCR nuclei (see also [48]). The shape of the VLIS of these particles below 200 MeV is therefore not reflected at Earth because of these energy losses inside the heliosphere; for illustrations of this modulation effect, see, e.g., [25,156].
- (2)
- The total amount of modulation for anti-protons is far less than for protons of the same rigidity because of the very different shape of their VLISs, which for interest sake is compared to the VLIS for protons in Figure 16. As alluded to above, note where the peak in the anti-proton VLIS occurs compared to that for protons and how completely different the spectral slopes are at both low and high rigidities. The VLIS for protons is computed with GALPROP and normalized to PAMELA data at 100 GeV but the anti-proton spectrum is adjusted as described above.
5.2. Charge-Sign Dependence
6. Differences between Positron and Anti-Proton Modulation
6.1. Positron to Anti-Proton Ratio as a Function of Rigidity
6.2. Positron to Anti-Proton Ratio as a Function Time
7. On the Modulation of Other Types of Anti-Matter
8. A Composition of VLISs
9. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Borisov, S.; et al. PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy. Phys. Rev. Lett. 2010, 105, 121101. [Google Scholar] [CrossRef] [PubMed]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, A.E.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; et al. Time dependence of the electron and positron components of the cosmic radiation measured by the PAMELA experiment between July 2006 and December 2015. Phys. Rev. Lett. 2016, 116, 241105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, A.E.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; et al. Ten years of PAMELA in space. La Riv. Del Nuovo Cim. 2017, 40, 473–522. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2016, 117, 091103. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; et al. Observation of complex time structures in the Cosmic-ray electron and positron fluxes with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2018, 121, 051102. [Google Scholar] [CrossRef] [Green Version]
- Stone, E.C.; Cummings, A.C.; McDonald, F.B.; Heikkila, B.C.; Lal, N.; Webber, W.R. Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 2013, 341, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Stone, E.C.; Cummings, A.C.; Heikkila, B.C.; Lal, N. Cosmic ray measurements from Voyager 2 as it crossed into interstellar space. Nature Astron. 2019, 3, 1013–1018. [Google Scholar] [CrossRef]
- Kóta, J.; Jokipii, J.R. Are cosmic rays modulated beyond the heliopause? Astrophys. J. 2014, 782, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Potgieter, M.S.; Zhang, M.; Pogorelov, N.; Feng, X.; Strauss, R.D. A numerical simulation of cosmic ray modulation near the heliopause: II. Some physical insights. Astrophys. J. 2016, 826, 182. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Pogorelov, N.V. Modulation of galactic cosmic rays by plasma disturbances propagating through the Local Interstellar Medium in the outer heliosheath. Astrophys. J. 2020, 895, 1. [Google Scholar] [CrossRef]
- Scherer, K.; Fichtner, H. The return of the bow shock. Astrophys. J. 2014, 782, 25. [Google Scholar] [CrossRef] [Green Version]
- Pogorelov, N.; Fichtner, H.; Czechowski, A.; Lazarian, A.; Lembege, B.; le Roux, J.A.; Potgieter, M.S.; Scherer, K.; Stone, E.C.; Strauss, R.D.; et al. Heliosheath processes and the structure of the heliopause modeling energetic particles, cosmic rays, and magnetic fields. Space Sci. Rev. 2017, 212, 193–248. [Google Scholar] [CrossRef] [Green Version]
- Schlickeiser, R.; Oppotsch, J.; Zhang, M.; Pogorelov, N.V. On the anisotropy of galactic cosmic rays. Astrophys. J. 2019, 879, 29. [Google Scholar] [CrossRef]
- Zhang, M.; Pogorelov, N.V.; Zhang, Y.; Hu, H.B.; Schlickeiser, R. The original anisotropy of TeV Cosmic Rays in the Local Interstellar Medium. Astrophys. J. 2020, 889, 97. [Google Scholar] [CrossRef]
- Heber, B.; Wibberenz, G.; Potgieter, M.S.; Burger, R.A.; Ferreira, S.; Müller-Mellon, R.; Kunow, H.; Ferrando, P.; Raviart, A.; Paizis, C.; et al. Ulysses cosmic ray and solar particle investigation/Kiel Electron Telescope observations: Charge sign dependence and spatial gradients during the 1990–2000 A > 0 solar magnetic cycle. J. Geophys. Res. 2002, 107, 1274. [Google Scholar] [CrossRef]
- Heber, B.; Kopp, A.; Gieseler, J.; Müller-Mellin, R.; Fichtner, H.; Scherer, K.; Potgieter, M.S.; Ferreira, S.E.S. Modulation of galactic cosmic ray protons and electrons during an unusual solar minimum. Astrophys. J. 2009, 699, 1956–1963. [Google Scholar] [CrossRef]
- Heber, B.; Potgieter, M.S. Cosmic rays at high heliolatitudes. Space Sci. Rev. 2006, 127, 117–194. [Google Scholar] [CrossRef]
- Heber, B.; Potgieter, M.S. Galactic and anomalous cosmic rays through the solar cycle: New insights from Ulysses. In The Heliosphere through the Solar Activity Cycle; Balogh, A., Lanzerotti, L.J., Suess, S.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 195–249. [Google Scholar] [CrossRef]
- Cummings, A.C.; Stone, E.C.; Heikkila, B.C.; Lal, N.; Webber, W.R. Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results. Astrophys. J. 2016, 831, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, W.R.; Villa, T.L. A comparison of the galactic cosmic ray electron and proton intensities from 1 MeV/nuc to 1 TeV/nuc using Voyager and higher energy magnetic spectrometer measurements; Are there differences in the source spectra of these particles? arXiv 2018, arXiv:1806.02808. [Google Scholar]
- Webber, W.R.; Lal, N.; Heikkila, B. The spectra of 2H and 3He secondary cosmic ray isotopes from ~20-85 MeV/nuc as measured using the B-end HET Telescope on Voyager beyond the heliopause and a fit to these Interstellar Spectra using a Leaky Box Propagation Model. arXiv 2018, arXiv:1802.08273. [Google Scholar]
- Strauss, R.D.; Potgieter, M.S. Where does the heliospheric modulation of galactic cosmic rays start? Adv. Space Res. 2014, 53, 1015–1023. [Google Scholar] [CrossRef]
- Gleeson, L.J.; Urch, I.A. A study of the force-field equation for the propagation of galactic cosmic rays. Astrophys. Space Sci. 1973, 25, 387–404. [Google Scholar] [CrossRef]
- Cholis, I.; Hooper, D.; Linden, T. A predictive analytic model for the solar modulation of cosmic rays. Phys. Rev. D. 2016, 93, 043016. [Google Scholar] [CrossRef] [Green Version]
- Caballero-Lopez, R.A.; Moraal, H. Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res. 2004, 109, A01101. [Google Scholar] [CrossRef]
- Moraal, H. Cosmic-ray modulation equations. Space Sci. Rev. 2013, 176, 299–319. [Google Scholar] [CrossRef]
- Potgieter, M.S. The global modulation of cosmic rays during a quiet heliosphere: A modeling perspective. Adv. Space Res. 2017, 60, 848–864. [Google Scholar] [CrossRef]
- Engelbrecht, N.E.; di Felice, V. Uncertainties implicit to the use of the force-field solutions to the Parker transport equation in analyses of observed cosmic ray antiproton intensities. Phys. Rev. D 2020, 102, 103007. [Google Scholar] [CrossRef]
- Parker, E.N. The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 1965, 13, 9–49. [Google Scholar] [CrossRef]
- Smith, C.W.; Bieber, J.W. Solar cycle variation of the interplanetary magnetic field spiral. Astrophys. J. 1991, 370, 435. [Google Scholar] [CrossRef]
- Raath, J.L.; Potgieter, M.S.; Strauss, R.D.; Kopp, A. The effects of magnetic field modifications on the solar modulation of cosmic rays with a SDE-based model. Adv. Space Res. 2016, 57, 1965–1977. [Google Scholar] [CrossRef] [Green Version]
- McComas, D.J.; Elliot, H.A.; Gosling, J.T.; Reisenfield, D.B.; Skoung, R.M.; Goldstein, B.E.; Neugebauer, M.; Balogh, A. Ulysses’ second fast latitude scan: Complexity near solar maximum and the reformation of polar coronal holes. Geophys. Res. Lett. 2002, 29, 1. [Google Scholar] [CrossRef]
- Heber, B. Cosmic rays through the solar Hale Cycle. Insights from Ulysses. Space Sci. Rev. 2013, 176, 265–278. [Google Scholar] [CrossRef]
- Langner, U.W.; Potgieter, M.S. The modulation of galactic protons in an asymmetrical heliosphere. Astrophys. J. 2005, 630, 1114–1124. [Google Scholar] [CrossRef]
- Ngobeni, M.D.; Potgieter, M.S. Modulation of galactic cosmic rays in a north-south asymmetrical heliosphere. Adv. Space Res. 2011, 48, 300–307. [Google Scholar] [CrossRef]
- Richardson, J.D.; Wang, C. Plasma in the heliosheath: 3.5 years of observations. Astrophys. J. 2011, 734, L21. [Google Scholar] [CrossRef]
- Stone, E.C.; Cummings, A.C.; McDonald, F.B.; Heikkila, B.C.; Lal, N.; Webber, W.R. Voyager 1 explores the termination shock region and the heliosheath beyond. Science 2005, 309, 2017. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.D.; Kasper, J.C.; Wang, C.; Belcher, W.; Lazarus, A.J. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 2008, 454, 63. [Google Scholar] [CrossRef] [PubMed]
- Vos, E.E.; Potgieter, M.S. Global gradients for cosmic ray protons during the solar minimum of cycle 23/24. Solar Phys. 2016, 291, 2181–2195. [Google Scholar] [CrossRef] [Green Version]
- Langner, U.W.; Potgieter, M.S.; Fichtner, H.; Borrmann, T. Effects of solar wind speed changes in the heliosheath on the modulation of cosmic ray protons. Astrophys. J. 2006, 640, 1119–1134. [Google Scholar] [CrossRef]
- Ngobeni, M.D.; Potgieter, M.S. The heliospheric modulation of cosmic rays: Effects of a latitude dependent solar wind termination shock. Adv. Space Res. 2010, 46, 391–401. [Google Scholar] [CrossRef]
- Potgieter, M.S.; Vos, E.E.; Boezio, M.; De Simone, N.; Di Felice, V.; Formato, V. Modulation of galactic protons in the heliosphere during the unusual solar minimum from 2006 to 2009: A modelling approach. Solar Phys. 2014, 289, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, M.S.; Vos, E.E.; Munini, R.; Boezio, M.; Di Felice, V. Modulation of galactic electrons in the heliosphere during the unusual solar minimum of 2006 to 2009: A modelling approach. Astrophys. J. 2015, 810, 141. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bongi, M.; Bonvicini, V.; Borisov, S.; Bottai, S.; et al. Time dependence of the proton flux measured by PAMELA during the 2006 July-2009 December solar minimum. Astrophys. J. 2013, 765, 91. [Google Scholar] [CrossRef] [Green Version]
- Aslam, O.P.M.; Bisschoff, D.; Potgieter, M.S.; Boezio, M.; Munini, R. Modeling of heliospheric modulation of cosmic-ray positrons in a very quiet heliosphere. Astrophys. J. 2019, 873, 70. [Google Scholar] [CrossRef] [Green Version]
- Bisschoff, D.; Potgieter, M.S.; Aslam, O.P.M. New very local interstellar spectra for electrons, positrons, protons, and light cosmic ray nuclei. Astrophys. J. 2019, 878, 59. [Google Scholar] [CrossRef] [Green Version]
- Corti, C.; Potgieter, M.S.; Bindi, V.; Consolandi, C.; Light, C.; Palermo, M.; Popkow, A. Numerical modeling of galactic cosmic ray proton and helium observed by AMS-02 during the solar maximum of Solar Cycle 24. Astrophys. J. 2019, 871, 253. [Google Scholar] [CrossRef]
- Ngobeni, M.D.; Aslam, O.P.M.; Bisschoff, D.; Potgieter, M.S.; Ndiitwani, D.C.; Boezio, M.; Marcelli, N.; Munini, R.; Mikhailov, V.V.; Koldobskiy, S.A. The 3D numerical modeling of the solar modulation of galactic protons and helium nuclei related to observations by PAMELA between 2006 and 2009. Astrophys. Space Sci. 2020, 365, 182. [Google Scholar] [CrossRef]
- Ngobeni, M.D.; Aslam, O.P.M.; Bisschoff, D.; Ndiitwani, D.C.; Potgieter, M.S.; Boezio, M.; Marcelli, N.; Munini, R.; Mikhailov, V.V.; Koldobskiy, S.A. Combined heliospheric modulation of galactic protons and Helium nuclei from solar minimum to maximum activity related to observations by PAMELA and AMS-02. PoS 2021, ICRC2021, 1337. [Google Scholar] [CrossRef]
- Ngobeni, M.D.; Potgieter, M.S.; Aslam, O.P.M.; Bisschoff, D.; Ramokgaba, I.I.; Ndiitwani, D.C. Numerical modeling of the solar modulation of helium isotopes in theiInner heliosphere. PoS 2021, ICRC2021, 1338. [Google Scholar] [CrossRef]
- Ngobeni, M.D.; Potgieter, M.S.; Aslam, O.P.M.; Bisschoff, D.; Ramokgaba, I.I.; Ndiitwani, D.C. Simulations of the solar modulation of helium isotopes constrained by observations. Adv. Space Res. 2021. accepted. [Google Scholar]
- Kóta, J. Theory and modeling of galactic cosmic rays: Trends and prospects. Space Sci. Rev. 2013, 176, 391–403. [Google Scholar] [CrossRef]
- Potgieter, M.S. The modulation of galactic cosmic rays in the heliosphere: Theory and models. Space Sci. Rev. 1998, 83, 147–158. [Google Scholar] [CrossRef]
- Potgieter, M.S. Solar modulation of cosmic rays. Living Rev. Solar Phys. 2013, 10, 3–66. [Google Scholar] [CrossRef] [Green Version]
- Schlickeiser, R. Cosmic Ray Astrophysics; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Quenby, J.J. The theory of cosmic ray modulation. Space Sci. Rev. 1984, 37, 201–267. [Google Scholar] [CrossRef]
- Bisschoff, D.; Aslam, O.P.M.; Ngobeni, M.D.; Mikhailov, V.V.; Boezio, M.; Munini, R.; Potgieter, M.S. On the very local interstellar spectra for helium, positrons, anti-protons, deuteron and anti–deuteron. Proceedings of the 3rd International Symposium on Cosmic Rays & Astrophysics (ISCRA-2021), Moscow, Russia, 8–10 June 2021. Phys. Atom. Nucl. 2021, 84, 52–58. [Google Scholar] [CrossRef]
- Zhu, C.-R.; Yuan, Q.; Wie, D.-M. Local interstellar spectra and solar modulation of cosmic ray electrons and positrons. Astropart. Phys. 2020, 124, 102495. [Google Scholar] [CrossRef]
- Potgieter, M.S. The charge-sign dependent effect in the solar modulation of cosmic rays. Adv. Space Res. 2014, 53, 1415–1425. [Google Scholar] [CrossRef]
- Aslam, O.P.M.; Bisschoff, D.; Ngobeni, M.D.; Potgieter, M.S.; Munin, I.R.; Boezio, M.; Mikhailov, V.V. Time and charge-sign dependence of the heliospheric modulation of cosmic rays. Astrophys. J. 2021, 909, 215. [Google Scholar] [CrossRef]
- Kopp, A.; Raath, J.-L.; Fichtner, H.; Potgieter, M.S.; Ferreira, S.E.S.; Heber, B. Cosmic-ray transport in heliospheric magnetic structures. III. Implications of solar magnetograms for the drifts of cosmic rays. Astrophys. J. 2021, 922, 124. [Google Scholar] [CrossRef]
- The Wilcox Solar Observatory. Available online: http://wso.stanford.edu (accessed on 1 July 2021).
- Paths to Magnetic Field, Plasma, Energetic Particle Data Relevant to Heliospheric Studies and Resident at Goddard’s Space Physics Data Facility. Available online: http://omniweb.gsfc.nasa.gov (accessed on 1 July 2021).
- Sun, X.; Hoeksema, J.T.; Liu, Y.; Zhao, J. On polar magnetic field reversal and surface flux transport during solar cycle 24. Astrophys. J. 2015, 798, 114. [Google Scholar] [CrossRef]
- Janardhan, P.; Fujiki, K.; Ingale, M.; Bisoi, S.K.; Rout, D. Solar cycle 24: An unusual polar field reversal. Astron. Astrophys. 2018, 618, A148. [Google Scholar] [CrossRef]
- Aslam, O.P.M.; Bisschoff, D.; Potgieter, M.S. The solar modulation of protons and anti-protons. PoS 2019, ICRC2019, 1054. [Google Scholar] [CrossRef]
- Aslam, O.P.M.; Bisschoff, D.; Potgieter, M.S. The heliospheric modulation of electrons and positrons. PoS 2019, ICRC2019, 1053. [Google Scholar] [CrossRef]
- Bieber, J.W.; Matthaeus, W.H.; Smith, C.W.; Wanner, W.; Kallenrode, M.-B.; Wibberenz, G. Proton and electron mean free paths: The Palmer consensus revisited. Astrophys. J. 1994, 420, 294–306. [Google Scholar] [CrossRef]
- Potgieter, M.S. The heliospheric modulation of galactic electrons: Consequences of new calculations for the mean free path of electrons between 1 MeV and ∼ 10 GeV. J. Geophys. Res. 1996, 101, 24411–24422. [Google Scholar] [CrossRef]
- Teufel, A.; Schlickeiser, R. Analytical calculation of the parallel mean free path of heliospheric cosmic rays II. Dynamical magnetic slab turbulence and random sweeping slab turbulence with finite wave power at small wavenumbers. Astron. Astrophys. 2003, 397, 15. [Google Scholar] [CrossRef] [Green Version]
- Shalchi, A. Nonlinear Cosmic Ray Diffusion Theories; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef] [Green Version]
- Ngobeni, M.D.; Potgieter, M.S. Modelling the effects of scattering parameters on particle-drift in the solar modulation of galactic cosmic rays. Adv. Space Res. 2015, 56, 1525–1537. [Google Scholar] [CrossRef]
- Tautz, R.C.; Shalchi, A. Drift coefficient of charged particles in turbulent magnetic fields. Astrophys. J. 2012, 744, 125. [Google Scholar] [CrossRef]
- Engelbrecht, N.E.; Strauss, R.D.; le Roux, J.A.; Burger, R.A. Toward a greater understanding of the reduction of drift coefficients in the presence of turbulence. Astrophys. J. 2017, 841, 107. [Google Scholar] [CrossRef] [Green Version]
- Manuel, R.; Ferreira, S.E.S.; Potgieter, M.S.; Strauss, R.D.; Engelbrecht, N.E. Time-dependent cosmic ray modulation. Adv. Space Res. 2011, 47, 1529–1537. [Google Scholar] [CrossRef]
- Qin, G.; Shen, Z.-N. Modulation of galactic cosmic rays in the inner heliosphere, comparing with PAMELA measurements. Astrophys. J. 2017, 846, 56. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.-N.; Qin, G. Modulation of galactic cosmic rays in the inner heliosphere over solar cycles. Astrophys. J. 2018, 854, 137. [Google Scholar] [CrossRef]
- Moloto, K.D.; Engelbrecht, N.E. A fully time-dependent ab initio cosmic-ray modulation model applied to historical cosmic-ray modulation. Astrophys. J. 2020, 894, 121. [Google Scholar] [CrossRef]
- Zhao, L.-L.; Qin, G.; Zhang, M.; Heber, B. Modulation of galactic cosmic rays during the unusual solar minimum between cycles 23 and 24. J. Geophys. Res. Space Physics 2014, 119, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
- Fiandrini, E.; Tomassetti, N.; Bertucci, B.; Donnini, F.; Graziani, M.; Khiali, B.; Reina Conde, A. Numerical modeling of cosmic rays in the heliosphere: Analysis of proton data from AMS-02 and PAMELA. Phys. Rev. D. 2021, 104, 023012. [Google Scholar] [CrossRef]
- Song, X.; Luo, X.; Potgieter, M.S.; Liu, X.-M.; Geng, Z. A numerical study of the solar modulation of galactic protons and Helium from 2006 to 2017. Astrophys. J. Supp. Ser. 2021, 257, 48. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruni, A.; et al. Time dependence of the e- flux measured by PAMELA during the July 2006-December 2009 solar minimum. Astrophys. J. 2015, 810, 142. [Google Scholar] [CrossRef]
- Vogt, A.; Heber, B.; Kopp, A.; Potgieter, M.S.; Strauss, R.D. Jovian electrons in the inner heliosphere: Proposing a new source spectrum based on 30 years of measurements. Astron. Astrophys. 2018, 613, A28. [Google Scholar] [CrossRef]
- Nndanganeni, R.R.; Potgieter, M.S. The energy range of drift effects in the solar modulation of cosmic ray electrons. Adv. Space Res. 2016, 58, 453–463. [Google Scholar] [CrossRef]
- Mechbal, S.; Mangeard, P.-S.; Clem, J.; Evenson, P.A.; Johnson, R.P.; Lucas, B.; Roth, J. Measurement of low-energy cosmic-ray electron and positron spectra at 1 AU with the AESOP-Lite spectrometer. Astrophys. J. 2020, 903, 21. [Google Scholar] [CrossRef]
- Mikhailov, V.V.; Aleksandrin, S.Y.; Koldobskiy, S.A.; Boezio, M.; Munini, R.; Aslam, O.P.M.; Bisschoff, D.; Ngobeni, M.D.; Potgieter, M.S. Study of the modulation of galactic positrons and electrons in 2006–2016 with the PAMELA experiment. PoS 2021, ICRC2021, 1307. [Google Scholar] [CrossRef]
- Ndiitwani, D.C.; Ngobeni, M.D.; Aslam, O.P.M.; Bisschoff, D.; Potgieter, M.S.; Boezio, M.; Munini, R.; Mikhailov, V.V. A Simulation Study of galactic proton modulation from solar minimum to maximum conditions. PoS 2021, ICRC2021, 1327. [Google Scholar] [CrossRef]
- Krainev, M.; Kalinina, M.; Aslam, O.P.M.; Ngobeni, M.D.; Potgieter, M.S. On the dependence of maximum GCR intensity on heliospheric factors for the last five sunspot minima. Adv. Space Res. 2021, 68, 2953–2962. [Google Scholar] [CrossRef]
- Krainev, M.; Gvozdevsky, B.B.; Kalinina, M.; Aslam, O.P.M.; Ngobeni, M.D.; Potgieter, M.S. On the solar poloidal magnetic field as one of the main factors for maximum GCR intensity for the last five sunspot minima. PoS 2021, ICRC2021, 1322. [Google Scholar] [CrossRef]
- Jokipii, J.R.; Levy, E.H.; Hubbard, W.B. Effects of particle drift on cosmic-ray transport. I. General properties, application to solar modulation. Astrophys. J. 1977, 213, 861–868. [Google Scholar] [CrossRef]
- Kóta, J.; Jokipii, J.R. Effects of drift on the transport of cosmic rays. VI. A three-dimensional model including diffusion. Astrophys. J. 1983, 265, 573–581. [Google Scholar] [CrossRef]
- Zhang, M. A Markov stochastic process theory of cosmic-ray modulation. Astrophys. J. 1999, 513, 409–420. [Google Scholar] [CrossRef]
- Strauss, R.D.; Potgieter, M.S.; Boezio, M.; De Simone, N.; Di Felice, V.; Kopp, A.; Büsching, I. The heliospheric transport of protons and anti-protons: A stochastic modelling approach of PAMELA observations. In Astroparticle, Particle, Space Physics and Detectors for Physics Applications. Proceedings of the 13th ICATPP Conference. Como, Italy, 3–7 October 2021; Giani, S., Leroy, C., Price, L., Rancoita, P.-G., Ruchti, R., Eds.; World Scientific: Singapore, 2012; pp. 288–296. [Google Scholar]
- Fisk, L.A. Motion of the footprints of heliospheric magnetic field lines at the Sun: Implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 1996, 101, 15547–15554. [Google Scholar] [CrossRef]
- Le Roux, J.A.; Potgieter, M.S. A time-dependent drift model for the long-term modulation of cosmic rays with special reference to asymmetries with respect to the solar minimum of 1987. Astrophys. J. 1990, 361, 275–282. [Google Scholar] [CrossRef]
- Le Roux, J.A.; Potgieter, M.S. The simulated features of heliospheric cosmic ray modulation with a time-dependent drift model. II. On the energy dependence of the onset of new modulation in 1987. Astrophys. J. 1992, 390, 661–667. [Google Scholar] [CrossRef]
- le Roux, J.A.; Potgieter, M.S. The simulation of complete 11 and 22 year modulation cycles for cosmic rays in the heliosphere using a drift model with global interaction regions. Astrophys. J. 1995, 442, 847–851. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, M.; Rassoul, K.H.; Pogorelov, N. Cosmic-ray modulation by the global merged interaction region in the heliosheath. Astrophys. J. 2011, 730, 13. [Google Scholar] [CrossRef]
- Luo, X.; Potgieter, M.S.; Zhang, M.; Feng, X. A numerically study of cosmic proton modulation using AMS02 observations. Astrophys. J. 2019, 878, 6. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, M.S. Time-dependent cosmic-ray modulation: Role of drifts and interaction regions. Adv. Space Res. 1993, 13, 6–239. [Google Scholar] [CrossRef]
- Langner, U.W.; Potgieter, M.S. Solar wind termination shock and heliosheath effects on charge-sign dependent modulation for protons and anti-protons. J. Geophys. Res. 2004, 109, A01103. [Google Scholar] [CrossRef]
- Langner, U.W.; Potgieter, M.S. Effects of the solar wind termination shock on charge-sign dependent cosmic ray modulation. Adv. Space Res. 2004, 34, 144–149. [Google Scholar] [CrossRef]
- Langner, U.W.; Potgieter, M.S. The heliospheric modulation of cosmic ray protons during increased solar activity: Effects of the position of the solar wind termination shock and of the heliopause. Ann. Geophys. 2005, 23, 1–6. [Google Scholar] [CrossRef]
- Manuel, R.; Ferreira, S.E.S.; Potgieter, M.S. Time-dependent modulation of cosmic rays in the heliosphere. Solar Phys. 2014, 289, 2207–2231. [Google Scholar] [CrossRef] [Green Version]
- Manuel, R.; Ferreira, S.E.S.; Potgieter, M.S. The effect of a dynamic inner heliosheath thickness on cosmic ray modulation. Astrophys. J. 2015, 799, 223. [Google Scholar] [CrossRef]
- Ndiitwani, D.C.; Ferreira, S.E.S.; Potgieter, M.S.; Heber, B. Modelling cosmic ray intensities along the Ulysses trajectory. Ann. Geophys. 2005, 23, 1–10. [Google Scholar] [CrossRef]
- Heber, B.; Ferrando, P.; Raviart, A.; Paizis, C.; Posner, A.; Wibberenz, G.; Müller-Mellin, R.; Kunow, H.; Potgieter, M.S.; Ferreiera, S.; et al. 3–20 MeV electrons in the inner three-dimensional heliosphere at solar maximum: Ulysses COSPIN/KET observations. Astrophys. J. 2002, 579, 888–894. [Google Scholar] [CrossRef]
- Ferreira, S.E.S.; Potgieter, M.S.; Heber, B.; Fichtner, H. Charge-sign dependent modulation over a 22-year cycle. Ann. Geophys. 2003, 21, 1359–1366. [Google Scholar] [CrossRef] [Green Version]
- Reinecke, J.P.L.; Potgieter, M.S. An explanation for the difference in cosmic ray modulation at low and neutron monitor energies during consecutive solar minimum periods. J. Geophys. Res. 1994, 99, 14761–14768. [Google Scholar] [CrossRef]
- Strauss, R.D.; Potgieter, M.S. Is the highest cosmic rays yet to come? Sol. Phys. 2014, 289, 3197–3205. [Google Scholar] [CrossRef]
- Potgieter, M.S.; Vos, E.E. Difference in the heliospheric modulation of cosmic-ray protons and electrons during solar minimum of 2006 to 2009. Astron. Astrophys. 2017, 601, A23. [Google Scholar] [CrossRef] [Green Version]
- Di Felice, V.; Munini, R.; Vos, E.E.; Potgieter, M.S. New evidence for charge-sign dependent modulation during the solar minimum of 2006 to 2009. Astrophys. J. 2017, 834, 89. [Google Scholar] [CrossRef] [Green Version]
- Munini, R. Solar Modulation of Cosmic Ray Electrons and Positrons Measured by the PAMELA Experiment During the 23rd Solar Minimum. Ph.D. Thesis, University delgi Studi di Trieste, Trieste, Italy, 2015. [Google Scholar]
- Munini, R.; Boezio, M.; Bruno, A.; Christian, E.C.; de Nolfo, G.A.; Di Felice, V.; Martucci, M.; Merge, M.; Richardson, I.G.; Ryan, J.M.; et al. Evidence of energy and charge sign dependence of the recovery time for the 2006 December Forbush event measured by the PAMELA Experiment. Astrophys. J. 2018, 853, 76. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Potgieter, M.S.; Zhang, M.; Feng, X. A study of electron Forbush decreases with a 3D SDE numerical model. Astrophys. J. 2018, 860, 160. [Google Scholar] [CrossRef]
- Potgieter, M.S. Very local interstellar spectra for galactic electrons, protons and helium. Brazilian J. Phys. 2014, 44, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Bisschoff, D.; Potgieter, M.S. Implications of Voyager 1 observations outside the heliosphere for the local interstellar electron spectrum. Astrophys. J. 2014, 794, 166. [Google Scholar] [CrossRef] [Green Version]
- Bisschoff, D.; Potgieter, M.S. New local interstellar spectra for protons, helium and carbon derived from PAMELA and Voyager 1 observations. Astrophys Space Sci. 2016, 361, 48. [Google Scholar] [CrossRef] [Green Version]
- Boschini, M.J.; Della Torre, S.; Gervasi, M.; Grandi, D.; Jøhannesson, G.; Kachelriess, M.; La Vacca, G.; Masi, N.; Moskalenko, I.V.; Orlando, E.; et al. Solution of heliospheric propagation: Unveiling the local interstellar spectra of cosmic-ray species. Astrophys. J. 2017, 840, 115. [Google Scholar] [CrossRef] [PubMed]
- Boschini, M.J.; Della Torre, S.; Gervasi, M.; Rancoita, P.G. The HELMOD model in the works for inner and outer heliosphere: From AMS to Voyager probes observations. Adv. Space Res. 2019, 64, 12–2476. [Google Scholar] [CrossRef] [Green Version]
- Boschini, M.J.; Della Torre, S.; Gervasi, M.; Grandi, D.; Jøhannesson, G.; La Vacca, G.; Masi, N.; Moskalenko, I.V.; Pensotti, S.; Porter, T.A.; et al. Deciphering the local interstellar spectra of secondary nuclei with the Galprop/Helmod framework and a hint for primary lithium in cosmic rays. Astrophys. J. 2020, 889, 167. [Google Scholar] [CrossRef] [PubMed]
- Moskalenko, I.V.; Strong, A.W.; Ormes, J.F.; Potgieter, M.S. Secondary antiprotons and propagation of cosmic rays in the Galaxy. Astrophys, J. 2002, 565, 280–296. [Google Scholar] [CrossRef] [Green Version]
- Strong, A.W.; Moskalenko, I.V.; Ptuskin, V.S. Cosmic-ray propagation and interactions in the galaxy. Ann. Rev. Nucl. Part. Sci. 2007, 57, 285–327. [Google Scholar] [CrossRef] [Green Version]
- Scherer, K.; Fichtner, H.; Strauss, R.D.; Ferreira, S.E.S.; Potgieter, M.S.; Fahr, H.-J. On cosmic ray modulation beyond the heliopause: Where is the modulation boundary? Astrophys. J. 2011, 735, 128. [Google Scholar] [CrossRef]
- Strauss, R.D.; Potgieter, M.S.; Ferreira, S.E.S.; Fichtner, H.; Scherer, K. Cosmic ray modulation beyond the heliopause: A hybrid modelling approach. Astrophys. J. Lett. 2013, 765, L18. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, M.S.; Nndanganeni, R.R. A local interstellar spectrum for galactic electrons. Astropart. Phys. 2013, 48, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Vos, E.E.; Potgieter, M.S. New modeling results of Galactic proton modulation during the minimum of solar cycle 23/24. Astrophys. J. 2015, 815, 119. [Google Scholar] [CrossRef] [Green Version]
- Herbst, K.; Muscheler, R.; Heber, B. The new local interstellar spectra and their influence on the production rates of the cosmogenic radionuclides 10Be and 14C. J. Geophys. Res. Space Physics 2017, 122, 23–34. [Google Scholar] [CrossRef]
- Schlickeiser, R.; Webber, W.R.; Kempf, A. Explanation of the local galactic cosmic ray energy spectra measured by Voyager 1. I. Protons. Astrophys. J. 2014, 787, 35. [Google Scholar] [CrossRef] [Green Version]
- Drury, L.O.; Strong, A.W. Power requirements for cosmic ray propagation models involving diffusive reacceleration; estimates and implications for the damping of interstellar turbulence. Astron. Astrophys. 2017, 597, A117. [Google Scholar] [CrossRef] [Green Version]
- Büsching, I.; Potgieter, M.S. The variability of the proton cosmic ray flux on the Sun’s way around the galactic center. Adv. Space Res. 2008, 42, 504. [Google Scholar] [CrossRef]
- Kissmann, R.; Werner, M.; Reimer, O.; Strong, A.W. Propagation in 3D spiral-arm cosmic-ray source distribution models and secondary particle production using PICARD. Astropart. Phys. 2015, 70, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Kopp, A.; Büsching, I.; Potgieter, M.S.; Strauss, R.D. A stochastic approach to Galactic proton propagation: Influence of the spiral arm structure. New Astron. 2014, 30, 32–37. [Google Scholar] [CrossRef]
- Webber, W.R.; Higbie, P.R. Calculations of the propagated LIS electron spectrum which describe the cosmic ray electron spectrum below ~100 MeV measured beyond 122 AU at Voyager 1 and its relationship to the Pamela electron spectrum above 200 MeV. arXiv 2013. [Google Scholar]
- Potgieter, M.S.; Vos, E.E.; Bisschoff, D.; Raath, J.L.; Boezio, M.; Munini, R.; Di Felice, V. Solar modulation of cosmic ray positrons in a very quiet heliosphere. In Proceedings of the International Cosimc Ray Conference (ICRC), Busan, Korea, 12–20 July 2017; Volume 44. [Google Scholar]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bongi, M.; Bonvicini, V.; Borisov, S.; Bottai, S.; et al. Measurement of the isotopic composition of hydrogen and helium nuclei in cosmic rays with the PAMELA experiment. Astrophys. J. 2013, 770, 2. [Google Scholar] [CrossRef] [Green Version]
- Marcelli, N.; Boezio, M.; Lenni, A.; Menn, W.; Aslam, O.P.M.; Bisschoff, D.; Ngobeni, M.D.; Potgieter, M.S.; Adriani, O.; Barbarino, G.C.; et al. Time dependence of the flux of Helium nuclei in cosmic rays measured by the PAMELA Experiment between 2006 July and 2009 December. Astrophys. J. 2020, 893, 145. [Google Scholar] [CrossRef]
- Webber, W.R.; Kish, J.C.; Schrier, D.A. Asymmetries in the modulation of protons and helium nuclei over two solar cycles. In Proceedings of the 18th International Cosmic Ray Conference, Bangalore, India, 22 August–3 September 1983; Volume 3, pp. 35–38. [Google Scholar]
- Potgieter, M.S.; Moraal, H. A drift model for the modulation of galactic cosmic rays. Astrophys. J. 1985, 294, 425–440. [Google Scholar] [CrossRef]
- Potgieter, M.S.; Burger, R.A. The modulation of cosmic ray electrons, helium nuclei and positrons as predicted by a drift model with a simulated wavy neutral sheet. Astron. Astrophys. 1990, 233, 598–604. Available online: https://articles.adsabs.harvard.edu/pdf/1990A%26A...233..598P (accessed on 1 September 2021).
- Raath, J.-L.; Potgieter, M.S. Charge-sign dependent modulation of cosmic ray electrons and positrons up to extreme solar maximum conditions. PoS 2017, ICRC2017, 039. [Google Scholar] [CrossRef]
- Langner, U.W.; de Jager, O.C.; Potgieter, M.S. On the local interstellar spectrum for cosmic ray electrons. Adv. Space Res. 2001, 27, 517–522. [Google Scholar] [CrossRef]
- Langner, U.W.; Potgieter, M.S. Heliospheric modulation of cosmic rays computed with new local interstellar spectra. In Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, 7–15 August 2001; Volume 8, pp. 3686–3689. [Google Scholar]
- Potgieter, M.S.; Langner, U.W. Heliospheric modulation of cosmic ray positrons and electrons: Effects of the heliosheath and solar wind termination shock. Astrophys. J. 2004, 602, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruni, A.; et al. The PAMELA mission: Heralding a new era in precision cosmic ray physics. Phys. Rep. 2014, 544, 232–370. [Google Scholar] [CrossRef]
- Vladimirov, A.E.; Digel, S.W.; Jøhannesson, G.; Michelson, P.F.; Moskalenko, I.V.; Nolan, P.L.; Orlando, E.; Porter, T.A.; Strong, A.W. GALPROP WebRun: An internet-based service for calculating galactic cosmic ray propagation and associated photon emissions. Comp. Phys. Comm. 2011, 182, 1156–1161. [Google Scholar] [CrossRef] [Green Version]
- Cosmic Ray Database. Available online: https://cosmicrays.oulu.fi (accessed on 1 September 2021).
- Ngobeni, M.D.; Potgieter, M.S. Modelling of galactic Carbon in an asymmetrical heliosphere: Effects of asymmetrical modulation conditions. Adv. Space Res. 2012, 49, 1660–1669. [Google Scholar] [CrossRef] [Green Version]
- Webber, W.R.; Potgieter, M.S. A new calculation of the cosmic ray anti-proton spectrum in the galaxy and heliospheric modulation effects on this spectrum using a drift plus wavy current sheet model. Astrophys. J. 1989, 344, 779–785. [Google Scholar] [CrossRef]
- Langner, U.W.; Potgieter, M.S. Differences in proton and antiproton modulation in the heliosphere. In Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, 7–15 August 2001; Volume 8, pp. 3657–3660. [Google Scholar]
- Engelbrecht, N.E.; Moloto, K.D. An ab initio approach to antiproton modulation in the inner heliosphere. Astrophys. J. 2021, 980, 167. [Google Scholar] [CrossRef]
- Adriani, O.; Bazilevskaya, G.A.; Barbarino, G.C.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonvicini, V.; Bongi, M.; Bonechi, L.; Borisov, S.; et al. Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment. JETP Lett. 2013, 96, 621–627. [Google Scholar] [CrossRef]
- Boezio, M.; Munini, R.; Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Bogomolov, E.A.; Bongi, M.; Bonvicini, V.; Bottai, S.; et al. The PAMELA experiment: A cosmic ray experiment deep inside the heliosphere. PoS 2017, ICRC2017, 039. [Google Scholar] [CrossRef]
- Mitchell, J.W.; Abe, K.; Anraku, K.; BESS Program. Precise measurements of the cosmic ray antiproton spectrum with BESS including the effects of solar modulation. Adv. Space Res. 2005, 35, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Menn, W.; Adriani, O.; Barbarno, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; et al. The PAMELA space experiment. Adv. Space Res. 2013, 51, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Moraal, H.; Potgieter, M.S. Solutions of the spherically-symmetric cosmic-ray transport equation in interplanetary space. Astrophys. Space Sci. 1982, 84, 519. [Google Scholar] [CrossRef]
- Munini, R.; Boezio, M.; Bisschoff, D.; Marcelli, N.; Ngobeni, M.D.; Aslam, O.P.M.; Potgieter, M.S. Solar modulation of galactic-cosmic ray antiprotons. PoS 2021, ICRC2021, 1328. [Google Scholar] [CrossRef]
- Tomassetti, N.; Orcinha, M.; Barão, F.; Bertucci, B. Evidence for a time lag in solar modulation of galactic cosmic rays. Astrophys. J. 2017, 849, l32. [Google Scholar] [CrossRef] [Green Version]
- Korsmeier, M.; Donato, F.; Fornengo, N. Prospects to verify a possible dark matter hint in cosmic antiprotons with antideuterons and antihelium. Phys Rev. D. 2018, 97, 103011. [Google Scholar] [CrossRef] [Green Version]
- Fuke, H.; Maeno, T.; Abe, K.; Haino, S.; Makida, Y.; Matsuda, S.; Matsumoto, H.; Mitchell, J.W.; Moiseev, A.A.; Nishimura, J.; et al. Search for cosmic-ray antideuterons. Phys. Rev. Lett. 2005, 95, 081101. [Google Scholar] [CrossRef]
- Sakai, K.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Kim, K.C.; Lee, M.H.; Makida, Y.; Mitchell, J.W.; et al. New result of antideuteron search in BESS-Polar II. PoS 2021, ICRC2021, 0123. [Google Scholar] [CrossRef]
- Dimiccoli, F.; Battiston, R.; Kanishchev, K.; Nozzoli, F.; Zuccon, P. Measurement of cosmic deuteron flux with the AMS-02 detector. J. Phys. Conf. Ser. 2020, 1548, 012034. [Google Scholar] [CrossRef]
- Lenni, A.; Boezio, M.; Munini, R.; Menn, W.; Marcelli, N.; Potgieter, M.S.; Bisschoff, D.; Ngobeni, M.D.; Aslam, O.P.M. Study of the solar modulation for the cosmic ray isotopes with the PAMELA experiment. PoS 2021, ICRC2021, 1310. [Google Scholar] [CrossRef]
- Gomez Coral, D.M.; Menchaca-Rocha, A. SM antideuteron background to indirect dark matter signals in galactic cosmic rays. J. Phys. Conf. Ser. 2020, 1602, 012005. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; et al. Measurements of cosmic ray hydrogen and helium isotopes with the PAMELA experiment. Astrophys. J. 2016, 818, 68. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K.C.; Kumazawa, T.; Kusumoto, K.A.; et al. (BESS program). Search for antihelium with the BESS-polar spectrometer. Phys. Rev. Lett. 2012, 108, 131301. [Google Scholar] [CrossRef] [Green Version]
- von Doetinchem, P.; Perez, K.; Aramaki, T.; Baker, S.; Barwick, S.; Bird, R.; Boezio, M.; Boggs, S.E.; Cui, M.; Datta, A.; et al. Cosmic-ray antinuclei as messengers of new physics: Status and outlook for the new decade. J. Cosm. Astrop. Phys. 2020, 8, 35. [Google Scholar] [CrossRef]
- Heber, B.; Dröge, W.; Ferrando, P.; Haasbroek, L.J.; Kunow, H.; Müller-Mellin, R.; Paizis, C.; Potgieter, M.S.; Raviart, A.; Wibberenz, G. Spatial variation of > 40 MeV/n nuclei fluxes observed during the Ulysses rapid latitude scan. Astron. Astrophys. 1996, 316, 538–546. Available online: https://articles.adsabs.harvard.edu/pdf/1996A%26A...316..538H (accessed on 1 September 2021).
- Ferreira, S.E.S.; Potgieter, M.S.; Heber, B.; Fichtner, H.; Wibberenz, G. Latitudinal transport effects on the modulation of a few-MeV cosmic ray electrons from solar minimum to solar maximum. J. Geophys. Res. 2004, 109, A02115. [Google Scholar] [CrossRef] [Green Version]
- Strong, A.W.; Orlando, E.; Jaffe, T.R. The interstellar cosmic-ray electron spectrum from synchrotron radiation and direct measurements. Astron. Astrophys. 2011, 534, A54. [Google Scholar] [CrossRef] [Green Version]
- Orlando, E. Imprints of cosmic rays in multifrequency observations of the interstellar emission. Mon. Not. R. Astron. Soc. 2018, 475, 2724. [Google Scholar] [CrossRef] [Green Version]
- Phan, V.H.M.; Schulze, F.; Mertsch, P.; Recchia, S.; Gabici, S. Stochastic fluctuations of low-energy cosmic rays and the interpretation of Voyager data. Phys. Rev. Lett. 2021, 127, 141101. [Google Scholar] [CrossRef]
- Bieber, J.W.; Burger, R.A.; Engel, R.; Gaisser, T.K.; Roesler, S.; Stanev, T. Antiprotons at solar maximum. Phys. Rev. Lett. 1999, 83, 674. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potgieter, M.S.; Aslam, O.P.M.; Bisschoff, D.; Ngobeni, D. A Perspective on the Solar Modulation of Cosmic Anti-Matter. Physics 2021, 3, 1190-1225. https://doi.org/10.3390/physics3040076
Potgieter MS, Aslam OPM, Bisschoff D, Ngobeni D. A Perspective on the Solar Modulation of Cosmic Anti-Matter. Physics. 2021; 3(4):1190-1225. https://doi.org/10.3390/physics3040076
Chicago/Turabian StylePotgieter, Marius S., O. P. M. Aslam, Driaan Bisschoff, and Donald Ngobeni. 2021. "A Perspective on the Solar Modulation of Cosmic Anti-Matter" Physics 3, no. 4: 1190-1225. https://doi.org/10.3390/physics3040076
APA StylePotgieter, M. S., Aslam, O. P. M., Bisschoff, D., & Ngobeni, D. (2021). A Perspective on the Solar Modulation of Cosmic Anti-Matter. Physics, 3(4), 1190-1225. https://doi.org/10.3390/physics3040076